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A measure of deviation from equilibrium of an ensemble of 
particles is proposed, which is physically appropriate and of 
especially simple form when expressed in terms of the expansion 
coefficients of the ensemble distribution function with respect to 
the system of orthogonal polynomials obtained by using the 
equilibrium distribution function as weight function. The linear 
Boltzmann operator can then be expanded in a series of terms 
which, under certain circumstances, may be regarded as of 
successively diminishing magnitude in their effect on the rate of 
approach to equilibrium. This expansion of the operator is 
different from the expansion due to Kramers (later discussed by 
Moyal) in derivate moments, commonly used in approximate 
stochastic treatments of irreversible processes. With the aid of a 

I. INTRODUCTION AND BASIC THEOREMS 

1. Introduction 

T HE central theoretical tools in the study of 
time-varying thermal fluctuations have long been 

the Fokker-Planck equation and its alter ego the 
Langevin equation. l The use of these powerful mathe­
matical devices has conferred on the subject a consider­
able degree of logical cohesion, but they limit its scope 
to phenomena obeying a linear friction, or dissipation, 
law (the terminology is defined in footnote 1). From 
the point of view of experiment this limitation is of no 
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1 The Fokker-Planck equation for the temporal evolution of 

the probability density function P (~,t) of a scalar variable I; reads 

ap(~,t) a b [j2 

--=-a~P(I;,t)+- -P(I;,t). 
ilt ill; 2[j~ 

Here a~ is (if the equation is applicable) minus the ensemble 
average rate of change of ~ due to "friction" or dissipative effects 
in general; i.e., (~>= -ai;. For a particle undergoing Brownian 
motion, <~) is literally due to friction, being attributable to 
viscosity; more generally, i; may be any thermodynamic observ­
able in its range of linear dissipation, according to the theories 
referred to in footnotes 2 and 3, The constant b is (again, if the 
equation is applicable) a measure of the amplitUde of thermal 
fluctuations, or "noise." 

In the mathematically equivalent Langevin formalism, Ht) is 
a random function of time satisfying the Langevin equation 

Ha~= (b)lE(t), 

where E(t) is the "ideal random function" normalized so that 

theorem on definite operators, it is possible to break off the series 
at any point and thereby obtain a correspondingly accurate 
approximation to the linear Boltzmann operator, whose temporal 
solutions tend to the correct equilibrium distribution function. 
The first approximation is the Fokker-Planck operator, exactly. 
The next approximation would be the appropriate operator to use 
when the stochastic variable begins to deviate appreciably from 
a linear dissipation law, etc. The method is applied to the "Ray­
leigh process" (ensemble of particles in a rarefied gas medium, 
the medium itself being in internal equilibrium), and the second 
approximation to the linear Boltzmann operator for this. cas~ is 
explicitly derived. A possible form for the second approximation 
in more general processes, suggested by this, is also given. 

consequence at present, because there are as yet no 
temporal observations outside the linear friction range. 
But from the point of view of theory, the extension of 
our understanding to the nonlinear range appears 
desirable, because the dominating purpose of theory in 
this field is to bridge the gap between the fundamental 
theoretical postulates of kinetic theory and the phe­
nomenological formalism, namely, thermodynamics 
(sensu antonym of thermostatics). The Fokker-Planck­
Langevin formalism does make contact with thermo­
dynamics2.3 on the one side of this gap. But the 
fundamental theory is certainly nonlinear, hence 
"nonlinearization" of the Fokker-Planck-Langevin for­
malism is necessary to further the linkage. 

A number of papers and reports on this subject have 
appeared in recent years.4-9 Some of these make more 
or less tentative assumptions regarding the fundamental 
statistical equations governing the nonlinear systems, 
and go on to obtain solutions of these equations. Others 
emphasize only the problem of deriving and justifying 
the fundamental statistical equations. The present 
paper is addressed to this latter problem. 

