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that reflect the phase reactions given by Egs. (1) and

(2) and, denoted by the invariant planes in Fig. 4.
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A general, unified solution of the wave excitation due to electric-current sources, magnetic-current
sources, fluid-flux sources, and mechanical-body sources in a compressible plasma which may be anisotropic
and inhomogeneous is presented. The Maxwell-Euler equations are reformulated through linear operator
and generalized transform techniques into an equivalent matrix integral equation. The dispersion relation
can be obtained from the kernel of the integral equation. When the medium is homogeneous, this integral
equation has an ideal kernel and the explicit solution can be easily obtained. Equivalence relations between
different types of sources are obtained from the forcing function of the integral equation, which can be
employed to express the field excited by one type of source in terms of the field excited by another type of
source. Generalized telegraphist’s equations are also derived in due course.

Some dispersion curves, and asymptotic solutions for the radiation field from a point current source
oriented in the direction of a constant magnetic field, are presented in graphical form. A proper ionospheric
plasma is assumed for this calculation, which combines some of the results obtained for anisotropic cold-
plasma problems on the one hand and some of the results obtained for isotropic warm-plasma problems on
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the other hand.

I. INTRODUCTION

The wave-excitation problem in an anisotropic
compressible plasma is of current interest. This problem
is just a part of complex phenomena in the fourth state
of matter, plasma, and is related to the practical
problems of communication through the shock-in-
duced envelope of ionized gas surrounding the reentry
vehicle, scattering cross section of missile trail or
rocket exhaust, and many others.

The propagation of plane waves in a plasma has
been studied extensively.’® Recently, excitation prob-
lems in a plasma have attracted the attention of many
investigators, and can be conveniently divided into
three categories:

(1) Cold-plasma problems with or without a uni-
formly impressed constant magnetic field. In this

* This work was supported by the Rome Air Development
Center.
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type of work the plasma can be characterized by a
tensor dielectric constant and the longitudinal acoustic
type of wave does not come into picture. Typical
examples of this type of problem are the works of
Bunkin,® Kogelnik,” and Arbel and Felsen.?

(2) Compressible plasma without an externally
applied constant magnetic field. With these assump-
tions Cohen® has shown that the field can be separated
into two types of modes; one mode is transverse in
nature and has all the fluctuating magnetic field, and
another mode is longitudinal in nature and has all the
fluctuating density field. The radiation of this longi-
tudinal acoustic-type of wave has been investigated
by Hessel and Shmoys,'®* Whale,*! Chen,? Wait®® and
others.
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(3) Compressible plasma with externally impressed
constant magnetic field. The problem encountered
with these assumptions is much more complicated due
to the fact that the transverse and longitudinal waves
are coupled and modified by each other. Seshadri4
has treated the radiation from a line magnetic-current
source.

A general, unified investigation of the excitation
problem of third category is presented in this paper.
Both two-dimensional and three-dimensional excitation
fields due to different types of sources are studied, thus
including the Seshadri’s treatment.

The inhomogeneous Maxwell-Euler equations are
reformulated through linear operator and generalized
transform techniques into an equivalent matrix in-
tegral equation. Operator methods are a well-known
and potent tool in quantum mechanics, and the intro-
duction of the operator method into electromagnetic
theory has been explored by Bresler and Marcuvitz,!:18
Moses,” and others. Recently, Diament®® has studied
the formalism of an operator method combined with a
generalized transform method in obtaining the formal
solution of Maxwell’s equations for general linearized
media. Because of the systematic approach, compact
notation, and convenience for numerical analysis,
these formal operator transform techniques are ex-
tended in the present work to the system of linearized
- equation describing the excitation of disturbances in
inhomogeneous, anisotropic and compressible plasma.

Equivalence relations between the magnetic-current
source, the electric-current source, the mechanical-
body source, and the fluid-flux source are easily ob-
tained from the four-vector forcing function of the
integral equation.

There are also some other papers by Seshadri®?
which are related to the present work.

I1. BASIC EQUATIONS

In this section, the basic equations governing weak
disturbances produced by various kinds of sources in a
compressible plasma are presented.

