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ABSTRACT

A method for solving various half-space multi-group transport problems for
the case of a general transfer matrix is explained. The advantage of this method
is that it readily yields numerical results. First, the nonlinear integral
equation for the emergent distribution of the albedo problem is derived. Then,
by using the full-range completness of the infinite medium eigenfunctions, the
ingide distribution is obtained from the emergent distribution. Finally, the
Milne problem and the half-space Green's function prcblem are solved in terms of
the emergent distribution of the albedo problem and the infinite medium eigen-

functions.



I. INTRODUCTION

A widely used method to treat the energy dependence of the transport equation
is the multigroup approximation. However only recently have exact solutions to
the multigroup transpert equations been considered. By applying the singular

eigenfunction approach of Case,[l] the solution of the infinite medium Green's

(2] (3]

function problem has been obtained for the two-group and the N-group cases.

Until now, the sclution of half-space problems has been restricted to special

[4],[5]

cases. Several two-grcup problems have been invesbigated. In a paper

on radiative transfer Siewert and Zweifel treated the N-group case with the

specific limitation that the determinants of the transfer matrix, C, and all its
Al

(6]

Finally, for the case of symmetric transfer (of which the two

[7])

minors wvanish.

group case is a special example Leonard and Ferziger showed how solutions to

half-space problems can, in principle, be cobtained by solving Fredholm equa‘t:rlons.[8‘J
The purpose of this paper, therefore, is to consider half-space problems "of
the N-group" isotropic transport equation with a completely arbitrary transfer
matrix. However all of the above *“echniques depend critically upon a "half-range
completeness” theorem whereby the sclution of any half-space problem can be
expanded uniquely in terms of only half of the infinite medium eigenfunctions
of the transport equaticn. TFor the case of general transfer nc such half-range
thecrem has been found and another approach must be used.
Recently an approach which circumvents this half-range difficul®ty has been
used by Pahor in the thermal neu‘ron degenerate kernal case.[9]’floj It is this

approach which will be used in this paper. First the emergent distribution for

the problem is found. Then, once the angular flux is ccmpletely known at the



surface, the full-range completeness of the property N-group infinite medium
eigenfunctions[zj can be used to obtain the complete solution inside the half-
space.

The main problem then is the calculation of the emergent distributions. To
this end, several different methods can be used. Case has obtained a Fredholm
equation for the emergent flux in terms of the infinite medium Green's function.[ll]
Secondly, from an eigenfunction expansion of the problem, a Fredholm equation for
the emergent distribution involving only eigenfunctions can be obtained..[7]’[1:l
However, both these methods are very difficult to evaluate numerically. A third
approach, which readily yields numerical results for the emergent distribution,

[13]

will be used in this paper. By applying the invariance principles of Ambarzumian

[1L]

and Chandrasekhar, a nonlinear integral equation with a simple kernel can be
easily derived for the general N-group albedo problem emergent distribution.

The plan of this paper is as follcws: Section II reviews the known results
and properties of the infinite medium eigenfunctions which will be needed later.
The next section shows how the emergent distribution to the half-space albedo
problem can be obtained in terms of two fundamental matrix functions, V(u) and
_Hﬁu)o These functions satisfy a pair of coupled nonlinear integral equations
which are quite amenable to solution by numerical means. In Section IV we
demonstrate how the emergent distributions for the Milne problem and the half-
space Green's function can alsc be expressed in terms of these ELand.y;matricess

Then by applying the full-range complebeness theorme of the infinite medium

eigenfunctions, the complete solutions to these problems may be obtained.



IT. EIGENFUNCTIONS OF THE MULTIGROUP TRANSPORT EQUATION
The linear Boltzmann equation for N energy groups in plane geometry and with

isotropic scattering and fission can be written in the form
0 Z 1 1 !
by W) L yloun) = ,Q,fl du' y(x,u') . (2.1)

The vector iﬁx,u) is an N-component vector, of which thei-th component, wi(x,u),
is the angular flux for the i-th group. The components of the matrix 'EL are
given by OiSij’ 0; being the total interaction cross section for the ith group.
Finally, the elements, cij’ of the transfer matrix .EL describe the transfer of
neutrons from the jth group to the i-thgroup. For an isotropically scattering

and fissioning medium the cij are given by

1
Css = 5[0

S
+ f .
i3 o T Xy o] (2.2)

J71 J d

where ¢,°5,

591 is the scattering cross section for the transfer of neutrons from the

jth group to the ith group, Ojf is the fission cross section for the jth group,
Vj the number of fission neutrons produced by an incident jth group neutron, and
Xg is the fission spectrum fraction of the ith group.