The thinking that underlies the present work is as 
follows: The Fokker-Planck equation may be rigorously 
derived in the case of the random walk in velocity 
space.IO The random walk, as a random impact process, 
may be regarded as a simplified version of the Rayleigh 
process.l1 The Rayleigh process, which is defined and 

2 N. Hashitsume, Progr. Theoret. Phys. (Kyoto) 8, 461 (1952). 
a L. Onsager and S. Machlup, Phys. Rev. 91, 1505 (1953). 
4 D. K. C. MacDonald, Phys. Rev. 108, 541 (1957). 
6 N. G. van Kampen, Phys. Rev. 110, 319 (1958). 
S R. O. Davies, Physica 24, 1055 (1958). 
1 C. T. J. Alkemade, Physica 24, 1029 (1958). 
8 M. Lax, Revs. Modem Phys. 32, 25 (1960). 
9 N. G. van Kampen (unpublished report, 1959). 
10 See S. Chandrasekhar or M. C. Wang and G. E. Uhlenbeck, 

;(t) will then be found to have a probability density satisfying the cited in footnote 1. 
Fokker-Planck equation as just given. 11 Lord Rayleigh, Scientific Papers (Cambridge University Press 

Introductory treatments of these matters will be found in the New York, 19(2), Vol. ~, p: 273; discussed by.C. S. Wang Chang 
well-known review articles by S. Chandrasekhar [Revs. Modem and G. E. Uhlenbeck, K1netu; Theory oj a Gas 1n Alternating Out­
Phys. 15, 1 (1943)] and by M. C. Wang and G. E. Uhlenbeck side Force Fields, Engineering Research Institute Report 2457-3-T 
[Revs. Modern Phys. 17, 323 (1945)]. (University of Michigan, Ann Arbor, Michigan, 1956). 
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discussed in Sec. II and Appendix A of this paper, is a 
process which is itself simple enough for easy, explicit 
mathematical description, yet real enough to embody 
some basic features of thermal fluctuation phenomena. 
In the simplified version referred to in the foregoing, 
the friction dependence is linear, but in the exact 
formulation it is definitely nonlinear. Thus it might be 
possible to derive from it a counterpart, if not the 
counterpart, of the Fokker-Planck equation for the 
nonlinear friction region. 

The probability density of the random variable in a 
Rayleigh process obeys a linear Boltzmann equation, 
the operator of which contains an explicit expansion 
parameter. When the operator is appropriately ex­
panded in terms of this parameter (this is done in 
Sec. II, where it is shown that this expansion is different 
from the customarily employed Kramers or Moyal 
expansion), the condition that the probability density 
tends to the known equilibrium form can be applied to 
the problem' of approximating this series. The first 
approximation is, as it must be, the Fokker-Planck 
equation. The second approximation is a sixth-order 
differential operator of precisely defined form con­
taining two independent physical parameters (in addi­
tion to that of the first approximation), and an arbitrary 
parameter which does not affect any experimentally 
measurable results. The method is, moreover, a general 
one and yields approximations of arbitrary order. Thus 
there is a regular sequence of approximations linking 
the Fokker-Planck and linear Boltzmann equations. 

The paper is organized as follows: Since the result 
may have validity for processes other than the Rayleigh 
process, the subsections of Sec. I which follow this intro­
ductory section discuss the general case of a linear 
Boltzmann-operator expansion having the necessary 
properties, and state and prove the theorems for the 
construction of satisfactory approximations from this 
expansion. In Sec. II the Rayleigh process is de­
scribed, certain necessary expressions are derived 
from it, and the general theorem is applied. In Sec. 
III certain generalizations suggested by the Ray­
leigh process analysis are discussed. The equation 
generalizing the Fokker-Planck equation to cubic 
friction is then given for a hypothetical process which 
is mathematically similar to the Rayleigh process but 
which does not possess an explicit expansion parameter, 
or for which the parameter is unknown. 

2. Precis of Method for Construction of 
Successive Approximations to the 

Linear Boltzmann Operator 

Consider the linear Boltzmann equation for an 
ensemble of particles moving in one dimension. Assume 
no force field and that the particles have already 
attained a sp~tially uniform density. Th~ distrib~tion 
function will then depend only on VelOCIty and tIme: 
We write P(V,t) for the probability density of velocity 

V, normalized to unity, as a function of time. The 
linear Boltzmann equation will then be 

ap/at=BP, (1) 

where B is a linear integral. operator. The function BP 
is given, more explicitly, in terms of a kernel B(V, V') as 

f B(V,V')P(V')dV'. (2) 

The eigenvalues of B must all be negative, except 
for a nondegenerate zero eigenvalue which has the 
Maxwell-Boltzmann distribution function 

(VR=root-mean-square value of V in the 
equilibrium distribution) (4) 

as its eigenfunction. This "equilibrium requirement" 
ensures that an arbitrary initial distribution will always 
decay into the Maxwell-Boltzmann distribution. It 
may be equivalently formulated by saying that B must 
be negative semidefinite, in the sense that 

I'" Y(V)B(V,V')Y(V')F(Vf)dVdV/~O (5) 
-00 

for any polynomial Y (V), with the equality sign holding 
only for Y = constant. 

