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A theory for internal progressive waves of permanent form in any continuously stratified
fluid is presented, and a calculation for the flow and the wave velocity is carried out for an
exponential stratified fluid. The most important conclusion from this calculation, also valid
for other weak stratifications, is that the wave velocity always decreases with the amplitude,
provided the density gradient is weak and the wavelength is not too short. This conclusion is
significant because it entails the existence or nonexistence of solitary waves in weakly strati-
fied fluids. The validity of the Boussinesq approximation and the significance of the well-

known exactly linear cases are also discussed.

. INTRODUCTION

Waves of permanent form progressing in a stratified
fluid otherwise at rest can be studied most conveniently
by adopting a frame of reference moving with the waves
and thereby making the flow independent of time. The
equation governing steady two-dimensional flows of a con-
tinuously stratified incompressible fluid was given in 1932
by Dubreil-Jacotin! and independently by long.? If Carte-
sian coordinates x and y are used, and if p denotes the
density and y denotes the stream function, this equation is

| Ldp (42 + ¥/ _

where g is the gravitational acceleration and
1 P,
M) = SHW),  H=p+ 3¢+ e,

with p denoting the pressure and ¢ denoting the speed. It
is well known that both p and H are functions of ¢ alone
if the flow is steady and viscous and diffusive effects are
neglected. Long was able to find a set of upstream condi-
tions for which (1) is exactly linear, and he successfully
used the linear equation to study finite-amplitude waves in
the lee of two-dimensional obstacles in the flow. His solu-
tion was subsequently elaborated by other workers.

The equation of Dubreil-Jacotin and Long was consider-
ably simplified by Yih® who used the transformation

, b 1/2
V= /(Po) d‘p’

po being a constant reference density, and obtained the
equation

(2)

gy dp

:cz, ! e h 4 ’
Vo + Yy +P0 i ) 3)
in which
1 dH
RY) = ——.
po A
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It is immediately obvious that all the linear cases of (1)
and of (3) can be obtained by simply letting dp/dy’ and
h(¥’) be linear functions of ¥'. Soon after the paper?® bearing
(3) was presented, Long* gave a set of upstream conditions
for which (1) is exactly linear. This linear form is different
from the linear form? which he had found previously, but
is one of the linear forms readily obtained from (3) and
discussed in some detail by Yih® sometime later.

Whenever (1) or (3) is exactly linear and admits solu-
tions representing waves, such solutions are for waves of
any amplitude in a continuously stratified fluid. However,
there is some artificiality associated with the upstream con-
ditions permitting (1) or (3) to be exactly linear: There is
always a nonuniform velocity distribution of a parallel flow
to which the solutions for waves are superposed, and this
nonuniformity is always there no matter how small the
amplitude of the waves. In other words, a current of non-
uniform velocity must always be present for (1) or (3) to
be exactly linear. For waves propagating in an otherwise
quiescent fluid, it is well known that the solution for the
flow in the frame of reference moving with the waves must
consist of a flow with uniform velocity and a flow repre-
senting the waves, provided the amplitude of the waves is
very small. Consequently, the exactly linear cases cannot
correspond to progressive infinitesimal waves, and by ex-
tension cannot correspond to waves of finite amplitude
(which are adjacent to infinitesimal waves) progressing in
an otherwise quiescent fluid.

In this paper we wish to investigate waves of permanent
form progressing in an otherwise quiescent fluid. Since the
differential equation (1) or (3) is bound to be nonlinear
for such waves, there is no advantage in using (3). The
problem then is first to determine the functions dp/dy
and £(y¥) in (1). This is now not as simple a task as in the
study of lee waves, since the waves extend from minus
infinity to infinity in the « direction, and there is no parallel
flow far upstream. We shall use a series expansion in powers
of the amplitude, and show how the differential equation
can be determined at each stage of the approximation, as
well as the eigenfunctions and eigenvalues (for the wave
velocity). In arriving at the mathematical solution of the
problem, we are also able to assess the degree of validity
of the Boussinesq approximation, which has been used so
very extensively. Our solution is for any wavenumber, any
stratification, and any mode of the internal wave for a
given wave number. (The precise meaning of the density
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stratification will be discussed in the following section.
The need for such a discussion arises from the lack of a
section far upstream where the flow is parallel.) Special
attention will be given to the important and realistic cases
of weak density gradients.