[7]

It 1s always possible to order the groups such that
Ol>02>ooa <GN s (2.5)

and by dividing Eq. (2.1) by Oy and measuring distance in units of the largest
1
mean free path, — , cne may set o, = 15[6]
o N
Using the analogy of the one-speed problem,[l] a set of eigenfunctions,

V(v,x,u) to Eg. (2.1) of the form
P



Y(v,x,u) = e”x/vgfv,u) (2.1)

e

is sought. Substituting this ansatz in Eq. (2.1), the following equation for the

eigenvectors ¢(v,u) is obtained:

B) ovn) = O gvut) (2.5)

W o~ A
-1

(% -

<=

where E is the unit matrix. The explicit form of these eignevectors and their

[2]-[4],[8]1,[15]

properties have been investigated by several authors. In order

to establish notation, the basic form and properties of these eigenfunctions will
[3)

be briefly quoted. We will use, with slight changes, the notation of Yoshimura.

The eigenvectors can be written in the form

o(v,n) = P E(v,n) B(v) + Glv,u) AV) (2.6)

W )

where P denotes the Cauchy principle value. The matrices F(v,u) and G(v,p) are

e LV ad
defined as
[F(z,0)],, = ——— & (2.7)
PR ij 0;2=p 1] ?
and
[.g;(ZJ “’)]ij = 8(0iznu)0ij ) (2°8)

A simultaneous equation for the unknown.gjv), which satisfies

Ve

b(v) = g,ﬁ au' o(vn') = Galv) , (2.9)

and the unknown vector A(v) is obtained by substituting Eq. (2.6) into Eq. (2.9);

namely



2(v)plv) = [1 dp G(v,m) A(v) (2.10)
where
o(z) = ct-op {iﬂz,u)du . (2.11)

To solve for b(v) and A(v) the eigenvalue spectrum is divided into two regions.

(a) Region I: wv¢(-1,1)
In this region there may exist an even number, say 2M, of discrete eigen-

vectors, which in component form are written as

[9(voer)]y = =2 (v

i

n
1l
=
14
n
=
-
N>
I"“‘
no
~~

where b(veg) 1s a well defined vector.[3)  The discrete eigenvalues, v_,

s =1 ~2M, are solutions of the dispersion relation

det Q(vyg) = O & (2.13)
It can be shown that if v,  is a solution of Eg. (2.13) then also -v_ . and
v (complex conjugate) are eigenvalues with

blv ) = Db(-v ) = BXv

os "S- oS [V

OS) . (2.1k)

For a symmetric transfer matrix, the discrete eigenvalues, if they exist,
are either real or imaginary.[YJ For a general system, on the other hand, there

does not appear to be any a priori reason the expect that the discrete eigen-

values are not complex. However it may be argued on physical grounds that a



subcritical medium must have a real dominant eigenvalue (defined as the eigen-

2
value with the largest real part).[l ]

(b) Region II: ve(-1,1)

This region is divided into N subintervals, Vi j =1~N, such that for

1 1
vevj, Ef—I < |v| < - - For the jth sub-interval, there are (N-j+1) linearly
J- d

independent eigenvectors, ¢@(v,u), where ith component has the form

“J
[950v,m)]y = P oy (B3] + 8(opv-n) 3]
m = j~N ,
j = 1~N , (2.15)

where P indicates the Cauchy principle value. The vectors b?(v) and x@(v) are
J J

(3]

also defined by Yoshimura.

The eigenvectors of both regions, ij,u), depend parametrically uponjz.
t ~ .
If we denote by ¢ (v,u) the eigenfunctions with C replaced by C (tilde denoting

the transpose), we see from Eq. (2.5)

Clvmg) = vl (2.16)

In passing, it should be noted that ;Kv) and Ajv) are even functions of v and

hence the elgenvectors have the property
o(v,-u) = o(-v,n) (2.17)

From the eigenvalue equation (2.5), one finds that the eigenvectors are orthogonal

in the following sense:



1
LanTm e = 0 58w 4y . (2.18)

Moreover, it is possible to choose particular linear combinations of eigenvectors
for the independent eigenvectors of each subinterval, vy, such that all the "con-

tinuum" eigenvectors are mutually orthogonal,[BJ i.e.,

1
[[aun ﬁgm'(ivm) 25Evu) = AW )egyB(v-v')
v, v' e Vj . (2.19)

Similarly for the "discrete" eigenvectors, we have

1 —
fl du pu ¢ (iVos;H) ﬁ),(ivos';u) = Ng B

sty 8 = 1~M . (2.20)

The normalization functions N?(v) and N are given by Yoshimura. [

The eigenvectors, $(v,u), of Eq. (2.5) have the very useful property that
they are "full-range complete,"[sj’[lSJ This property may be stated in terms of
the following theorem.