The following assumptions are used:

(a) The plasma as a whole is stationary.
(b) The plasma is constantly under the action of a
dc magnetic field.

(¢) The motions of ions and neutral particles can be
neglected.

(d) The sources of the disturbances are weak.
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Microwave Res. Inst. Rept. R-565- 57 (1957).

17H. E. Moses, New York Univ., Inst. Math. Sci. Rept. IMM-
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18 P, Diament, Columbia Univ. Sci. Rept. 78, (1963).

S R. Seshadn IEEE Trans. Ant. Prop. AP 13, 105 (1965).
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(e) Ideal gas law can be applied.

() Collisional dissipation effects can be neglected.

In this case, a set of linearized equations is usually
considered to be adequate to relate the disturbances
to their respective sources. Considering just one
Fourier component of the disturbances in the form of
exp(—iwt), and employing the rationalized mks
system of units, this set of equations is the following
linearized inhomogeneous Maxwell and Euler equations
(Oster,® Tanenbaum and Mintzer,?' Cohen®2228

(a) The Maxwell equations:

V x E—ipwh=—K, (1)
V xh4-igwE+eNV=]. (2)
(b) The momentum-transport equation:
—ioNgmV+mU2Vn+eNo(E4+V xBy) =F. (3)
(¢) The mass-transport equation
NoeV-V+V - VNi—iwn=( (4)

The following notation has been used in the above
equations:

h: Varylng component of the magnetic field

E: varying component of the electric field (con-
stant component is not considered in this
investigation)

€: permittivity of free space

Mot permeability of free space

By:  externally applied dc magnetic field

fluid velocity of the electron gas
magnetic-current source

electric-current source

varying component of the number density of the
electron gas

absolute value of the charge of an electron
mechanical body source for the electron gas
fluid-flux source for the electron gas

o:  the number density of electrons in the undis-
turbed plasma

the mass of the electron

the acoustic velocity for the electron gas under
adiabatic condition.

TR

23R

ITII. OPERATOR-TRANSFORM METHOD

A formal solution to the set of Egs. (1)-(4) can be
obtained by an operator-transform method. This
method is an extension of that used by Diament!®
for the formal solution of Maxwell’s equations in
general linear media.,

First of all, Egs. (1)-(4) are rearranged to obtain
a proper matrix form. Thus, E and V are solved in
terms of h, #, J and F by employing Eqs. (2) and (3).

(12916];) S. Tanenbaum and D. Mintzer, Phys. Fluids 5, 1226

2M. H. Cohen Phys. Rev. 126, 389 (1962).
M. H. Cohen, Phys. Rev. 126, 398 (1962).
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Their results are:

Aph+A41m+E=§,, (5)
A21h+A22n+V=S2, (6)
wylw /i€ [zwc (wr—w,?) 2% ] iV x1
Apy= ————— -
Y () — w bX(Vx1)+ —F7— = v x1 @—ah) ————bb- v x1 o (7)
elPw/ie [ (0 —wp?) Twws? ]
Ap= —m————— —V:

(o) — DHX(V-1)+ = V.14 (o) bb-(v-1) (8)
An=[Au+ IV x 1 /ew) ](ew/7eNo), (9)
A= An(ew/ieN), (10)

_ w/ie {e[ . (wr—w,?) 0wk ap ]
Si= —————— 1— |wbXF .
(P —w,2)2—wie? [m XE+ 1w P+ (P —wp?) bo-F
1w » (wP—wy?) w . ]} J
iy S — gL
Fw, [ XJ+ =z J (=) bb-J 1eow (11)
S2= [Sl+l(J/60w) ](Eo(.d/’l«ﬁNo) . (12)

In the expression given by Egs. (7)-(12), b is the unit vector in the direction of the externally applied constant
magnetic field, w.=eBy/m is the conventional electron cyclotron frequency, w,?=€*No/em is the electron plasma
frequency, and also we have employed some dyadic operations with their associated matrices as given in the

Appendix.

