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in a very small neighborhood ofk = 0, corresponding 
to the fact that (3Wk becomes very small in that 
neighborhood. 7 Then it follows from (A6) that w(k) 
differs infinitesimally from 2 lei a(k) in this neighbor­
hood. 2! Thus by (AS) and (A9) one finds, upon 
replacing epw(k) by the first two terms of its power­
series expansion, 

nk RoJ 2 lei a(k)KT/w2(k), 

(aka-k) RoJ -2e*a(k)KT/w2(k), (All) 

for T < Te and k -+ 0. More explicit results can be 
obtained by solving (A4) for nk after the substitutions 
IX = -IIXI, w(k) RoJ 21el a(k) [the latter following 
from w(k) RoJ 0]. This gives 

nk = Hk~ - k2)Q/47T IIXI, T < Tc , k < k" (AI2) 

where 

21 We assume that a(k) ~ O. 
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Then, by (All), 

(aka-k) = -le-iS(k~ - k2)Q/47T IIXI, 
T < Te , k < ks> (A14) 

where e = lei ei{}. Equations (5) and (6) then give 

wherell 

Pc = Pc = jp, T < Te , 

Pc = Pc = 0, T> Tc, (AI5) 

(l - j)p = 2.612(KT/27T)!, T < Te, (AI6) 

KTe = 27T(p/2.612)i, 
and 

lim ks = [15(27T)'ip IIXI/Q]~, T < Te. (AI7) 
.~o 

The infinite susceptibility of (aka_k) to the sym­
metry-breaking perturbation V. is clear in this model; 
with e = ° a grand canonical ensemble calculation 
gives (aka_k) = 0; on the other hand, if (aka-k) is 
interpreted as the quasiaverage (3), it is not zero and 
in fact gets large like (Nk ) as k -+ 0, for arbitrarily 
small but nonzero e and T < Te. 
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The perturbation theory of Bogoliubov and Mitropolsky for systems having a single rapid phase is 
generalized to systems having several rapid phases. It is shown that one can avoid the classic problem of 
small divisors to all orders in the perturbation theory. The method has the advantage of providing a single 
approach to many problems conventionally treated by a variety of specialized techniques. 

1. INTRODUCTION 

The techniques of perturbation theory for non­
linear systems, initiated by Poincare three quarters 
of a century ago, have been extended and developed 
by many workers. One such technique, the method 
of averaging, was introduced by Kryl~)V and Bogoliu­
bov thirty years ago.! The essential feature of this 
method is the separation of a given motion into a 
secular motion plus a rapidly fluctuating motion of 
small amplitude; the given motion is then expressed 
in terms of the solution of a system of differential 
equations which describe the secular motion alone. 

* Supported in part by the National Science Foundation. 
t Present address: E. G. and G. Inc., Arlington, Va. 
1 N. N. Krylov and N. N. Bogoliubov, Introduction to Non-Linear 
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1937), trans. by S. Lefschetz in Annals of Mathematics Studies, No. 
11 (Princeton University Press, Princeton, N.J., 1947). 

A wide variety of physical problems may be handled 
by this method, e.g., Case in a recent publication has 
shown how the method can be applied to time­
dependent perturbation theory in quantum mechanics. 2 

Bogoliubov and Mitropolsky have presented a 
form of the method of averaging, called the method 
of rapidly rotating phase, which is especially conven­
ient for systems in which a single variable, called the 
phase, has a rapid secular motion.3 Our purpose in 
this paper is to extend this method to systems with 

2 K. M. Case. Supp!. Progr. Theoret. Phys. (Kyoto) 37, 1 (1966). 
See also R. Y. Y. Lee, "On a New Perturbation Method" Thesis, 
The University of Michigan, Ann Arbor, 1964. 