Theorem. The set of functions 31v,u), v e[=1,1] or v = tvogs 8 =1 ~M, is com-

plete in the sense that an arbitrary vector function y(p) defined for p e[-1,1]

A

can be expanded in the form

M M
¥) = &y alvgg) 2vom) + Loal-v ) 2(-v )
N N
¥ J.lé:l [, @ (L &5(v) £iv,) (2.21)

J m=J

where o(v ), a(-vyg), and A?(v) are uniquely determined expansion coefficients.



ITI. EMERGENT DISTRIBUTION OF THE ALBEDO PROBLEM
In many problems in half-space transport theory, only the angular flux at
the surface of the medium is needed. To this end, the emergent distribution of
the half-space albedo problem will be considered in this section. The emergent
distribution of this particular problem turns out to be of fundamental importance
in determining the emergent distributions of all other half-space problems.
Consider an albedo problem for which the incident neutron beam belongs to
the i-th energy group. The angular flux of this "i-thalbedo problem",/gi(o,uo;x,u),

is the solution of Eq. (2.1) with the boundary conditions

(i) Ei(O,uo;O,u) = &1 6(“"“0>; n>0, Mo >0 , (3']-)
(11) Hm ¥ (O,ug3x,u) = 0, (3.2)

where &5 is a vector all of whose components are zero except the ith one which
is unity. The N distinct albedo problems (one for each group) can be handled

collectively by introducing the "albedo matrix" ¥(O,u,;x,u) defined as
2(0,ng3%50) = Tha(0,ng3%,1), ¥2(0r kg3, 1), ooy dp(Osu 53,u) 1 (3.3)

This matrix is the solution of the transport equation

d 1

(b 5x B+ 2) ¥0,ng5%,0) C fl du' ¥(0,ug3x,u) (3.4)

with the boundary conditions
(1) :{(O;HOSO;H) = ‘E\,S(H'HO% >0, By 2 o, (3.5)

.oy 1im
<ll) X200 ,\:?_(O’HO;XJ“> = O (3"6)
From the definition of the albedo matrix, the quantity'gﬁo,uo;o,u) gives
e b e s em . e . inc
the emergent distribution ¥ (-u), u > 0, for any arbitrary incident v ~(u),
- P e

L >0 as 10



du' ¥(0,u"30,-u) ¥EC(ut) . (3.7)

In fact the emergent distribution of any half-space problem can be expressed in
terms of the matrix EIO,MO;O,-M) Ho > 0, 1 > 0. There are several methods for

obtaining this portion of the albedo matrix without first solving the complete

albedo problem. [7] b [9] ) [11] I} [lll-]

n[1h]

invariance a nonlinear integral equation for this reflected flux.

Here we will obtain from "the principle of

The principle of invariance states that the reflected flux from a half-

space is unchanged by the additicn (cr subtraction) of layers of arbitrary thick-

[14] Thus if V(x,u) is the angular flux at a dis-

A

ness to (or from) the medium.
tance x inside the half-space, the outwardly moving flux can then be expressed

from Eq. (3.7) in terms of the inward flux as

Y(x,-u) = fol ap' )Y_(O;M'SO;-M> "\H_(X;H'); p>0 . (3.8)

A~

In particular, Eq. (3%.8) gives for the ith albedo problem
1 , 4
Y3 (Opg3x,-p) = fo ap' 2(0,u"30,-n) v.(Ou 3xu") (3.9)

Finally if we treat the N-albedo problems collectively, the above vector equation

yields the following relation for the albedo mabrix:

A

1
,\I\I_(O:HOSX;"H) = .é du' ¥(0,u';0,-u) ;Y_(O)IJ-OQX)H') . (3.10)

To obtain a nonlinear integral equation for4}g0,u';o,-p), first differentiate
Eq. (3.10) with respect to x and set x = 0. Then using the transport Eq. (3.%4)

to evaluate the derivatives, and employing the boundary condition (3.5) one obtains

11



1 du' d
= B+ " s(uw,w)] B + 1T slug,e”)]
.11)
where the generalized S-matrix is defined as
S(ugsw) = 1 ¥(0,pp30,-p) , w>0 . (3.12)

Since each bracket on the right hand side of Eq. (%.11) is a function of only

one angular variable, this equation may be written as

ST Slueon) i Slioow) T = TS Tk (3.13)

with
Ulw) = ,@,*‘{)lg“—y’ Slu'ym) (3.14)
W = B LG sew) (5.15)

Unfortunately'gLand‘§(u,p0) do not commute, and to obtain an equation more
amenable to numerical sclution, the definition of a "matrix direct product” is
introduced. If D is the direct product (dencted by *) of A and B, i.e., D = A * B,

A, A WA e WA

-~

then in component form we have

[P,Jij = [A],. [B],., , i,j = 1 ~NW . (%.16)

~7ij ~71j

It should be noted that the direct product operator is neither associative nor

distributive with the conventional matrix product.