Before formulating and solving our problem in the follow-
ing section we note that this problem has already been
studied by Thorpe® in an extensive paper. However, in
Thorpe’s work the Boussinesq approximation has been
used and the effect of amplitude on the wave velocity
has not been determined, and indeed there is no indication
how that effect can be determined. Furthermore, in all
previous work on waves in a continuously stratified fluid,
Thorpe’s included, it has never been pointed out that it
is necessary to determine or specify the density distribu-
tion in the fluid when it is allowed to quiet down, so that
we know for what fluid the problem is solved. This will be
an important aspect of our solution to be presented in the
next section.

We note that the method of determining the eigenvalue
of the wave velocity at each stage of the approximation
involves the requirement that the inhomogeneous part
g(y, A)) of the equation

Laf(y) = gy, AN), (4)

be orthogonal to the eigenfunction f,(y) satisfying
Lyfo(y) = 0

and the boundary conditions, Ly being a linear operator
containing the eigenvalue A, and A\ being the correction
to A that is necessary at any particular stage of the approx-
imation under consideration. This technique was used by
Yih" to study the stability of film flow, is indispensible here,
and is, in general, a powerful tool in the study of linear
eigenvalue problems.

Il. FORMULATION

The problem is to study the flow due to waves progress-
ing in a continuously stratified fluid otherwise at rest.
The fluid is specified by its density distribution when
waves are absent, and this same fluid is always under con-
sideration when waves are present.

The first task is to specify the general form of (1) that
applies to our problem, whatever the density distribution
of the fluid. To this end we recognize that that form must
satisfy the following requirements: When the amplitude of
the waves is very small, it must reduce to the well-known
linear equation (for the moving frame of reference) govern-
ing infinitesimal waves, and as a consequence it must
allow a parallel flow of uniform velocity (equal to the
wave velocity) when the amplitude of the waves is reduced
to zero. Keeping this velocity-distribution requirement in
mind we see that the form sought is

d, e
?(80+5),

Vo ,1@@&tﬁ| _1dp
Voo + Y gy) pdy\c
(3

pdy\ 2
where ¢ is the wave velocity. Indeed, this equation has
already been given by Davis and Acrivos.t A flow of uniform
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velocity ¢ in the direction of increasing x has been super-
posed on waves progressing in the opposite direction to
make the flow steady. Note that
¥v=cy (6)
is always a possible solution, with no waves present at
all, and that when the amplitude is small (5) indeed
reduces to the wave equation for infinitesimal waves, upon
replacing ¥ in dp/dy by cy. Note, however, that dp/dy for
finite-amplitude waves is not known and cannot be speci-
fied @ priori. Indeed, it has to be determined and re-deter-
mined at succeeding stages of approximation, with the
density-distribution requirement in mind.

We shall consider two-dimensional internal waves
bounded by the horizontal boundaries y = 0 and y = d,
so that

Y=aconstaty=0 and y=d. (7

Equations (5) and (7) constitute the eigenvalue problem,
with ¢ as the eigenvalue and ¥ as the eigenfunction. Note
that we do not demand that ¢ be zeroat y = O or at y = d.

It will be convenient to use the following dimensionless
variables:

n=y/d, F*=c/gd, p= p/p,
(8)

where p, is the density at y = 0, and F is the Froude num-
ber. In terms of these dimensionless variables, Eq. (5)
becomes, after the circumflex on  has been dropped,

Y =vy/cd, &= x/d,

1dp <‘I’52 + ¥, )
Vg + ¥+ - —(—~———" 4 F2
£ '+‘ m + o v 2 + n
1dp
=—— (F2¥ 4+ 1).
> ( +3) 9)
The boundary conditions become
¥ = const atp=0and aty = 1. (10)

In what follows we shall consider a fluid which, when
at rest, has the dimensionless-density distribution

p = exp(—B) (11)

where 4 is 7 when no waves are present. The theory devel-
oped for the particular distribution applies to any general
density distribution when the necessary changes are made
to account for the density distribution specified. The
“densimetric” or “internal” Froude number F is defined by

BF:= F2. (12)

ill. THE SOLUTION
We shall expand ¥ and F? in the series (4 = amplitude)

‘I/=\I’0+A‘I/1+A2\I’2+ e,
F2=Go+ AG+ A%Gy + -« - -.