3 N. N. Bogoliubov and D. N. Zubarev, Ukrain. Mat. Zh. 7, 5 
(1955); N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic 
Methods in the Theory of Non-Linear Oscillations (Hindustan 
Publishing Co., Delhi, India, 1961), Chaps. 5 and 6. See also N. 
Minorsky, Nonlinear Oscillations (D. van Nostrand Co., Princeton, 
N.J., 1962), and M. Kruskal, J. Math. Phys. 3, 806 (1962). 
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several rapid phases and to succinctly describe how 
the method works, first in the nondegenerate case, and 
then in the more interesting degenerate case. In a 
following paper one of us (T. P. C.) will use the 
method to discuss the perturbation by a weak, trans­
verse, spatially periodic magnetic field of the motion 
of a charged particle gyrating in a uniform magnetic 
field. 4 

2. NONDEGENERATE PERTURBATION THEORY 

We consider the following set of coupled differential 
equations5 : 

Xi = EAi(X,~), i = 1,2,'· . ,r, (2.1 a) 

'ljJi = wlx) + EBix,~), j = 1,2,·" ,s, (2.lb) 

where E is a small parameter, x = (Xl' •.. , Xr ), 

~ = ("PI' ... , "P8)' and the A;'s and B/s are periodic 
functions of each of the 1/'k'S with period 217. The dot 
represents differentiation with respect to time. 

When E = 0, the x;'s will be constants and the "P/s 
will be linear functions of time. When E is small but 
finite, the x;'s will experience a slow secular growth 
on which is superimposed small-amplitude rapid 
fluctuations. Similarly, the "P/s will experience a 
rapid secular growth on which is superimposed small­
amplitude rapid fluctuations. Our aim is to separate 
this secular motion from the rapid fluctuating motion. 
To do this we seek a solution in the form 

<XJ 

Xi = Yi + l EnF;n)(y, cp), i = 1,2, ... ,r, (2.2a) 
n=l 

00 

"Pj = ¢j + l EnGjn)(y, cp), j = 1,2, ... ,S, (2.2b) 
n=l 

where the Fjn)'s and G;n)'s are periodic functions of 
each of the ¢k'S with period 217. We further require 
that the new variables y, and ¢i satisfy the following 
differential equations: 

<XJ 

Yi = l Ena;n)(y), i = 1,2, ... ,r, (2.3a) 
n=l 

1>i = w/y) + i Enb~n)(y), j = 1,2, ... ,S, (2.3b) 
n=l 

where the right-hand sides of Eq. (2.3) are required 
to be independent of the ¢k'S. The idea here is that the 
Yi and ¢i exhibit only secular motion, since they are 
solutions of a system of differential equations which 
are independent of the rapidly increasing (or de­
creasing) phases ¢i' The rapid fluctuations of the 
Xi and "Pj about the y, and ¢j are given by the terms 
in the series in (2.2). We must now show that we can 

4 T. P. Coffey. J. Math. Phys. 10, 1362 (1969). 
5 The generalization to the general case where the right-hand 

sides of (2.1) are power series in £ is straightforward. 

construct the function F(n), G(n), atn ), and b(n) so that 
t J t 1 

(2.2) is indeed a solution of the set of differential 
equations (2.1). 

If we insert Eq. (2.2) in Eq. (2.1) and then use Eq. 
(2.3) we find, upon equating equal powers of E, 

a;l)(y) \~Wk aF;~Z: cp) = A;(y, cp), (2.4a) 

b~l)(y) + iWk oGj1)(y, cp) 
k=l O¢k 

= Bj(y, cp) + ~J~l)(y, cp) a(~lY), (2.4b) 
/=1 uYI 

from the first power of E, and 

s OF(2) s oA r oA 
a;2) + l Wk _i_ = l G~l) -' + l F?) -' 

k=l O¢k k=l O¢k /=1 0Yl 
r a F(l) S ::IF(l) _ "a(I) _i _ _ "b(l) _u_ 
"-I::l "-k , 

/=1 UYI k=l a¢k 

(2.5a) 

1 r r 02 r ::l 

= - l l F:1)F~) --.!:!L + l F;2) ~ 
2 [=lm=l 0YlOYm [=1 0Yl 

+ i Gk1) aBi + iF?) aBj 

k=l O¢k [=1 0Yl 
r ::lG(l) S ::lG(l) 

-l a:1
) ~ -lb~l) _Uo-' (2.5b) 

/=1 UYl k=l ¢k 

from the second power of E, and so on. We thus 
obtain a sequence of equations for the determination 
of the unknown functions. 