12



To obtain a system of equations equivalent to Eq. (3.11) involving only
U and V, integrate Eq. (3.11) first with respect to p,. Then use the definition

of U(n), Eq. (3.14) and the direct matrix product notation to obtain

U = E+u fEaut Alwe)*Uove)] (3.17)

“

where the matrix éﬂu,p') is defined as

1
[é(u,u')]ij = W . (3.18)

Similarly by integrating Eq. (3.11) with respect to p an expression for Y(u) is

obtained:

V() = Bt [ auw A u)¥Y)E ¥0)] (3.19)

-\

Equations (3.17) and (%.19) are two simultaneous nonlinear integral equations
for the U and V matrix functions. For N = 1, they correspond to Chandrasekhar's

4 ith v=v = m

one-speed nonlinear H-function equation

The equations for U and V, as they stand, can be solved numerically by the
method of successive iterations.[12] However it is possible to cast the U and
V equations into a different form which does not involve direct matrix products
and whose iterative convergence is much better than that of Egs. (3.17) and
(3.19).

In Eq. (%.19) it is not possible to factor the term V(u) outside of the
integral because of the direct product. However, it is possible to transform

this matrix equation into a system of vector equations in which such a factoriza-

tion can be accomplished.

13



Consider first the integrand in Eq. (3.19). Substituting explicitly for

A(u',u), and denoting summation by the repeated index notation (where a repeated

lower case Greek subscript signifies summation from 1 to N), this integrand can

be written in component form as

Usy (") e, 0V s(
[A(n',w)*(U(u')C V(w)}], = "‘?.“) : (3.20)
iy o3 Bt 05 H

Now define the matrix yk(u) all of whose elements are zero except the kth column

which equals the column of the V(p) matrix, i.e.,

With this notation the integrand (3.20) becomes

Dy (uynt) Ulu') € V(1) (3.22)

where the diagonal matrix\@k(p,u') is defined as

, _ 1
[Dy (1, )]ij = Tom 6ij . (3.23)

Using this notation, Eq. (3.19) can be written in the form

o ' Do (uwnt) Ulw') € v, (W)« (3.24)

Similarly the transpose of Eq. (3.17) may be written as

N
Tw) = LT = s+uf (out) V) TG0, (3-25)

]
p [ D

il

where

1L



(G (1)), = [U(w)]

i3 U 51 sjk (3.26)

These two new matrix equations for U(p) and V(u), Eqs. (3.24) and (3.25) can be
reduced to systems of N vector equations. This is possible because of the parbi-

cularly simple forms of the matrices Vy(u) and Up(n). If one defines the vectors

¥;(n) and y;(n) as

— ‘1 . -
‘Vli(u)' U]’_l(“)
vilw) = Vzi(u))  and uy(p) Usa(p)| , 1 = 1~N, (3.27)
then Egs. (3.2L4) and (3.25) become
1 .
vi(w) = gt [aw Dy(un) U') ¢ vy(u) , 1= 1~1,
= (5028)
and
1 ~ .
gy w) = gy tu fo dp' Dy (wyn') V(u') :ngi(u) , 1= 1~N.

(3.29)

This system of vector equations is exactly equivalent to the U and V matrix which
involved direct products (Egs. (3.17) and (%.19)). However now we can factor

V\Ci(u) or Ei(“) from the integrands to obtain

1 -1
yi) = [E-w [ au Dylun') Uu') C1 7 ey (5.30)
and
1 L~ - \
u(e) = [BE-p fo dp' Dy (w,p') Lfﬁu')zC/j ! e; - (3.31)

15



It has been found that this system of equations is also solved readily by
method of successive iterations. However, the convergence rate is significantly
. . . [12]
better than that of the iterative solution of Eqs. (3.17) and (3.19).

Once the U and V matrices have been calculated, the generalized §ju0,u)

function is readily obtained from Eq. (3.13). Thus the emergent distribution

for the ith albedo problem is in view of Egs. (3.1), (3.3), (3.7) and (3.12)

}_l

jlii(o,uosowu) = Hﬁ(“o;ﬂz\e,i s H>0 . (3532)

At the end of this section it should be mentioned that in solving the albedo
problem for a given transfer matrix ¢, we have, in fact, also solved the albedo
problem for the transposed transfer matrix @;

To show this, let us consider the soltuion WJT(O,ul;x,u) of the transport

equation

1

(U« X B+ Z) 11"1:(0)“15)(:“) = _@,f wt(o:“lP{)U) du' (5*'55)
F ~A. wJ _l v‘g
which satisfies the boundary conditions
(1) ¥1(0,u10,n) = e: B(ug-u), w1 >0, u>0 (3.34)
Loy 1d
(11) 3 £ (Ouaxn) = 0 . (3.35)