In the following discussion we take B to be in a 
Hermitian matrix representation. The vector corre­
sponding to F(V) is then the (unique) eigenvector of B 
for eigenvalue zero. The negative semidefiniteness 
requirement will take the form 

(6) 
r •• 

for all normalizable vectors (Urn), with the equality 
holding when (um) corresponds to F(V). (Details of 
such a representation will be given in Sec. 1.3.) 

Suppose B to depend on some parameter X with 
respect to which it may be expanded in a convergent 
series: 

'" B=c(X) L: Xmb m, (7) 
m=O 

where c(X) is a positive c-number function of X and bm 

is a matrix independent of X. The existence of such an 
expansion suggests the possibility of approximating B, 
for small values of X, by terminating the series at some 
finite value of m. In so doing, however, it will be 
important to retain the negative semidefiniteness 
property in the approximate operator: Lack of this 
property will imply the existence of at least one eigen­
vector of B which grows, instead of decaying, expo-
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nentially with time j if present in the initial distribution, 
in however small an admixture, this mode or modes 
will grow in amplitude indefinitely large with time, 
hence the Maxwell-Boltzmann distribution will never 
be reached. 

It is not possible to prove from the negative semi­
definiteness of B that an operator obtained by termi­
nating the series (7) is negative semidefinite. In fact, 
we shall find that the model to be discussed below 
furnishes a counterexample to such a supposition. 
However, it may be possible to retain the negative 
semidefiniteness property by a simple construction. This 
is based on the following factorization theoreml2 : A 
positive semidefinite Hermitian matrix can always be 
written as the product of some (suitably chosen) matrix Q 
and its adjoint Qt. Let us put, for the sum in Eq. (7), 

(8) 

Then, avplying this theorem to S, which is negative 
semidefinite like B, 

(9) 

[N.B.: Q is determined only to within a unitary 
postmultiplej if U is unitary, QU(QU)t=QU·U-IQt 
= QQt. J Suppose now that Q also can be expanded in 
terms of A: 

(10) 

For the operator obtained by taking the first mo terms 
of Q, write 

Then 

rno 
Q(mo) = L: Alql. 

1-0 
(11) 

(12) 

where O(Amo) is an operator of order higher than 
AmOj i.e., S may be approximated to order Amo by 
_Q(mo)Q(mo)t, a form analogous to the exact factor­
ization QQt. 

We now assert that _Q(mo)Q(mo)t is a negative 
semidefinite matrix. That it is at least negative definite 
follows from it! very form, since for any vector U, 
u·Q(mo)Q(mo)tu= (Q(mo)tu)· (Q(mo)tu)~O. This being so, 
it will moreover be negative semidefinite in the sense 
desired if F [Eq. (3)J is an eigenvector, with eigenvalue 
zero. This can be shown to be true, as follows: Qt F = 0 
since by hypothesis [remark following Eq. (5)J 
(F,QQtF) = (QtF,QtF) =0. But if Qt annihilates F, and 
if the series of Eq. (10) represents Q over some nonzero 
range of A, then the individual q/ must also annihilate 

12 F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, 1938), p. 20. 

Fj since, putting q/F=F1, we must have E >"IF1=O 
over this range of X, which means that the individual 
Fl must vanish j whence Q(mo)t annihilates F, and F is 
an eigenvector of Q(mo)Q(mo)t for eigenvalue zero, q.e.d. 