(13a)
(13b)
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It is obvious that
Wy = 9, (14)
which satisfies (9) and (11) exactly. At this stage of

approximation y is 5. Hence, from Eqs. (11) and (14) we
have

(15)

and (9) becomes, upon collecting terms of the power 4,

(W) et + (Y1) mn — B(¥1), = —Go¥y, (16)
which is the equation governing infinitesimal waves. The
solution of (16) with the boundary conditions (10), in
which ¥, is used for ¥, gives

¥, = exp(Bn/2) sinnmy sinkt 17
and
Go = n’m® 4+ k2 + (8*/4), (18)

where & is the wavenumber and # is an integer indicating
the mode. For any given % there are infinitely many modes
corresponding to positive integral values of #. The larger
n is, the “higher” the mode.

At this stage it is necessary to re-evaluate dp/d¥, to see
whether a new evaluation should be used for the next
approximation. For this purpose we take two terms on the
right-hand side of (13a), and rewrite it as

n =¥ — 4 exp(Bn/2) sinnmwy sinkt. (19)
Upon successive iterations we obtain, from (19), the result

n=Y — A exp(B¥/2) sinnw¥ sinkt
+ 142 exp(BY) (nw sin2na¥ + B sin?ur¥)

X (1 — cos2kt) + 0(43), (20)
which, upon averaging with respect to £, gives
7=V + ;A2 exp(B8Y¥) (B8 — B cos2nm¥ + 2nw
X sin2na¥) 4+ 0(44), (21)

because the average value of the terms of O(A43) is zero.
Note that the averaging is not an inexact process, for
the definition of 4 demands exactly such an averaging
process.

If we write
li&_ ldpdﬁ _ dq
pd¥  pdid¥ " av’

and substitute this into (9), we have

V24 V2

Yy + ¥ ,edﬁ (
& m v 2

+ F'2n>
i -2 1
= _ﬁE(F ¥+ ). (22)
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Using (21) in (22), we find that the terms of 0(A4?) in
Eq. (21) introduce only terms of O(A4%) in Eq. (22).
Therefore, while we are determining the terms of O(A4?)
in ¥, we need not yet make the correction for dp/d¥.

Keeping

2 dp

pd‘I’_— '—ﬁ)

then, we can proceed with the determination of ¥;. Using
Egs. (13a), (13b), and (14) and gathering terms of 0(A42)
in (9), we obtain

V2‘I/2 - ﬁ(\pg)" + GQ‘I") = ﬂS - Gl‘I’l, (23)
where
. 02 8?
= @ + (—9—2
and, after some reductions,
S = exp(Bn) (By + B cos2nmy + B sin2nmy), (24)
where
8B, = Gq, 32B, = 4n’r? — 4k — 82, 8B; = nxB. (25)

Solving (23) with the boundary conditions (10), we find
that

Gl = 0, (26)
and
W, = B{Byfi(n) + B:fo(n) + Bsfa(n)
— [Bifa(n) + B.fs(n) + Bsfe(n)] cos 2k}, (27)
where
filn) = Go exp(Bn),
fo(n) = (1/M) exp(Bn) [(Go — 4n*n?)
X cos2nmy + 2nwp sin2nmy |,
fs(n) = (1/M) exp(8n)[(Go — 4n?*n?)
X sin2nmwy — 2nwB cos2nmwy ], (28)

fa(n) = (Go — 4k*)™" exp(Bn/2) [exp(Bn/2)

— cosyn — asinyy],
fs(n) = (1/N) exp(Bn/2) {—PLexp(Bn/2) cos2nmy

— cosyn — asinyn] + 2nwB exp(Bn/2) sin2nwy},
fe(n) = (1/N) exp(Bn/2) {— P exp(Bn/2) sin2umy