To find the relationship between the emergent distribution gi(o,uo;o,-u),
defined by Egs. (2.1), (3.1) and (3.2), and E;(O,ulgo,-u) first multiply Eq.
(2.1) from the left bylg;(o,ul;x,mu); then multiply Eq. (%.33), with u replaced
by -y, from the left by Hi(o’“o5x’“)° Subtraction of these two results and

integration over p from -1 to 1, and over x from O to w, yields the identity

16



1 2ol a o~
[l du fo dx 35 [gj(O,ul;X,-u) ¥; (Ougsx,u)] = 0 (3.36)

Use of the boundary conditions Egs. (3.1), (3.2), (3.34) and (3.35) and

integration by parts of the above equation gives a generated reciprocity relation
~F
bo ¥5(0,n130,-u Jes = w1 g5 Vi(Oyko30,-11) (3.37)
As before we introduce an albedo matrix
T ‘
l(oyuljx:ﬂi) ’

defined as

i

T T 1 ) T
}/‘_ (O:M_'L;X;H) [Xl(O:UJ.;XyH); EZ(O)“:L;XJM)"°'EN(O}|“|'1;X)“)] s (5'58>

and the generalized.ﬁ?(ul,u) matrix
t t |
8 (n,w) = u ¥ (0,u130,-p) (3.39)

Then it follows from Egs. (3.3), (3.12), (3%.37), (3.38) and (3.39) that ,?,(“o’ul)

.l.
and § (ui,u,) are related by the equation

ij(ul,uo) Sluorma) - (3.10)
Finally, by defining
IV R A (LD (3.12)
and
Tiw) = E+ fj%'e'i“sj(u,u') ) (3.42)



it follows that

L{T(u) = :\z(u) , (3.43)
and
Viu) = }Z(u) . (3.44)

IV. EMERGENT DISTRIBUTIONS OF OTHER HALF-SPACE PROBLEMS
In this section it is shown that the emergent distributions for the generalized
Milne problem and the half-space Green's function problem can be expressed in terms

of the generalized §-function or the U and V matrices of the previous sections.

(a) The Generalized Milne Problem
For every positive eigenvalue ve(0,1) or v = vyg, s =1 ~M, a Milne pro-
blem can be defined. Denoting its solution by WV(X,H), it i1s defined as the
W

solution of the transport equation, Eq. (2.1), with the following boundary condi-

tions:
(i) EV(O’M) = 0, w>0 , (l“l)
(ii) }];3;5 HLV(X;H) = 9.(“V)H)ex/v y v>0 , (k.2)

where ¢(-v,u) may be any cf the eigenvectors—regular or singular.
The first step in obtaining the solution is to find the emergent distribu-
tion, WV(O,-M), b > 0. Consider a solution of the transport equation, Y(x,u),
wr

defined as
&V_’(X)FO = )[iv(x,u) +ﬁ/a(x)}~l) (1“5)

18



where Ea(x’“) is an albedo problem solution with the boundary conditions

(1) ya(O,n) = o(-v,u) , w>0 , (ko)
(11) #30 v (x,n) = 0 . %))

o

Hence from Eq. (L4.3), ¥(x,u) must have the boundary conditions:

(1) lJL(OJ_“'> = ‘,?L("VJH) y >0 (L.6)
(1) 10 y(e,n) = ofov,u)e™ Y (4.7)

learly the unique solution for y(x,u) is
W

x/v
pow) = s(vwe? (1.8)
Equations (L4.3) and (L4.8) then yield for the emergent Milne distribution

U, (0,-0) = o(-v,-n) - ¥o(0,-p), w>0 . (4.9)

LS

The emergent albedo digtribution, ya(o,mu), can be expressed in terms of the

$-function. From Egs. (3.7), (3.12) and (L.L)
1 1 ' t [ 3
Ya(05mn) = T fo dpglut ) e(-v,u') (L.10)

and hence the emergent Milne distribution in terms of the S-function is

=l

¥, (0,-u) = &v,u) - fo )e(=v,u') . (k.11)

In the same way we cobtain the emergent distribution,lyi(o,—u) for the

o ad
transposed transfer matrix C

19



deu' sT(u',m) ﬂj(-v,p') . (4.12)

0 ~

Tl

y;(O,—u) = o' (v,u) -

Once the\ﬁ;function has been determined, these equations could be used to obtain
numerical values for the emergent Milne distribution. However, in any computa-
tional scheme only the U and V-functions would be obtained, and thus this emergent
distribution should be expressed in terms of these single variable functions.
This reduction of Eq. (4.11) leads to a far simpler equation for numerical evalua-
tion.