We use a subscript mo to denote a negative semi­
definite approximation to S of order X mo as constructed 
in the foregoing, i.e., 

(13) 

It should be noted that Smo could, unlike S, be de­
generate with respect to the zero eigenvalue, so far as 
the present proof goes. If this should happen, it would 
of course be quite unsuitable, since the time-asymptotic 
distribution, in contradiction to the H theorem, would 
not be uniquely the Maxwell-Boltzmann distribution, 
but would depend on the initial distribution. Until 
more is known, the success of the method sketched 
above in yielding an approximation suitable in this 
respect cannot be guaranteed in advance j individual 
cases to which it is applied will have to be inspected 
after the event for satisfaction of this criterion. 

Construction of Q(mo) 

If we substitute the series expressions for Q and for 
S into Eq. (9), and equate coefficients of like powers 
of X, we obtain an infinite set of equations 

m 

- t L: (qjqm-/+qm-jq/)=bmj m=O, 1,2, .... (14) 
i-O 

The first mo+ 1 equations of this set involve only the 
first (mo+ 1)q's, qo, ql· .. qmo. Suppose we have a solution 
to these first mo+ 1 equations, say qo', qt', ... qmo' j 
primes are used to allow for the possibility that these 
may not agree with the first mo terms of Q itself (i.e., 
of the solution to the infinite set of equations), even 
after allowing for the possibility of an arbitrary common 
unitary postmultiple. From these we can construct an 
operator 

where 

Bmo'= _Q'(mo)Q'(mo)t, 

mo 
Q'(mo)=L: Xlq/. 

1-0 

(15) 

(16) 

Bmo', like Smo, agrees with B to order xmo. In this way, 
if Eqs. (14) can be solved for m=O, 1, 2· . ·mo, we have 
successive approximations up to moth order in X to S. 

3. ~stimation of the Degree of Deviation 
from Equilibrium 

The essential nature of B is to drive its operand 
P(V,t) toward the equilibrium function F(V). Thus 
when it is expanded, the increasing smallness of its 
successive terms should be with respect to their effec­
tiveness in this sense. With this in mind, we adopt the 
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following as a measure of the degree of deviation of 
P(V,t) from the equilibrium distribution F(V): 

f

[P(V,t)-F(V)]2 
X02= dV. 

F(V) 
(17) 

It will be noted that this is the same, to within a 
constant factor, as Pearson's noted X2 of statistical 
theory,13 with F(V) the hypothetical and P(V,/) the 
sampling distribution, and with an infinitely fine 
subdivision of the range of V. However, since there are 
a number of possible measures of "goodness of fit" of a 
distribution, mere coincidence with one of these which 
happens to be famous is not sufficient reason for its 
adoption; it is necessary to demonstrate the suitability 
of the choice (17). Our reasons for adopting it are the 
following: 

(1) It emphasizes deviations from equilibrium ac­
cording to the magnitude of the V values involved: 
Since F(V) will be essentially localized in the region of 
equilibrium values of V, it is increasingly small for 
increasingly large deviations of V from its equilibrium 
range, and with F(V) in the denominator of the inte­
grand of xo2 these large deviations are increasingly 
heavily weighted. This is appropriate in a study of the 
approach to equilibrium, because a given amount of 
probability added to or taken away from the equilibrium 
distribution curve in the neighborhood of some V value 
becomes increasingly important in its effects with 
increasing deviation from the rms value of V. 

(2) It is precisely adapted to formulation in terms 
of a matrix representation, and therefore to the utili­
zation of the theorem of Sec. I.2: given a set of poly­
nomials P.(V) orthogonalized with respect to F(V) as 
weight function (in particular, the Hermite poly­
nomials), 

f Pr(V)p.(V)F(V)dV = (N./ No)or., (18) 

where N. is a normalization constant. Expand P(V,t) 
in terms of normalized functions (No/Nr)lp.(V)F(V): 

.. 
P(V,t) = No! L ar(/)N.-lPr(V)F(V). (19) 

r=O 

Then 

X02=Nof [L' ar(t)Nr-1P.(V)]2F(V)dV=L' ar2, (20) 

where the prime on the summation sign denotes 
omission of the term r=O. Noting that the aT are the 
components of the Hilbert-space vector P(V,/), we see 

13 See, e.g., H. Cramer, Mathematical Methods of Statistics 
(Princeton University Press, Princeton, New Jersey, 1945), 
Chap. 30. 

that X02 is now represented by the squared length of 
the part of P(V,/) orthogonal to the equilibrium 
function. Thus, when B is put into a matrix represen­
tation having the above as basis functions, its tendency 
to promote equilibrium will be measured in the simplest 
possible way-by its effect on the components of its 
vector operand. 