— 2nwBlexp(Bn/2) cos2umy — cosyn — asinyy]},

with

M = (Gy — 4n?n%)? + 4n?n%32, P = dnlx + 482 — G,
N = P 4+ dnpni@, (29)
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and

B 1/2
'Y=<Go—4k2—4—> y

a = (exp(8/2) — cosy) (siny)~" (30)

The result (26) is obtained because the term BS does
not contain the factor sinkf or coskf, and if Gy did not
vanish there would be no solution for ¥,. This has already
been mentioned in Sec. I, in connection with (4). Indeed,
since ¥ contains sink¢, the particular solution of (23) to
account for the term —Gp¥; must also contain it. Then,
denoting that particular solution by pi(n) sinkf, we have
£1(0) = 0 = pi(1) and

Lpy = —Gyexp(Bn/2) sinnmy, (31)
where
a2 d
L= ——8—+Gy— k. (32
d? i} dn + Go )
On the other hand, (16) can be written as
L exp(Bn/2) sinnmy = 0. (33)

Multiplying (31) by exp(—pBn/2) sinnmy and (33) by
exp(—pBn) p1, integrating between zero and 1, using the
boundary conditions for #;, and taking the difference of
the two integrated equations, we have (26).

The functions fi, fs, and fs need a discussion because
the v defined in (30) may be zero or equal to mwr, with m
equal to an integer and less than #. In either case siny
vanishes and the number ¢ in (30) is infinite. The case
v = 0is not really troublesome because the complimentary
solutions exp(Bn/2) cosyn and exp(Bn/2) sinyy in fy, f;, and
fs can be replaced by exp(8n/2) and » exp(B1/2), respec-
tively, and with the constant e replaced by exp(8/2) — 1.
The case ¥ = mm, with m = a nonzero integer less than #
is much more significant. In this case

32

2
Q=Mﬂ+ﬁ+%=ﬁﬁ+w+z (34)

and a look at (16) shows that whenever (34) holds the
nth mode of internal waves with wavenumber £ has the
same wave velocity as the mth mode with wavenumber 2k.
In such a case it is necessary (in order to have internal
waves of permanent form) to have first-order solutions in

addition to ¥, given by (17). These are solutions of (16)
but with wavenumbers zero and 2%, respectively, and are

x1 = A exp(Bn/2) (@, sinun -+ by cosun),

1/2
x2 = Aas exp(Bn/2) sinmay cos2kt, (36)

in which g, is arbitrary. This means we can start with any
two wave amplitudes for the wave trains of wavenumbers
k and 2k. When (35) and (36) are included in ¥, in (13a)
and (13a) is substituted into (22), terms of O(A42%) are
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collected, and then terms with factors sinkf and cos2k:
are separated, we obtain two equations:

Lo = arygi(n) + biiu(n) + asga(n), (37)
where L is the operator defined by (32), and
a@? d
<—; — B+ Gy~ 4/32) 0, = go(n) + araags(n)
dy dq
+ biaaga(n). (38)

By making the right-hand sides of Eqs. (37) and (38)
orthogonal to exp(Bn/2) sinnmy and exp(8y/2) sinmmy, re-
spectively, we can determine a@; and #. The solution 6,
then replaces the coefficient of cos2k¢ in (27) and the solu-
tion 6, sink¢ is the additional part which is now necessary.

Note that to fi, f», and f; in (28) could be added solutions

of the equation
az d

(;an -8 n + Go) 6, = 0. (39)
This is the reason that Thorpe® decided that parallel flows
(currents), which can be added to the flow sought by him,
can be determined only if one knows how the waves have
been created. Actually, there does not appear to be any
hope that these currents can really be determined from the
circumstances of generation of the waves. Rather, the
purpose is to isolate waves of fundamental wavenumber %
as much as possible, avoiding adding any terms not having
this wavenumber at all stages of approximation unless
addition of such terms is necessary as particular solutions
at higher approximations than the first, or even at the
first approximation, as in the case v = mnr discussed in the
preceding paragraph. With this decision, the parallel cur-
rents are no longer arbitrary, but uniquely determined,
except in the case v = mr discussed above, where a is
arbitrary and hence also a; and &;. That exceptional case

arises because waves of wavenumbers & and 2k are no longer
isolatable at the order O(A4).