From Egs. (3.13), (3.23), (3.25) and (3.26) it can be shown that the S(n_,u)

matrix may be written in the form

suhhu) = p'Up () ¥(u' Dy (on') s (4.13)

~r

where the double index notation is agein used to denote summation. Recall also
that the eigenvector, ¢(v,-u'), v >0, p' > 0, in view of Egs. (2.6) and (2.9),

can be expressed as
O(vy-p') = E(v,-u'zg a(v), v>0, pu'>0 . (L.1L)
If the diagonal matrix\yk(v,u,uo) is defined as
M (vou,nt) = (e )E(v,-n') (4.15)

then the integrand of (k4.11) is

F ey, = W WG TN (vt )e alv) (1.16)

20



This expression can be considerably simplified by considering the explicit
form of M (v,u,un'). Substitution of F and Dy from Egs. (2.7) and (3.23) yields

(in component form)

T - — V o . °
[Mk(V:H;M )]iJ (Giv+ui)(giu+okuv) 613 (14 17)
The identity
1 11 Ok 1
(Oi“+0k“y)(0i"'+“¥> = 01 Ov-p 1Mt - UiV"‘H' (4.18)
may be written as
s - L2 £ . L _2__1 (1.19)
(o;nton’) (ogvin’) a3 O V=R ojutopu’ 03 OpV-p ogvtp! ’
This result transforms Eq. (L.17) to
M ( ") = (= i{‘—-—'—-—rl 5 =1 5 ; (4.20)
[“‘k VoM Jl,] - o’kvmu o5 giu-i-o'ku ij = 04 O'iV"'p. ijr >’ :
and since
b _ 1 W
butdp' 4 [% - b 5u+au:} ’ (h.21)
Eq. (4.20) yields
"M, (vyu,ut)] - = o 8. - ulDy(pont)] (L.22)
w (M (vopn )]y G vk \oivTH 943 L ST ’

Substitution of this result into (4.16) and use of (L4.1L) gives for the

emergent distribution
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v, (0,-n) = o(v,u) - Y () [ an'v(ut)elv,-u')
Puv 1 ' ' '
pCAE Un(w)C [an'V(u' )Dqlusu')C alv) . (4.23)

This last term may be further simplified by considering the nonlinear integral

equation for the U-function. The transpose of Eq. (3.26) is

!
Up) = E+ g, (n)C fo ap' Yk )0, (k') (L.2L)

or solely in terms of Uyp(uw)

Uelw) = By + (g [T an'V(u )Dlum') (1.25)

nere [B],. = b, .05, .
vhere (Bl 13 ik

Hence the emergent distribution is

2v,p) - g%;ﬁiln(u)g, Ll du'V(p')elv,-p')

I

l{{v(o)-u)

Py
+ OT]V“H (En(“)'ﬁn)g M(V> o

However, from Eq. (2.6)

=
fo
N
<
St
+
Q2
—~
<

wn(v) . (L.27)

V— “ N~

,?;,(V)H) = ik
M

Combining the last term in (L4.26) with $(v,u) the emergent distribution simplifies

to
¥, (0,-0) = Glv,un(v) + %mgn(u)g [}1_ fol du'w(u')ﬁ(v,-u'ké] a(v).
(L.28)

Finally writing this equation completely in terms of the matrix gju), the
emergent distribution of the generalized Milne problem is given by the very simple

equation oo



¥,(0,-0) = Glv,u)p(v) + BE(v,u)U(w)nlv), v >0, u>0, (k.29)

where the constant vector~g§v) is
N l 1 '
alv) = 9{, - fo du' V(p )ﬁ(v,-u’)g} a(v). (4.30)

(b) Half-Space Green's Function

As a final example of the use of the generalized {-function technique, the
half-space Green's function problem will be solved. The half-space Green's
function, with the source neutrons belonging solely o the ith energy group,

éi(xo,uogx,u), is defined by the equaticn
(b 25+ Do (e som) = du'gs (xu sx,0') + 8- )d(x-x_)
M 3x & A%i oMo XM ' S AT Ao R CAH=H X=X184>

x, >0 (L.31)

with the boundary conditions

(i> §i(XO)HO§O)H> =0, u>0 , (LL052:7
(ii> i},g \%:"L(XO;HOQX;H) = 0 & (%55)

The first step towards obtaining the solution, is to determine the emergent
distribution, gi(xo,uQ;O,-u), w > 0. Consider the Green's function to be com-
W

posed of two parts:

o0

,g,i(xo’“o;x’“) = A%i(XOJUO;X;H)'F‘}ya(x:U); XO>O ’ (1“51*)

where gﬁ(xc,uogx,u) is the kncwn infinite medium Green's function,[ij The albedc
W
prcblem solution wa(xgu), satisfies the homogenecus itransport equation with the
w

boundary conditions
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W

(1) ¥ (0,n) = -gf(xq,u0501), >0,
(11) HB v, (xu) = o . (4.35)

Clearly éﬁ(xo,uogx,u) defined by Eq. (L.34) satisfies Eq. (4.31) and has the
required boundary conditicons.