Each of these equations is of the general form 

a(y) +J1Wk(Y) aF~~kcp) = A(y, cp), (2.6) 

where a(y) and F(y, cp) are to be determined and 
A(y, cp) is a periodic function of the ¢k which is 
known in terms of the solutions of the previous 
equations. Note that the dependence upon y is trivial, 
the Yi behaving as parameters in this equation, so we 
may suppress this dependence for the moment and 
write the equation in the form 

k~Wk O~~~) = A(cp) - a. (2.7) 

This equation, viewed as an equation for determining 
F(cp) , is a first order, linear, inhomogeneous partial 
differential equation with constant coefficients. Solu­
tions of such an equation exist only if the inhomo­
geneous term is orthogonal to all solutions of the 
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homogeneous equation: 

iWk aF(cp) = O. 
k~l a4>k 

(2.8) 

But the solutions of this equation are all of the form 

F( <p) = exp {ikt Pk4>k}' (2.9) 

where, because F( cp) must be periodic in each of the 
4>k' the h must be integers and, because (2.9) must 
be a solution of (2.8), these integers must satisfy the 
identity 

(2.10) 

[n the nondegenerate case we assume there are no 
sets of integers satisfying this identity except for the 
trivial set in which all the h are zero, i.e., F(cp) is a 
constant. If there is a nontrivial set of integers satis­
fying (2.10) we say there is a degeneracy; we discuss 
this case in Sec. 4. 

We see, therefore, that in the nondegenerate case a 
must be chosen so there is no constant term on the 
right-hand side of (2.7); F( cp) is then the solution of 
the resulting differential equation. To exhibit this 
solution more explicitly, we return to Eq. (2.6) where 
the y dependence is indicated. The given function 
A(y, cp), since it is periodic in the 4>k' must be expres­
sible in the form 

A(y, cp) = ! Ap(y)eiP'c!>, (2.11) 
P 

where the sum is over all sets of integers p = 

(Pl,P2"" ,Ps) and 
s 

p. cp == !Pk4>k' (2.12) 
k~l 

The function a(y) must be chosen to cancel the terms 
corresponding to p = 0, in which all the h are zero: 

a(y) = Ao(Y) 

= (2~)"flTd4>lflTd4>2" ·f"d4>sA(Y, cp). 

The solution of (2.6) is then 

F(y, <p) = -i I' Ap(Y) eiP'c!> + fey), 
p p·w 

(2.13) 

(2.14) 

where the prime indicates that the term p = 0 is 
absent from the sum and 

s 

p. w == !Pkwiy). (2.15) 
k~l 

The functionf(y) in (2.14) is arbitrary; the solution of 

an inhomogeneous, linear, partial differential equa­
tion is determined only up to an arbitrary solution of 
the homogeneous equation. We usually choose fey) 
to be zero. 

Thus, we see how the two functions a(y), given by 
(2.13), and F(y, cp), given by (2.14), are determined 
from the single equation (2.6). Since each of the equa­
tions in the sequence for the determination of the 
functions F;n)(y, cp), G;n)(y, <p), a~n)(y), and b}n)(y) is 
of the form (2.6), we may, in the nondegenerate case, 
successively solve to determine these functions. To 
be more explicit, we first note that the given functions 
A;(x,~) and Bi(X,~) in (2.1) are periodic in each of 
the "Pk and so may be expanded in the form 

A;(x,~) = ! Ai.p{x)eiP.IjI, (2.16a) 
P 

Blx,~) = ! Bj.p(x)eiP.IjI. 
p 

Then from (2.4a) we find 

alU(y) = Ai.O(y) 
and 

Using this solution in (2.4b) we then find 

b~l)(y) = Bj.o(y) 
and 

(2.16b) 

(2.17) 

(2.18) 

(2.19) 

[ 
iawlY) A ()] 

= -i I Bi.P(Y) _ i 1~1 aYI l.p y eiP'c!> 
~ p. w (p. W)2 , (2.20) 

and so on. The expressions become increasingly 
cumbersome, but we can, in principle, solve to obtain 
explicit expressions for the Fin), G}n), a~n), and b}n) so 
(2.2) is a solution of the system of equations (2.1) to 
any desired order in E. 