One more point must be clarified before we go on to
deal with terms of O(A43). If v is not equal to m=r exactly
but very near to it, the value of @ in (30) can be very
large, particularly if m is even. Then, ¥, can be very large
except for certain values of #, indeed very much larger
than ¥;, and this seems strange and unreasonable. The
apparent difficulty is removed when we remember that in
the next stage of approximation large contributions are fed
back in the same way to the term containing the factor
sinkf, and the amplitude will not be 4 but redetermined.
Then, the ratio of ¥, to ¥; will not be so large. Difficulties
of the kind discussed in this and the preceding paragraphs
are typical of nonlinear problems. Their resolutions are
never immediately clear and often, as in this case, require
a great deal of thought. Note that if » = 1 (for the first
mode), then nonzero value of m does not exist, and the
apparent difficulties discussed in the preceding paragraphs
do not exist. For » = 1, however, there is still the possi-
bility that the M defined in (29), which never vanishes,
may nevertheless be of O(8?%), thus making f, and f; in (28)
very large. For the convenience of later discussions, we
shall only deal with those values of k2 which satisfy

3et— k= 0(1), (40a)
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for » = 1. For higher values of », to avoid the case in
which v is equal or near mm, we shall assume that Eq. (34)
is never exactly or nearly satisfied, or that, with » = 2
and m = 1 to obtain the safe bound for %2,

= — k= 0(1). (40b)

If (40b) is satisfied, then M defined in (29) is not small.
Hence for » > 1, we impose (40b) only. Since we have
carried out our calculations only to O(42) in (13a, b), our
conclusions will necessarily be valid only to this order. This
imposes a limit (undetermined) on the magnitude of | 4 |.

Before going on with our calculation, it is now necessary
to recalculate p~'dp/d¥. Using (13a) and (27), we obtain

7 =¥ 4 §A4%exp(BY) (B — B cos2uw¥ + 2nn¥ sin2nx¥)
+ BA[ B /1i(¥) + B:f2(¥) + B3 fs(¥)] + 0(4%).

(41)

Substituting (41) into (22), using (13), and collecting
terms of O(A43%), we have

ad
(w— Bt Go)‘l’s DA Tt To— Gy, (42)

where

Ti= B¢'[Bifi' + B.fs + Bsfs'
+ 0.5(Bufi + Bufs + Bofe) (sin kt — sin3ké) ]
+ k28°¢(Bifi+ Bsfs + Bsfs) (sin3kE — sinkg),
8T, = (B¢’ — Gog)[exp(Bn) (B — B cos2nmn
+ 2nr sin2nmy) Y,

T: = B(B¢" — Goo) (Bify + Bofs' + Bsfy'), (43)
with
¢ = exp(Bn/2) sinnmry. (44)

The accents in (43) indicate differentiation with respect
to n, and the functions £, to fs are functions of 7.

To determine G,, we again demand that the right-hand
side of (42) be orthogonal to ¥y, that is to say, the sum J
of the coefficients of sinkf of the right-hand side of (42) be
orthogonal to ¢ in the sense that

| esp(—pnIsdn= 0. (45)
0

After we determine G,, we can find ¥; by solving (42). We
shall determine G, to see how the amplitude A4 affects the
wave velocity, but we shall not attempt to determine ¥;.
That determination is straightforward, but tedious.

Note that T, arises from the term containing | V¥ |2 in
(22), T: and T; arise from the displacement of isopycnic
lines as the result of ¥, and ¥,, respectively. For all cases
important in practice, 8 is very small; therefore, we shall
consider 8 to be small. This will simplify the presentation
of the results, although G, can be determined from (45)
completely, with all terms included, in a straightforward
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although lengthy way. For small 8, we shall show that the
dominant term in G, comes from 7.