The emergent distribution of the albedo solution, Xa(o,-u), can be expressed
in terms of its incident distribution from Eq. (3.7). Hence from Eq. (L4.3L) the

emergent distribution.gi(xo,uogo,_u) is

| L1 :
81 (Kosbo30,mn) = g (xong30,m0) - § [0 du'Sutu)ef (xo5m030,u') (4.36)

V. COMPLETE SOLUTIONS TO THE HALF-SPACE PROBLEMS
Once the emergent distribuftions of half-space problems are known, the use
of full-range completeness and orthogonality of the eigenvectors readily yield
the coefficients of an eigenfunction expansion of the flux inside the medium.
In the following the complete solution to the half-space albedo, Milne and Green's

function problems will be obiaired.

(a) Albedo Problem:

First, we seek the complete solution for the ith albedo problem in the fomm

M / M
. N =X /Y X s
Xﬁ(o,uo;x,u) = szi a(vos)gjvos,u)e /Vos 4 szi (-vos>2i-vos;u>e /Vos
N n, N
s 0T T A0, u)e Y AR (o) (v )X/ Y
J::l m_—:J MJ
M. 1
J‘
ue(-1,1) (5.1)
where

2k



I =
T]j = j and‘ T]O = O °

In view of the full-range completeness of the eigenvectors\ﬁjiv,u), ve(0,1),
vV = vV, We can now determine the expansion coefficients in Eg. (5.1) so that the
above equation with x = 0, equals the known surface distribution.

The expansion coefficients otv ) and‘A?(iv) are readily obtained by apply-
ing full-range orthogonality relations (Egs. (2.19) and (2.20)) and Egqs. (3.1)

and (3.32)., Explicitly

Mo st , 1 . t
a(tvgg) = ——S,"L(‘Ivcs,uo),@i;ﬁjgfo I T (tvogr-m)Slug e (5.2)
and
A p—R b 11 au A (v, -0)8(ugsm)e, v > 0. (5.3)
i) = —mmj vop ey ? N?(_v> o kg VRV TRIRARORIZS Y o (5:3

In Appendix A it is shown that thelgjuo,p) functicn satisfies certain relation-
ships with the eigenvectors. From Egs. (A-5) and (3-40) it is seen at once that

a(-v_..) and A?(—v), v > 0, are identically zeroc. Thus we see that the boundary

os
condition at infinity, Eq. (3.6), is satisfied. Therefore, the expansion Eg.
(5.1) with of-v ) and A?(mv) set equal to zero represents the complete solu-
tion of the problem. This in turn implies also the half-range completeness of
\

the eigenvectors $f{v,u), ve(0,1), v = Vos®

(b) Milne Problem
Since half-space albedc problem can always be expanded in terms of only the
decaying eigenfunctions, Eq. (L4.3) shows that the solution for the generalized

Milne problem can be written as
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M

-X/V
l{,v(x’“) = '&(“V:H)GX/V + sél Oé(vo.s;)ﬁ-(vos’p)e / o8
L N .
+ L [ av{ L A%y )¢m(v ) e'x/" . (5.4)
J=1 1 m=j *J

Setting x = 0 in this equation and using Egs. (4.1) and (4.29) one finds from the

full-range orthogonality relations that

1 1. o
aves) = - 1w fo dupd (vogsk) ¥, (0,-u)
1 .1 o~k N
= -5 [l (vogom) (Glveu)i(v) + BE(v,u)U(w)h(v))  (5.5)

and

,é?(V') = - f duwm(v i) (G(vsulv) + PR(v,u)U(p)hlv)) « (5.6)

Often the Milne problem of most interest is the one related to the largest
discrete eigenvalue, Ve The agymptotic behavior of this particular problem
for large x is

as \

j{‘g (X)U) = M“VlyU)eX/Vz + OC(VIE)Q.(V{;H)G-X/VE . (5"7)

A quantity of interest for this problem is the extrapolated end point, Xy

defined such that

Xo/ v

o) = [P awilon) = ge ol ay)e™o e o B0

AS

Solving for X, and substituting for a(v1> from Eq. (5.5), the extrapolated end

point is

1 .1 N
X = -7 {7 [ d»uuf(vl,u)}hlfv(owu) ’ (5.9)
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or in terms of the U(u) matrix

1
X, = =73 (i [+ duu,@j(‘vf)gf(vﬂ,u)U(u)h(vz) . (5.10)

(c) Green's Function
From Eq. (4.3L4) we see that the complete solution of the ith half-space

Green's function can be written as

. M X[V
§i(XO;HOSX;u) = ﬁi(XOJUO;X;U) + S;l a(VOS)ﬁ(VOS’“)e
o, ; m -x/v ,
+ Z fJ avq X Ao(V)(bm(V:U-) € s (5°ll)
=1 n. 1 =3 J 7
J_z