3. THE VAN DER POL EQUATION 

As a simple example illustrating the working of the 
general method for the nondegenerate case, we con­
sider the van der Pol equation 

Z + E(Z2 - l)i + z = O. (3.1) 

We cast this equation into the standard form (2.1) by 
introducing variables x and "P through the substitution: 

z = xi cos "P, 

i = -xi sin "P, (3.2) 
that is, 

x = Z2 + i 2, 
"P = -arctan i/z. (3.3) 



NONLINEAR PERTURBA nONS 1001 

Forming the time derivative of both sides of this last 
pair of equations and using (3.1) and (3.2) on the 
right-hand sides, we find 

x = 2€X(1 - x cos2 1p) sinz 1p 

= €X(1 - ix - cos 21p + ix cos 41p) (3.4a) 

V; = 1 + E(1 - X cos2 1p) sin 1p cos 1p 

= 1 + d(l - ix) sin 21p - i-x sin 41p]. (3.4b) 

These equations are in the standard form (2.1) for 
applying the metliod of rapidly rotating phase, with 
E a small parameter. 

According to our general method, we seek a solu· 
tion in the form 

x = y + EF(l)(y, 4» + E2F(2)(y, 4» + .. " (3.5a) 

1p = 4> + EG(1)(y, 4» + EZG(2)(y, 4» + .. " (3.5b) 

where 
j; = Ea(1)(y) + EZa(Z)(y) + ... , 
1> = 1 + Eb(l)(y) + EZb(Z)(y) + .... 

(3.6a) 

(3.6b) 

Inserting (3.5) in (3.4), using (3.6), and equating 
powers of E, we get the following sequence of equa­
tions. 

of(1) 
a(l) + -- = y(l - b - cos 24> + b cos 44», 

04> 
(3.7a) 

oG(1) 
b(1) + -- = (1 - b) sin 24> - ty sin 44>, (3.7b) 

04> 

from the first power of E, and 

OF(2) 
a(Z) .+. -- = (1 - ly - cos 24> + ty cos 44»F(l) 

04> 
+ (2y sin 24> - i sin 44»G(1) 

:3F(1) :3F(I) 
_ all) _U_. _ b(1) _U_ (3.8a) 

oy 04> ' 
oG(Z) 

bIZ) + a;;; = -(t sin 24> + i- sin 44»F(I) 

+ [(1 - ly) cos 24> - ty cos 44>]G(1) 
:3G(1) :3G(l) 

_ btl) _u _ _ a(1) _u_ (3.8b) 
04> oy , 

from the second power of E, and so on. 
We solve this sequence of equations as indicated in 

the previous section. From (3.7a) we find 

a(1)(y) = y(1 - b), (3.9a) 

F(1)(y, 4» = y( -1 sin 24> + llsY sin 44», (3.9b) 

while from (3. 7b) we find 

b(1)(y) = 0, (3.9c) 

G(l)(y) = -HI - ty) cos 24> + 3
l2Y cos 44>. (3.9d) 

From (3.8a), using the solutions (3.9), we find 

a(2)(y) = 0, (3.10a) 
F(2)(y, 4» 

= y2f:3\(y - 5) cos 24> - -h cos 44> + [/sY cos 64», 

(3.10b) 
while from (3.8b) we find 

b(2)( ) = _ ! + 3y _ Hi 
y 8 16 256' 

(3.10c) 

G(Z)(y, 4» 

y(1 + y) . 2A. 16 - 4y + 3i . 4A. 
= - sm 't' - sm 't' 

128 512 

+ y(3 - 2y) sin 64> _ L sin 84>. (3.l0d) 
384 2048 

These expressions, when inserted in (3.5) and (3.6), 
give the complete reduction of the problem through 
second order in E. 