If (40) is satisfied for » = 1 and (40b) satisfied for
n > 1, it can be shown that all the contributions to G, from
Ty (or rather those terms of T that contain sinkt) are
O(B?). The same is true of the contributions from T3. The
details supporting these statements can be obtained in a
straightforward manner, but are very lengthy. We shall
omit their presentation to save space.

Carrying out in full the contributions of T, we find that

1
f exp(—Bn) Tag dn
0

= 0.5 (B, nw) + B (n?n* — 0.256%)[1(B, 3nx)
— I(B, nw) ]+ nwB[R(B, nt) — R(B, 3nr)]
+ 0.5umB{BI (B, 2nw) + (2n?x® — 0.58%)I(B, 4nr)
+ 2nmB[R(B, 0) — R(B, 4nr) ]}
— 3Go{B*R(B, 0) + (4n*x® — 28%)R(B, 2nw)
+ 4unBl (B, 2nw) — 2uwBl (B, 4nr)

+ (0.56° — 2#°a")[R(B, 0) + R(B, 4nm) ]},  (46)

in which the functions R and I are defined by

R(p,0) + (5, ) = [ expl(p+ ig)n]dn

0

1
e [#(exp(p) cosq — 1) + g exp(p) sing]
+ pz_T_ ¢ [# exp(p) sing — g(exp(p) cosg — 1)].

(47)

If ¢ = r= (r is an integer),

V4
R(p, rm) = m[exp(i?)(-l)’ ~ 1],

I(p, rm) = ——— [exp(p) (—1)" — 1]
PP+ et

Thus
R(B,0) = 1+ 0.58 4+ 0(8),
and, with s equal to any positive integer,

R(ﬂ) 2s — 1) = O(ﬂ); R(ﬁy 28) = 0(62);
1(8,2s — 1) = O(1), 1(B,2s5)=0(8).

The right-hand side of (46) is therefore equal to
n*r’Go(1 + 0.58) + 0(8?),

and, applying (45) and remembering the restrictions (40a)
and (40b),

G, = n’7Go(2 + B) + O(8?). (48)
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That G, is positive means that F,;—? increases with A2,
according to (13b), or that ¢® decreases with A% This is
a rather unexpected result, since we are so used to the
increase of wave velocity with amplitude for progressive
gravity waves, as for the well-known Stokesian waves.
We note, however, that already for gravity waves in two
superposed layers of homogeneous liquids Hunt® and
Thorpe® (who made some corrections of Hunt’s work) have
shown that it is possible for ¢? to decrease with amplitude.
(In their case it happens for long waves and small density
differences.) The result (48) is remarkable in that for a
continuously stratified fluid ¢® always decreases with the
amplitude. Perhaps this result needs some interpretation.
In this writer’s opinion, it happens because a larger ampli-
tude in a wave motion ‘‘squeezes’” the isopycnic lines
against the upper solid boundary near the crests, thereby
increasing the vertical density gradient near the upper solid
boundary and decreasing the density gradient below.
Similarly, the wave motion also ‘“‘squeezes” the isopycnic
lines against the lower solid boundary near the troughs,
increasing the density gradient there and decreasing it
above. Since the increase of density gradient near solid
boundaries are quite ineffective in increasing ¢, whereas the
decrease of it in a wider region is more effective in decreas-
ing it, ¢? decreases with the amplitude.

We have specified the stratification of p to be exponential
by (11). However, the conclusions concerning the decrease
of ¢® with A2 for small 8 will remain valid for any stratifica-
tion for which

1d

Lo gt om), 81, (49)
pdj

In particular, they remain valid for the important case of

a linear stratification, for which

dp

— = const.
]

Whether 3 is small or not, and for any stratification, the

method of solution presented here applies to finite-ampli-
tude waves in any stratified fluid.

Before we conclude this section, we note that the averag-
ing process leading to (21) is valid only if there are no
regions of closed streamlines. This requirement places a
restriction on the admissible values of 42 However, if A2
is so large that regions of closed streamlines do occur, the
modification required is obvious: All we have to do is to
find how much fluid there is between any two streamlines
(or isopycnic lines). The only thing that has to be kept in
mind is that the solution must be such that when the fluid
is allowed to quiet down it will have the stratification we
specify for it.