Using full-range orthogonality relations and Eqs. (L.36) the expansion coefficients

are reédily found to be

1 1 T 00 1 .1 0 \
veg) = - T, fo dup? (vogsh) {ﬁi(\xo,uo;om) =T A s n)Gs (x0,k0350,0")
(5.12)
and
1 1 1 .1 , , 00 ,
A?(V) * TR fo dwﬁgm(v,u) {g‘;j(xo,uosom) -§ ) aw S(u ,u)ﬁi(xo,uosoyu'ﬂ ‘
3 (5.13)
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APPENDIX A

As previously mentioned, Eqs. (3.15) and (%.17) are the multigroup generaliza-
tion of Chandrasekhar's one-speed H-function nonlinear integral equation. Since

[16]-[18]

this one-speed equation does not have a unique solution, one suspects
that the nonlinear integral equation for'ﬁjpo,u) and therefore also for the equa-
tions for J(u) and V(p) are not uniquely soluble. Prcceeding as in the one-

(18] - . A el 1191 L.
speed case or in the case of the degenerate kernel approximation it can

indeed be shown, that for each discrete root, v.gq, Eq. (3.11) admits a "non-

physical” solution denoted by,§os(“o:“)° It is equal to

20 M
@] ~ \
S o(pm,u) = 8(p ,u) + Yo (0,-p)V  T(0,- Al
Los ‘Mo wv( o’ VosB2(Vos> Mvos( p) w'vos< ) MO) ( )
where
Bv_ ) = [Fau P (0,-u) ¢ fl du ¥ (0,-u) (A.2)
os o Vo RN Vs ’ )

It is possible, however, to give a set of conditions which must be satisfied
by the physical solutions\ﬁ(u@,u) or U(u) and\yju)o The eigenfunctions ﬁjv,u)e"x/v,
Re{v} > 0, are solutions to the transport equation; and since they tend to zero
for large x, they are sclutions to half-space albedo problems with incident

distributions given by ¢(v,u), u > 0. Thus from Egs. (3.7) and (3.12), the S(u_,u)
ve 0

function must satisfy

}_J

$vymu) = 7 fol dut glu'm)evou'), w >0, Re{v} >0 . (A.3)
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Integrating this condition over u from O to 1 and using Egs. (3.15) and (2.17),

ve obtain

[law s = a0) = [Maye) s (8.4)

- . . t -
Similarly by cons1der1ng‘3_(v,p)e X/V, Re{v} > 0, as albedo problem solutions
»f the transport equation for a transposed transfer matrix jf from Eqs. (A.3)

ind (2.17) one has the conditions on the‘ﬁj(uo,u) matrix
i 11 t t
LCvou) = T auw g(u,u)e(-v,-u') , Re(v) >0 .  (A.5)

\gain integrating over u from O to 1 and using Eqs. (3.40), (3.1k4) and (2.17),

ig. (A.5) yields

1 ~

ﬁ du 8l (-v,u) = & (v) = [T au E{(u)f(-v,-u) , Refv}> 0 . (A.6)

O

Egs. (A.4) and (A.6) for the discrete roots v =1 ~M are 2M conditions

os? S
which the physical U(p) and Y(u) functions must satisfy. In one-speed case

these equations becomes identical, and it has been proved that they are a suf-
ficient condition to uniquely specify the real physical H-function given by the

[9],[18]

nonlinear integral equation (3-17). Also for the degenerate kernel
approximation, Pahcr, using a corresponding set of discrete eigenfunction condi-
tions, proved that these conditions were sufficient for uniquely specifying his

[10] Although it has not been possible to show that the

generalizedé‘-function°
discrete root conditions for the general multigroup case are a set of sufficient

conditions, it is felt that they are a severe restriction on the possible solu-~
)

tions of Egs. (3.17) and (3.19), and in all likelihccd +hey are sufficient.
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Therefore, in iterating Eqs. (3.17) and (3.18), the conditions Egs. (A.4) and
(A.6) must be used as a check. At the same time, an estimate of the accuracy of

the iterations can be cbtained from these conditions.
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APPENDIX B

NUMBERICAL EXAMPLE

As an illustrative example, the emergent distribution for a 6-group half-
space Milne problem was calculated.* A 2% enriched uranium medium was chosen
and the cross sections were calculated from 6-group tables developed by Hansen

2 2
[20],[21] Table I lists the problem parameters. For these

for fast assemblies.
cross sections, the largest (or dominant) eigenvalue (calculated from Eq. (2.13))
was found to be 12,379 cm. The U and V matrices were calculated from Egs. (3.%0)
and (3.31) and then the emergent distribution for the largest eigenvalue was found
from Eq. (4.29). The results are shown on Figure 1. Finally from Eg. (5.40)

the extrapolated endpoint for this particular problem was calculated to be

2.218 cm.

¥Information on the numerical techniques, computer programs and other examples
can be found in Ref. [12].
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FIGURE CAPTION

Figure 1. Normalized emergent Milne distribution.
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