Now the original Egs. (1) and (4), together with the rearranged Eqs. (5) and (6) can be put into the following

desirable matrix form:

where (V-1)’ is the transpose of V-1.
This matrix equation can, then, be put into the form
of an operator equation

Wy (r) =o(r) (14)

Thus, the basic Maxwell-Euler’s Egs. (1) through (4)
have been reformulated into a single abstract relation
between the sources and the resultant fields. ¥(r) is
a ten-vector containing the field quantities, ¢(r) is a
ten-vector representing the source quantities, and
% is the system matrix differential operator relating
the fields to the sources. Two identity submatrices of
8 are significant in deriving an integral equation of the
second kind in an inhomogeneous medium.

Here, we introduce the generalized transform tech-
niques, which amounts to choosing some convenient
basis of representation for the solution and transform-
ing the operator differential equation in real space to an
operator integral equation in transform space. The
generic summation symbol S, such as used in Quantum

T 0 (VX wpm)

0 1 0 (tNo/w) (V-
An Ap 1
| Ay Ax 0

0 e [/
1)+ (i/0) VN1 | 2 i0/e
= (13)
0 E S;
1 vl L os |

Mechanics,?* will be used, which requires that the ex-
pression following this symbol be integrated or summed
over the entire range of the repeated variable.

Let ¥(s) and ®(s) be the transforms of the vectors
¥ (r) and ¢(r), respectively, then

Y (s) =Sd(s,7)¢(r)
, (15)
Y(r) =Sc(r, s)¥(s)
and
®(s) =Sd(s, n)¢(r)
5 (16)
o(r) =Sc(r, 5)®(s)

where the transiormation kernel and inverse trans-
formation kernel satisfy the properties

Se(r, s)d(s, p) =1(r, ), (17)

M1, 1. Schiff, Quantum Mechanics (McGraw-Hill Book Co.,
Inc., New York, 1955), p. 128.
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and

Sd(u, r)c(r,s) =1(u,s). (18)

The idemfactor 1(u, s) comprises a Dirac delta
function or a Kronecker delta and a unit dyadic, as
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function, ¥(s) as the unknown function, and “W(x, s)
as the kernel. Also, this equation may be put into the
generalized forms of the telegraphist’s equations®.2
by the application of the following partitionings:

required. Also, we take the transformation law for the [ThT] [ I(s)7]
matrix operator W as
n Ve(s)
W(u, s) =Sd(u, r)We(r,s). (19) W (s) =Sd(s, 7) _ (21)
Now, we proceed to the transformation of the E Vi(s)
operator Eq. (14). Premultiplying both sides of Eq.
(14) by d(w, r), and then substituting the expansion v L e
for Y(r) as given by the transform pair in Eq. (15),
and summing or integrating over the complete 7 space, [ —iK/wuo | [~ J:(5)7]
the operator Eq. (14) in the real space becomes the
operator integral equation in the transform space iQ/w Wo(s)
- ®(s) =Sd(s, ) = ,  (22)
SW(u, 5)¥(s) =®(n). (20) s, Wo(s) ‘
This equation has the character of a generalized integral
equation of the first kind, with ®(s) as the forcing L S _I | J.,(s)J
1(n, s) 0 —Yu,s) 0 7]
0 1(u,s) 0 ~Z.(u,s)
W(u, s) = : (23)
'—Zt(ur S) - Tk(“; S) 1 (M, 8) 0
|~ Te(w,s) —YVeo(u,s) 0 VWu,s) _|
The orthonomality property of the transformation where B
kernels as given by Eq. (18) is utilized in Eq. (23). I,(s)

Thus, the generalized telegraphist’s equations are

Ii(u) =T (u) +SY(u, s) V.(s), (24)

Vi(u) =Wi(w) +SZ(u, ) I,(s) +ST(u, s) V.(s), (25)
I(u) = Jo(4) +STet(t, s} I(s) +8YVc(u, s) Ve(s), (26)

Ve(u) =We(u) +SZ.(u, s)I.(s). (27)