We are now in a position to relate the approach to 
equilibrium to the series expansion of B. The matrix 
elements of Bare 

B r•= No (NrNs)-lf f Pr(V)B(V,V')p.(V')dVdV'. (21) 

[Because of the detailed balancing condition, 
B(V,V')F(V')=B(V',V)F(V), these are Hermitian.] 
If Eq. (1) is taken in matrix form, and B expanded 
according to Eq. (7), we find for the rate of decrease 
of X02, 

dX02 00 

-= 2c(X) L X m L' ar(bm) .. a.. (22) 
dt m=O r,_ 

ThusifX«1, the successive matrices bm(m=O, 1, 2,,") 
make rapidly decreasing contributions to the trend to 
equilibrium, at least if the sums which are the coeffi­
cients of the X m do not increase markedly with m. Thus 
we have achieved the interpretation of the expansion (7) 
which was sought at the beginning of this section. 

4. Summary of Method 

Successive approximations to the Boltzmann operator 
with respect to its tendency to promote equilibrium may 
be constructed then along the following lines: (1) B 
must be put into a matrix representation, using as basis 
the orthogonal [with respect to F(V) as weighting 
function] functions Pr(V); (2) the matrix B is then 
expanded (if possible) in terms of a small parameter Xj 
(3) the procedure of Sec. I.2 is then used to obtain a 
negative semidefinite approximation of the desired order 
in X; (4) the coefficients of successive powers of X in the 
expansion of dX02/dt must not increase too rapidly. 

We do not discuss requirement (4) in the present 
paper, but merely apply the method outlined assuming 
it to be satisfied. We shall show that the zeroth approxi­
mation thus obtained is exactly the Fokker-Planck 
equation, which is evidence that this procedure is 
justified. Before leaving this subject, however, it might 
be mentioned that from the general behavior of the 
successive matrices bm in the special case to be studied 
in Sec. II of this paper, it appears [see Eq. (76)] that 
they satisfy requirement (4) to the extent that P(V,t) 
approximates to the equilibrium function; whence 
higher terms of the expansion become important, de­
spite the decreasing values of X m, with highly disequi­
librated ensembles. 
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5. Considerations Related to the H Theorem 

Brinkmanl4 has suggested the application, in the 
study of the linear Boltzmann process, of the criterion 

F~O, (23) 
where 

F=U-TS, (24) 

U and S being the internal energy and entropy of the 
set of particles whose distribution function obeys the 
postulated linear Boltzmann equation, and T the tem­
perature of the medium whose molecules generate the 
random motion of the particles. Since Brinkman did 
not consider the linear Boltzmann equation as such, it 
is of interest to see how his criterion fits into the present 
work. 

First, to settle on a simple nomenclature, let us agree 
henceforth to restrict the term "particle" to the indi­
viduals whose random motion is being studied, and the 
term "molecule" to the constituent individuals of the 
medium. Assume both particles and molecules to be 
uniformly distributed in space. If f(v,t) is the distribu­
tion function of molecules with respect to their velocity 
variate V, and P(V,t) that of particles with respect to 
their velocity variate V, then the H function per unit 
volume of the combined systems is 

H(t)= f f(v,t) logf(v,t)dv+ f P(V,t) 10gP(V,t)dV. (25) 

The application of the Slosszahlansatz to collisions of all 
kinds will lead to the usual nonlinear coupled Boltz­
mann equations for the two distributions, and thereby 
to the H theorem: 

H= f jlogfdv+ f p 10gPdV~0. (26) 

Now let us specialize to the conditions under which 
the linear Boltzmann equation holds for the particles­
to the "linear Boltzmann regime," as we shall call it. 
f(v,t) is then negligibly different from the equilibrium 
Maxwell-Boltzmann distribution. This does not mean 
that j is necessarily to be neglected, but merely that 
its effect relative to f is. As for j, it has a contribution 
due to collisions of molecules with one another, and one 
due to collisions with the particles. Under the linear 
Boltzmann regime, the former can be made arbitrarily 
small independently of the latter-for example, by 
making the medium sufficiently rarefied while compen­
sating for this by increasing the size of the particles; 
thus we assume it to be negligible. 