The method of rapidly rotating phase does not in 
general lead to an explicit solution of the original 
set of differential equations. Rather, it is a method 
for separating the secular motion from the rapid 
periodic fluctuations and reducing the problem to that 
of solving the differential equations for the secular 
motion alone. The solution of these equations, i.e., 
in the general case the equations (2.3), may be a very 
difficult problem, but in the case of the van der Pol 
equation it is quite simple. Using (3.9a) and (3.10a), 
the differential equation (3.6a) becomes 

j; = EJ(1 - b) (3.11) 

through second order in E. The solution is 

4y(0) 
yet) = yeO) + [4 _ y(O)]e-<t (3.12) 

Here we see the well-known feature of the van der Pol 
equation: for long times the amplitude approaches a 
constant independent of the initial amplitude. In­
serting this solution in (3.6b) we can integrate to find 

4>(t) = 4>(0) + (l - ~:) t 
+ ~ 10 yeO) + [4 - y(O)]e-<t 

16 g 4 

llE 1 - e-<t 
+ 64 leO) yeO) + [4 _ y(O)]e-<t (3.13) 
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Here we see there is a shift in the frequency of the 
rapid phase together with a slow secular shift of the 
phase. 

This discussion of the van der Pol equation is only 
intended to be illustrative of the method. We refer, 
for example,to a recent paper by Struble and Fletcher, 
who give a much more thorough discussion of the van 
der Pol equation using a somewhat different method.6 

4. DEGENERATE PERTURBATION THEORY 

In the degenerate case we must consider what 
changes must be made when there is a nontrivial set 
of integers satisfying (2.10). More generally, we must 
consider the situation when 

Ip' wi < O(e). (4.1) 

That is, the case when the factors in the denomina­
tors of our solutions, e.g., (2.13) or (2.16) or (2.18), 
are small of order e. When this occurs the successive 
terms in the series (2.2) are no longer small if e is 
small; they no longer represent small amplitude 
fluctuations of the given motion about the mean 
motion. This so-called problem of small divisors is, 
of course, closely related to the degeneracy problem 
for which the divisors are zero. 

The solution of this problem is already indicated by 
our discussion of Eq. (2.6) in the nondegenerate case. 
There we saw that the function a(y) has to be chosen 
to cancel the terms in A(y, <1» which correspond to 
solutions of the homogeneous equation (2.8). In the 
nondegenerate case, the only such term was the con­
stant term, but in the degenerate or near degenerate 
case we must cancel all the terms corresponding to 
sets of integers satisfying (4.1). That is, we generalize 
to allow a(y, <1» to depend upon those combinations 
of the cPj which give rise to small divisors and then 
choose a(y, <1» to cancel those terms in A(y, <1». 

Our procedure is formally similar to the nondegen­
erate case. We seek a solution of (2.1) in the form 

(f) 

Xi = Yi + LenF~n)(y, <1», i = 1,2,"', r, (4.2a) 
n=l 

(f) 

'ljJj = cPj + LenG~n)(y, <1», j = 1,2,'" ,s, (4.2b) 
n~l 

where the F~n)(y, <1» and G~n)(y, <1» are periodic func­
tions of each of the CPk' We further require that 

(f) 

Yi = Lena;n)(y, <1», i = 1,2,"', r, (4.3a) 
n=l 

(f) 

¢j = wiY) + Lenb~n)(y, <1», j = 1,2,"', s. 
n~l 

(4.3b) 

Inserting (4.2) in (2.1) and using (4.3) we find, 
upon equating powers of e, 

and so on. The sequence of equations we obtain 
differs from that in the nondegenerate case only in 
that the a~n)(y, <1» and b~n)(y, <1» depend upon <I> as 
well as y. The formal solution of these equations is 
straightforward. Using again the expansions (2.16), 
from (4.4) we obtain: 

a~l)(y, <1» = L Ai.vCy)eip.cI>, (4.6) 
Ip,wl <0«) 

where the sum is over all sets of integers fulfilling (4.1), 
and 

F (l)( "") = _' '" Ai.p(Y) iP'cI> , y, 't' I L. e, 
Ip'wl > 0«) p • w 

(4.7) 

where the sum is over all sets of integers not contained 
in the sum in (4.6). Continuing, from (4.5) we obtain 

b;l)(y, <1» = L Bj.p(y)eiP'cI> (4.8) 
Ip·wl<O(E) 

and 

It should be clear that in this manner we can 
successively solve the equations for the determination 
of the Fin)(y, <1», G;n)(y, <1», ainley, <1», andb~n)(y, <1» 
to obtain explicit expressions in which small divisors 
do not occur. Of course, the equations (4.3) for the 
determination of the secular motion are more com­
plicated than the corresponding equations in the 
nondegenerate case; they explicitly involve certain 
combinations of the CPk' However, these equations 
still describe the slowly varying secular motion, 
since those combinations of the CPk which do appear 
are themselves slowly varying. Thus, if the combina­
tion (p. <1» appears in (4.3), then 

(p. 4»~ (p. w) < O(e), (4.10) 
• R. A. Struble and J. E. Fletcher, J. Math. Phys. 2, 880 (1961). 