IV. THE EXISTENCE OF INTERNAL SOLITARY
WAVES

Solitary waves are classified as long waves, and they
invariably owe their existence to the crucial requirement
that the “local” wave velocity at the point of greatest
vertical displacement be greater than the wave velocity of
infinitesimal long waves. For a layer of homogeneous liquid,
this requirement is satisfied (Ref. 10, p. 424). For two
semi-infinite homogeneous liquids with an interface, Hunt®
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has shown that this requirement is met. (See Ref. 6, p. 570.)
For two homogeneous liquids of equal, finite depths bounded
above and below by solid boundaries, whether this require-
ment is met or not depends on the relative magnitudes of
the wave length and the density difference [Hunt,® as
corrected by Thorpe,® p. 571, Eq. (2.1.6) ]. This fact agrees
with the conclusion of Long."

Solitary waves in a continuously stratified fluid of finite
depth, bounded above and below by horizontal boundaries
have been treated elegantly by Benjamin'? and ingeniously
by Long.’® In both papers it was assumed, for the existence
of solitary waves, that the velocity of finite-amplitude
waves increases with amplitude. See Benjamin'? (p. 243,
first paragraph) and Long! [Egs. (18), (42), and (66)].
Neither author has inquired whether this assumption can
be met, and their treatments based on this assumption are
indeed correct. [In (4.21) of Benjamin’s paper, ¢ (¢ is the
velocity of solitary waves) is shown to be greater than ¢,?
(¢n 1s the velocity of corresponding long waves of infinites-
imal amplitude) on the assumption that his A, or ¢/, or va,
is positive. All this is very consistent, but v, has not been
independently shown to be positive.] Yet, it is difficult to
escape the impression that they never doubted the truth
of this assumption. The conclusion we have reached in the
preceding paragraph shows that this crucial assumption is
indeed not met for one continuously and weakly stratified
fluid of finite depth between two solid boundaries, and
strongly indicates that solitary waves, in such a fluid, as
illustrated in Fig. 2 of Thorpe’s paper,® may not exist.
Note that we have expanded the eigenfunction and the
eigenvalue in powers of the amplitude 4, with 8 and %
appearing in the coefficients of this expansion in a complete
and indeed closed manner, so that the treatment here is
somewhat more accurate and reliable than an expansion
in 4, 8, and % concurrently, as was done by Long.!

All this is not to say that solitary waves do not exist
if the density is discontinuous, or if, although continuous,
extend to infinity. Indeed, Davis and Acrivos® have shown
experimentally that solitary waves exist in a stratified fluid
layer imbedded between two homogeneous layers of great
depths (in comparison to the stratified layer), of densities
o1 and ps, and thus vindicating their own theory as well as
Benjamin’s® for such a fluid system. Since infinite exten-
sions are unrealistic, and the experiments of Davis and
Acrivos were necessarily for finite depths, a reconciliation
of this fact with the implication of the results in Sec. III
is necessary. The author believes that the explanation lies
in the importance of the magnitude of the wavenumber k.
If the length scale is that of the stratified layer in Davis
and Acrivos’ experiment, waves that are long with respect
to that scale may be short with respect to the fotal depth.
Since in our study the wavelength is measured in terms of
the total depth, our wavenumber may be very large for
waves that are long with respect to the stratified layer,
and therefore even for weak stratifications terms of order
0(B?), which are neglected in reaching the conclusion that
wave velocity decreases with the amplitude, may not be
negligible because the coefficients are high. This seems to
indicate that the existence or nonexistence of solitary waves
in a continuously stratified fluid not only depends on the
weakness of the stratification, but also on the distribution
of stratification. If the density gradient is nearly uniform
throughout in the sense of (49), solitary waves may not
exist, for a calculation for any such fluid, not necessarily
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exponentially stratified, will lead to the same conclusion
that we reached in Sec. ITI.