The general Fredholm integral equation of the first
kind, Eq. (20), which is equivalent to the original
Maxwell-Euler’s- equations, will now be reformulated
into a general Fredholm integral equation of the
second kind which is more amenable to analysis. At
the same time we have reduced the order of the matrices
to be manipulated from 10X 10 to 4X4. In order to
effect this reformulation, ¥(s), ®(s) and W(u, s)
will be partitioned in the following way:

‘1’1(3) @1(8)
I
¥a(s) @o(s)

‘1’1(8) =

] I:Vt(s)]
) \1,2(5) = ’
I.(s)

| Ve(s) |

_Jt(s)— Wt(s)
q>l(s) = ) q>2(s) =[ ]1 (29)

| We(s)_] Je(s)
and
1(u,s) —Wia(u, s)
W(u, s) = , (30)
—Wa(n, s) 1(u; s)
where

V. (u, 5) 0 :I
le(u, S) = ,

0 Zo(u,s)
B Zt(u, S) Tte(u, S)
’ng(u, S) = :I. (31)
| Tor(u,s)  Ye(u,s)

The introduction of these partitioned matrices into
the integral Eq. (20) gives the following coupled
%S. A. Schelkunoff, Bell System Tech. J. 34, 995 (1955).

BN. Marcuvitz, Waveguide Handbook (McGraw-Hill Book
Co., Inc., New York, 1951), Sect. 3.5c.
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integral equations: and the four-dyadic kernel is

Uy (u) =Py (u) +SWig(u, 5)Ta(s), (32) K (u, s) =SWi2(u, v)Wu(y,s). (36)
IV. SOLUTION IN A HOMOGENEOUS PLASMA

The integral Eq. (34) can be easily solved for a

and the substitution of Eq. (33) into Eq. (32) gives homogeneous plasma because the kernel has the ideal
rise to the desired integral equation of the second kind form K (u, s) =N(s)1(u, s).

Choosing a Fourier transform and thus using the

Wa(u) =Pao(2) +SWa(u, 5)¥1(s), (33)

() = F () +SK (u, 5)¥n(s), (34) transformation kernels
where the compound source is d(s, ) =[1/(2r)¥] exp(—ir-s),
F(u) =®1(u) +-SWie(u, 5) ®o(s), (35) c(r, s) =exp(ir-s), , (37)
we can obtain
~Yi(u,s)=—(s/wpo)1 (%, s), . (38)
—Ze(u7 S) = (No/w) s (u; S): (39)
_ wwt/iey —w, C(w—w?) .l , ] s
Z(u,s)= (w2-—wp2)2—wc2w2[ ” bs--1 s o) bb's |1 (u, s)+ - 1(u, s), (40)
_ ewlU?/ 16y . (WP —w,?) ww? , :I
~T(u,s)= (o) — ki l:wcbs—i— — () bb's |1 (u, 5), (41)
—- Tet(u) S) = (W/ieNO) I:—Zt(u7 S) - (5/60(*’) 1 (u) S) :]) (42)
— Ve(u, s)=— (ew/ieNo) Ti.(u, s), (43)
where
0 —b, b, b,
b=] b, 0 —b| b=|b,| o'=[b. b, b.], (44)
- ~b, b 0 b,
‘vl 0 —383 I
s=|l s, =[s1 8 s3], s=} $5 0 —s5|
53 — 389 51 0

The kernel of the integral Eq. (34) is
K(u, S) =SW12(1¢, v)’ng(‘v, S)

SYi(t,v)Z:(v,5) SY¥i(u,v) Tee(v,s) _
= , (45)
SZo(u, ) Ter(v,5)  SZ(u,v) Ye(v, 5)
with :
— gt w ) (P —wlt—wl) ww,?
SY (u,v)Z:(v,5)= () — e s[zw,,b-l— o 1— 'wz—wpz bb' |51 (u, s), (46)
sec?U? . wwe? ,
SY,(u, 'U) Tt,('l), S) = m S[w)cb* m— bb ] s1 (u, S) (47)
i /e [ w0l ] , |
(%, eV, §)= /7 b — ———— bb Is1 (%, 5), 48
SZ.(u,v) Tei(v, 5) (w”—w,’)2—wc’w2S tweb o) oY |s1(u, s) (48)
wlU? I. (P —wp?) wad ,]
e e\Y, = e ¢! - ] 3 ) 49
SZ.(u,v) Y(v,3) (aﬁ—wpﬁ)z—wc%zs[w b+ - 1 o) bb |s1(u, s) (49)
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where ¢= (ug) ~2 is the velocity of light in free space.
Thus, the kernel has the ideal form

K(u, §) =8W1z(n, ) Wa (2, 5) =N(s)1(u,s), (50)

where N (s) is a 4X4 matrix.