See also N. Minorsky, Ref. 2, pp. 219-224 and pp. 329-338. i.e., this combination is slowly varying in exactly the 
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same sense that the h are slowly varying. The basic 
idea of the expansion (4.2), or of (2.2), is the separa­
tion of the secular l,~ otion from the rapidly fluctuating 
motion, and this separation is preserved in the degen­
erate case. 

There is, however, a serious difficulty in our 
general formulation of the degenerate perturbation 
problem. This is the question of deciding which 
combinations of the 4>k are to be included in the secular 
motion. For any particular set of W k , we can always 
find a set of integers h such that (p. w) is as close 
as we plf'ase to any real number. That is, the values 
of (p . w) are dense in the whole range 

-00 < p. w < 00. (4.11) 

This means that we cannot, in general, make a sharp 
separation between the terms for which Ip, wi < O( E), 
which we put into the secular motion, and the re­
maining terms, which we put into the fluctuating 
motion. We can do so only if the coefficients Ai,p(Y) 
and Bj,p(Y) vanish sufficiently rapidly for large values 
of Ipi == (pi + p~ + ... + p;)~. The point here is that, 
for the most general functions A;(x, <1» and Bj(x, <1» 
in Eq. (2,1), it is not possible to sharply separate the 
secular motion from the periodic fluctuations; when 
these functions are such as to allow a sharp separation, 
the method we have outlined will work. 

5. CONCLUSION 

The method of rapidly rotating phase which we 
have presented here is applicable to a wide range of 
physical problems. On the one hand, it can be shown 
to be equivalent to classical perturbation theory of 
Hamiltonian systems, at least in the nondegenerate 
case,7 On the other hand, Ra yleigh-Schr6dinger 
perturbation theory in quantum mechanics is also a 
special case. In both cases the treatment of degeneracy 

7 For a proof see T. P. Coffey, "Analytical Methods in the Theory 
of Non-Linear Oscillations," thesis, The University of Michigan, 
Ann Arbor, 1966. 

or near-degeneracy is generally simplest by the method 
of rapidly rotating phase. Thus, the advantages of the 
method are its generality and its simplicity, 

Of course, not all perturbation problems can be 
cast into the form of a set of coupled differential 
equations in the standard form (2.1) appropriate 
for the method, In general, we can say that the method 
is suited for the discussion of small perturbations of 
periodic or multiple-periodic motions, but we cannot 
precisely characterize such problems. 

As we remarked earlier, an aspect of the method 
which may cause difficulty in applications is that the 
Eqs. (2.3) or (4.2), which describe the slow secular 
motion, may not be appreciably easier to solve than 
the original equations. (Here we are speaking of the 
finite versions of (2.3) or (4.2) which are obtained by 
truncating the series on the right.) The point is that the 
method is designed to separate the secular motion 
from the fluctuating motion; it gives no help in the 
discussion of the equations for the secular motion. 
This is a characteristic feature of all averaging methods. 

We close with a few remarks about convergence. 
It should be clear that the method of rapidly rotating 
phase is asymptotic in the sense that the approximate 
solution is intended to be valid for long times, i.e., 
for times of order c 1

, the characteristic time of the 
secular motion. What can be proved is a typical 
asymptotic convergence theorem: With suitable re­
strictions on the perturbing functions, the approximate 
solutions obtained by solving the differential Eqs. 
(2.3) or (4.2), truncated at a finite order in E, and 
inserting the resulting solution in (2.2) or (4.1), also 
truncated, differ from the exact solution by an error 
which is small but which grows in time like exp {CEt}, 
with C a constant. 8 This is a rather weak theorem, but 
we have not been able to improve it in the general case. 
The question of the convergence of the infinite series 
in Eqs. (2.2), (2.3), (4.2), and (4.3) is still open. 

8 For a proof, see Ref. 7. 