We do not, however, wish to be very dogmatic about
our doubt of the nonexistence of solitary waves between
fixed boundaries even for a fluid satisfying (49), for the
link between progressive periodic waves and solitary waves
is only the tenuous one of long wave length. This may be
too tenuous a link on which to base any strong conclusions.
For instance, in the calculation of 4 in terms of ¢ in (21),
the periodicity played an important role, and solitary
waves are not periodic. What this discussion is intended to
point out is that to be convincing, it is desirable, in any
study of solitary waves, to show independently that the
speed of finite-amplitude waves, especially solitary waves,
is indeed greater than the velocity of waves of infinitesimal
amplitude.

V. VALIDITY OF THE BOUSSINESQ
APPROXIMATION -

In the present context, the Boussinesq approximation
amounts to ignoring the term | Vi [% and writing py~dp/dy
for p~'dp/dy in (1), po being a constant, mean density.
Thus, the Boussinesq approximation does not necessarily
make (1) linear. If we make the Boussinesq approximation
in the present problem, ¥; will be modified to the extent
of a term of O(B), and ¥, will be modified. The term G.
will be modified by an amount of at most O(B) if & satisfies
(40a) or (40b). Thus, the Boussinesq approximation will
not affect the value of F, 2 by an appreciable amount if 8
is small and % is not too large.

If we merely ignore the term | V¥ |2 in (1) and carry
out the calculations for the exponentially stratified fluid,
as in Sec. III, we shall find that ¥, and ¥, are unaffected,
¥, is zero, and (48) always holds.

VI. THE EXACTLY LINEAR CASES OF (3)

As shown by Yih,? the exactly linear cases of (1) can be
found most easily from (3), by simply setting dp/dy’ and
h(¥') to be linear functions of ¢'. The solutions for (3),
when it is exactly linear, can then be obtained for any
amplitude of the waves. The exactly linear cases all require
a parallel flow of nonuniform velocity superposed on the
wave motion. Granted this requirement, it is generally
accepted that waves of any mode propagate with the same
velocity regardless of the amplitude, in a stratified fluid
permitting (3) to be exactly linear.

This, however, would be a somewhat superficial conclu-
sion because the distribution of density in space varies with
the amplitude, as we have shown, and the density stratifi-
cation, if the waves are allowed to die out, would be differ-
ent for different amplitudes of the waves. Hence, when we
say the wave velocity is the same for any amplitude for
the exactly linear cases, we are really comparing solutions
not only for different wave amplitudes but for different
fluids. This much neglected fact reduces the significance of
the exactly linear cases.
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Vil. CONCLUSIONS

On the assumption that the procedure of solution used
in this paper is convergent, from the foregoing analysis
and discussion we conclude that

1. Finite-amplitude waves of permanent form in any
stably stratified fluid between two horizontal boundaries
exist, and there are infinitely many modes. (The stability
of these waves is another question.)

2. The method of solution presented in this paper can
be applied to find the eigenfunction and the wave velocity
for internal waves of finite amplitude in any stratified fluid.

3) In exceptional cases described by equations like (34),
it is necessary to start with more than one wavenumber
even at the first approximation.

4. For the first mode, calculations up to the order O(A42)
for the eigenfunction and for the wave velocity (contained
in F;?) show that for an exponentially stratified fluid and
for a weak stratification the square of the wave velocity
always decreases with the square of the amplitude provided
(40a) is satisfied, so that the wavelength is not too small.
This conclusion is especially accurate when the amplitude
is small, and holds for other weakly stratified fluids too.

5. Conclusion 4 is valid for higher modes also, provided
(40b) holds. Otherwise, further approximations are neces-
sary to insure sufficient accuracy.

6. As a consequence of conclusions 4 and 3, the existence
of internal solitary waves in a weakly stratified fluid be-
tween solid boundaries, whose density satisfies (49), is
somewhat in doubt.

7. For weak stratifications and if the wavelengths are
not very short, the Boussinesq approximation indeed gives
reliable results for the wave velocity.

8. The solutions for different amplitudes for any of the
exactly linear cases of (1) or (3) really correspond not to
the same fluid, but to different fluids.
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