Substitution of this ideal form of the kernel given by
Eq. (50) into the integral equation produces the
solution of the integral equation directly as

I(s)
=[1-N(s)J'F(s),
Vels)

where the Fourier transform of the four-vector general
source function

[Jc(8)+(3/wﬂo) W(s) ]
F(s)= . (52)
We(s) +(Nos'/w) Je(s)

(51)
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In real space the magnetic field and the density fluctu-
ation field are given by

n(r)

and the dispersion relation is given as

o)
=S[1~N{(s) TF(s) explir-s), (53)

det.[1—N(s)]=0. (54)

V. EQUIVALENCE RELATIONS

Equivalence relations between different types of
sources in real space are obtained from the equivalence
relations in transform space, which are derived from
the four components of the four-vector general source
function. These four components are found from Eq.
(52) to be

Fy(s) = Juls) + _&ﬂi_)fy(s) + (_%C_ﬁ {e [w s o), (s)]+ w}
isyc isne (6 —w/—a?)
to—ah (w?~ ) )= (P —2) T2 o 7e(s), (35)
Fale) = Juls)+ (J:;{E;—Z__waa (— {wc[safz(s) +s1fz(s)]+ vs') [ fo(5) =51 £2(5) ]}

_ wday [507.(5) +5172(5) = (62— w2 — o) [537(5) — 57 (5) ]): (56)

siect 185102
T fu() =

Fy(s) = Ju(s)— o] T

).71:(5)

+ a0+
‘F4(s) =W(s)— )[ fv(3)+ Ju(S)]

w/e

(o~ wp)

Woag) s >] “ ; <s>+<w2-w,,2-wf>jx(s>}, (s7)

el fes (= ) ) (=ap?) |
- (0:2——%2)2_%%2{ [“’” () + f;(s)]-{-s]wp [" = j()+ -—-—-—-—].ﬂ(s)]

+ e:::[ W, a:(s)+

(“’2 “’p)

2D 10 o[-0+ £ 50 || 9

The transform of the electric current source, 7(s) =Sd(s, r) J, and the transform of the mechanical body source,
f(s)=Sd(s, 7)F, have been used in Egs. (55)-(58), in addition to the transform of the magnetic-current source
J(s), and the transform of the fluid-flux source W,(s) as defined by Eq. (22).



4684

Y-K. WU AND C-M CHU

SN2
) N1
I

ZINL
SN

AN
R

Fi6. 1. Dispersion curve at w=3X10%

Some equivalence relations between different types of sources in the real space, which can be used to obtain the
excited field due to one type of source from the solutions obtained for another type of source, are given as follows:

1 ec? Tk’ oF
~ K= (02— wt) VX Ft — e ) —ww V- F e = ¢ 59
o m (P =w,2)—le?] {z(w @)V x F+4 b YXVFy~wwyV+Ftoww ay} ( )
e wwc2wp2 ~ . N . 6J
T et {*“’(‘“2_‘””2"“’”2) Ml Sl A 5}} (0
Q- 1 aF, w/m F, (w*—wlt) oF, . 0F, (o?—w?) OF,
Q. el i, ey (o) OFe 08 | (o) 1L )
o m{P—wl) 3y (Wi~ w,?) 2 —w 2w? dx w dx dz w Jz
iQ Tyl aJ, wtfe { 0, . (uw?—w) dJ, 8J, ; (P —w,?) 5'9_._7_2_} (62)
w ew(w?—w?) 9y  (0?—wyl)’—wl? i w ox ° 9z w az |

Equation (59) is the equivalence relation between the
magnetic-current source and the mechanical-body
source; Eq. (60) is the equivalence relation between
the magnetic-current source and the electric-current
source; Eq. (61) is the equivalence relation between

the fluid-flux source and the mechanical-body source;

77
/
/ &
7 = 20
/
/
° ¥ /
g / N Fic. 2. Ey/ vs ¢ at
/ w=3X108,
/
/
o] 0.5 (K] 15X 10

@=50°

Eq. (62) is the equivalence relation between the
fluid-flux source and the electric-current source.

VI. SAMPLE CALCULATIONS

In order to show the salient features of the present
technique, the radiation fields due to a point current
source is obtained. The point electric-current source can

F16. 3. Ey' vs ¢ at
w=3 X108,

$-0°
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be expressed as A
T=0(20) Tod () (3) 8(s), (63) SN
and its transform given by /«\ )
Ju($)-Sd (s, r) (2m)3Jod (%) 8(y)8(z) =Jo.  (64) DN \/'\x\\
To obtain the solution in real space, it is necessary to L m;;o\: \1
evaluate the following integral, ; \/ Ordinary wave |

L(s) exp[i(six+s2y+532) ]
G(s)

ds1dsqdss.

=1 L1
(65)

The asymptotic solution to the integral Eq. (65) can be
obtained by applying the principle of stationary phase.
Usually, threefold Fourier integrals with axial sym-
metry are treated by conversion into Hankel trans-
forms, but such a conversion complicates the asympotic
evaluation and also loses sight of the close relation
existing between the radiation fields and the dispersion
relation. Thus, we will use the asymptotic solution
developed by Lighthill¥ The solution of Eq. (65)
satisfying the radiation condition is asymptotically
given by

_ 4  CL expli(six+tsyy+s:2) ] o
g=—2 VG [TK] +0(r)~1 (66)
as r—oo. The summation is over all points (s, 55, $3)
of the surface G(s)=det.[1—N(s)]=0 where the
normal to the surface is parallel to the direction of
observation and (r-vG)/(8G/dw)<0. At each of
these summation points the Gaussian curvature, K,
can not be zero. C is =17 where K <0 and VG is in the
direction of 47, and 41 where K>0 and the surface
is convex to the direction of +VG.

In the present problem the axis of symmetry is in the
v direction and so the dispersion relation is a function
of s and (si?+ss?), or just a function of s and the
angle 8 measured from v axis, i.e.,

det[1—N(s)] =f(s?, si2+s5?) =1(5,0).

K:

F16. 4. Dispersion curves for modified ordinary and extra
ordinary waves at w=3X10".

The stationary points are given by the equations
f=0
(9f/ds,) — | tang [ (9f/ds2) =0, (68)

where s,2=s5:>4-552. It is very complicated to solve Eq.
(68) directly. Instead, we find the radiation direction ¢
corresponding to each point on the dispersion curves,?
which are the plots of f(s, 8) =0. In order to perform
this calculation, the following form of Eq. (68) is used;

tan(8—e) = (1/s) (ds/db). (69)

Also, the Gaussian curvature must be evaluated at

and, the absolute value of VG evaluated in the form

(67) each stationary phase point in the following form

[1— (cotb/s) (ds/d6) J[1+(2/s*) (ds/ud)*— (1/s) (d*s/d6®) ], (10)
[1+(1/s%) (ds/dg)* Ps*

| VG | = {1+[(1/s) (ds/d6) T2}" (71

The first derivative and the second derivative of s with respect to 8 are obtained from the simplified form of the

dispersion relation Eq. (54);

s8(Q cos®—1) +s4 (1 —we?) (B2+2B8:2) — (82284 cos®—Blwet cost) ]
+5282[ = (1—w?)2(2824B0%) +22(28.24B? cos?b— B.wq® cos’—Blwt) ]

+B82Be* (1 —we?) [(1—we®)?~0*]=0, (72)

# M. J. Lighthill, Phil. Trans. Roy. Soc. London 252, 397 (1960).
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Fic. 5. Dispersion curve for modified plasma
wave at w=3X107.

where Bo=w/C, B.=w/U, Q=w,/w, wy=w,/w. If we should be only interested in the amplitude variations, we can
easily see from Eqs. (67) and (68) that it is not necessary to check the radiation condition (r-VG)/(9G/dw) <0,
which will essentially select one point among two symmetrical points (sz, s,) and (—s, —s,).

‘The asymptotic solutions for the three components of the electric field are obtained as follows:

322U2

ot —w?)

_éﬂj Cexp(is+1)ot(e®—wd) [ Jo
> | VG| (] K ) 12Ut ( >{

Twey

[w0,2 (2 — w2~ 2¢2%52) — s, (52— w?) ]

—[1/e*(0?— 02) w22 —wl— s — dsy?) — U2 (@ +w—o?) ]

L= (0% 5T 1= () (-62) 4 (/) J} (73)

w28y

_ 4 C exp(is-1)w*(®—w?) Jo
= r > | VG | (| K |)v2U2ct <iweo> "{

(P —wl)

— [52U%/ (02— w?) J[ (B w2— ) (25,24 wpl) +c2wplset | — [1— (U2/?) s2 [ 1— (2/e?) s*](c2/e?) 82}, (74)

472 C exp(18+1) Joww,2
Fp=— % p( P

r THUVG] (| K )1

323,7(62~ U2) 3

where the sum of ZF, and 2E, are expressed in terms
of two vectors in the direction of 5 and ¢ by using the
fact that
Es1tH8ss=s,=|s, | p
and
"5353+é31=spr/=| Sp ]‘i; (76)
(p and ¢ are unit vectors in the cylindrical coordinate
system.)
Some calculations of the dispersion curves and
Ey', Ex' vs ¢ are given in Figs. 1-8, where
E¢IE 36meor I E¢ [/Jo, (77)
and
EM'E 361!'601’ I EM I/]o (78)
| Ea | is the magnitude of the projection of the electric
field on the meridian plane, which is obtained as

| En| = (| By "+] E, )2 (79)

(75)

Due to the symmetrical nature of the physical system
and the source involved, E;’ and Ex’ vs ¢ are plotted
only for the range ¢=0° to ¢=90°. The angle ¢=0°
and #=0° corresponds to the direction of the earth’s
magnetic field. Ionospheric plasma is considered, and
the electron temperature, T, of 1487°K and the electron
density, Ng, of 1.7X10° electrons/cc are taken as the
representative values above the F-peak region of the
ionosphere. The earth’s magnetic field is assumed to be
0.5 G. Calculations are made for four frequencies, which
are w=3X10%, w=3X10% ©=3X10", and w=3X108

The relatively large magnitude of the modified
plasma wave?® compared with the modified electro-
magnetic waves should be comparable with the results
of Hessel and Shmoys, and Wait.'® Hessel and Shmoys

% The choice of this terminology is explained in Refs. 29 and
31 together with a careful analysis of the dispersion relation.
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considered the excitation by a point current source
without static magnetic field. Wait has studied the
radiation from a slotted sphere antenna immersed in a
compressible plasma, without static magnetic field,
and concluded that the relative power in the acoustic
type of wave is increased as the dimension of the
antenna is reduced.

When w=3X10% the dispersion curve is given by
Fig. 1, which has a transition angle?®® between a
modified ordinary wave and a modified plasma wave at
6,=68.7°, and a resonance angle?®® for a modified
plasma wave at 6,=70°. Due to a turning point in
Fig. 1, there are three rays existing inside the cone
¢<4° as shown in Figs. 2 and 3. This terminology
“ray” has been used by Arbel and Felsen® for each
stationary phase-point contribution. At ¢=20° cor-
responding to #,=70° the stationary point goes to
infinity and the asymptotic solution can not be ap-
plied. There are two rays existing in the region 4°<

Fic. 6. E¢’,EM, Vs E")
¢ for modified plasma -
wave at w=3X10".

$=90°

$<20° A large modified plasma wave contribution
exists near and inside the boundary cone ¢=20°.

When w=3X10", three separate dispersion curves
exist for each type of wave, as shown in Figs. 4 and 5.
The field patterns of a modified plasma wave as
plotted in Fig. 6 shows that this type of wave is es-
sentially linearly polarized with Ej component, as can
be expected from its longitudinal nature. The field
patterns for meodified ordinary and extraordinary
waves as given by Figs. 7 and 8 have the similar
features as compared with those patterns for the
ordinary and extraordinary modes calculated by Arbel
and Felsen.®

When »=3X10% the dispersion curve belongs to the
same region in w,;2/w? vs w2/w? plane®?! as in the case

MY, K. Wu, Unified Approach to Excitation Problems in Com-
pr%sss)ible Plasma (Ph.D. dissertation, The University of Michigan,
193" W. P. Allis, S. J. Buchsbaum, and A. Bers, Waves in Aniso-

tropic Plasmas (MIT Press, Cambridge, 1963).
%Y. K. Wu, Radio Science 2, 1019 (1967).

IN COMPRESSIBLE PLASMA
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3 X108

$=90°

Fi6. 7. Ey', Epx' vs ¢ for modified ordinary wave at w=3X10".

of w=3X10%, and similar features appear in the
field patterns. The transition angle and the resonance
angle are, respectively, #,=tan™! (29.18) and 8,=
tan! (29.3). Due to a turning point of the dispersion
curve there are two rays existing inside the cone
$<17.75°. A large contribution due to a modified
plasma wave is restricted to a very narrow region near
the axis ¢=0°.

When «w=3X108, the dispersion curve, consisting of
three separate curves, belongs to the same region in
wt/u? vs wl/w? plane as in the case of w=3X107, and
all the features explained with regard to w=3X10*
applies here. In addition, the propagation constants
of both modified ordinary and extraordinary waves
are nearly equal to the propagation constant of light
in free space at w=23X10%.

Similar calculations are also made for the F-peak
region, the E region and the D region of the iono-
sphere, and their graphs are given elsewhere.?® The
dependence of the radiation patterns of the excited
fields on the altitude of the ionosphere is found to be
not too conspicuous. However, there is quite a vari-
ation in the magnitude of the excited fields. Also, the
calculation for the D region gives some different types
of dispersion curves which belong to some different
regions in w,2/w? vs w2/w? plane.

Fic. 8. Ey, Ex’ vs ¢ for modified extfordinary wave at
w=3X107,
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V1. CONCLUSION

An over-all picture of the wave excitation in the com-
pressible plasma immersed in the constant magnetic
field can be seen most clearly from this compact and
systematic operator-transform method. Equivalence
relations given above show in one way the powerfulness
of this method. The close relationship existing between
the excited field and the dispersion relation is most
clearly shown by Eqgs. (53) and (54), and also by the
sample calculation applying a convenient form of the
stationary phase method formulated by Lighthill.

Through our general treatment, we can see the more
complete picture of many of the results obtained with
conventional methods either by neglecting the earth’s
magnetic field or by neglecting the compressibility

Y-K. WU AND C-M. CHU

of the plasma. Some other results of the calculation are:
(i) Very large field contributions due to meodified
plasma wave are found at low frequencies for certain
space directions only, and at high frequencies for all
directions. (ii) The radiation fields are composed of
many rays, and at higher frequencies each ray cor-
responds to each different type of wave.

The present treatment should be applicable to the
inhomogeneous medium, but its practical application
needs further study.
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APPENDIX

Some dyadic operations with their associated matrices as used in the text are given in the following expressions:

1=28+9)+#-] 0 1 0

v x 1=[%(3/0%) +§(0/0y) +2(8/9z) IX (2E-+3i+4)—

V- 1=[i(8/0x) +§(8/9y) +2(3/02) 1- (Z&+5i+28)—,

bb= (b, b, +2b.) (&b, +ijb,+2b.)

bX 1= (2b,+7b,+5b,) X (ZE+iy+28)— 5. O

1 0 07

00 1]
[~ 0 —98/dz  9/dy
9/9z 0 —3/8x
L-—a/ay 8/ax 0
l'a/ax
a/dy

‘_a/az

by |6 by b.]

bz

b,
0 -—b, b

—b, b O