For the second term in (26) we shall have 

f P 10gPdV= -S/k. (27) 

14 H. C. Brinkman, Physica 23, 82 (1957). 

As for the first term, the f contribution due to collisions 
between molecules and particles cannot be neglected, 
unlike the other contribution, since these are the colli­
sions responsible for the process itself. But since the 
molecules are in equilibrium, 

logf= -!mv/kT+const, 
and 

f 
. U(medium) U 
flogfdv=- . +-. 

kT kT 

We will thus have from (26), with H= -S/k, 

F~O, 

(28) 

(29) 

(30) 

showing that Brinkman's criterion is necessarily satisfied 
under the linear Boltzmann regime, i.e., F will decrease 
when P(V,t) satisfies the linear Boltzmann equation. 

We shall return to this matter at the end of Sec. II.S. 

II. APPLICATION TO THE RAYLEIGH MODEL 

1. Linear Boltzmann Operator for 
the Rayleigh Model 

As an illustration of the method described above, we 
apply it to a simplified case which is still interesting 
from the kinetic theory point of view j that of the ran­
dom velocity of a particle suspended in a rarefied gas in 
internal equilibrium. In order to simplify the mathe­
matical analysis, we introduce certain artifices which 
are more or less familiar in this classical problem. We 
study the random motion of particles (as defined in 
Sec. 1.5) of mass M. Their random motion results from 
collisions with the molecules of the rarefied gas, of mass 
m. The molecules have uniform spatial density p and a 
Maxwell-Boltzmann distribution with respect to the 
molecular velocity v, 

(271'VR2)-J exp(- ~), (31) 
2VR2 

where 

vR2=rms value of any component of v=kT/m. (32) 

The mass ratio m/ M will at a later stage be assumed 
less than one, but not necessarily very small. We assume 
the gas sufficiently rarefied, and the particle concentra­
tion low enough, for the initial Maxwell-Boltzmann 
distribution of the gas molecules not to change appreci­
ably in time, no matter what the initial velocity dis­
tribution of the particles. The particle concentration is 
also to be so low that collisions of particles with· one 
another occur with negligible frequency, i.e., the random 
velocity changes of the particles are entirely caused by 
collisions with the molecules. 

For further simplicity we take the particles to be 
infinitely thin disks, each constrained to move only in a 
direction perpendicular to its plane. This constraint, 
while artificial, is of a purely passive nature and does 
not dynamically affect the spontaneous statistical fluc-
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tuations responsible for the random process studied; in 
particular, we shall obtain in lowest approximation 
exactly the classical Browian motion. 

With the foregoing constraint, the distributed vari­
able of the disk distribution is the velocity component 
along the line of the allowed motion, which we may call 
V. However, we shall use instead of V the dimensionless 

(33) 

[V R is defined in Eq. (4); here V R= (kT/M)i]. 
The linear Boltzmann equation of the foregoing 

process, which is obeyed by P(y,t), the probability 
density function in y, is 

ap(y',t) f 
at B(y',y")P(y",t)dy", (34) 

where the linear Boltzmann operator B(y',y") has the 
form 

B(y',y") =C(y'l y")-o(y'-y") f C(yly')dy. (35) 

It is shown in Appendix A that 

C(y" 1 y') = V RCU/21r)iC ::) 21 y" -y' I 

xexp{ - L [(1 +Il)y" - (1-Il)y']2}. (36) 

C(y" I y') is the transition probability density-in-y" for 
a particle having initial velocity y'. 

2. Expansion in Kramers Series 

The operator B can be expanded in Kramers series16-19 

B= i: ~(- ~)7Oan(Y')' 
70-1 n! ay' 

in terms of the "derivate moments" an 
terminology) 

an (y') = foo (y" - y') nC (y" I y')dy". 
-00 

(37) 

(Moyal's18 

(38) 

(B is now an infinite-order differential operator, not an 
integral ope~ator.) 

Some simplification results if an(y') is replaced by 
the function 

1 (1+,u)" A,,(y')=-- - a,,(y') 
V Rllin! fJ 

(39) 

Ii H. A. Kramers, Physica 7, 284 (1940). 
18 S. Chandrasekhar, Revs. Modern Phys. 15, 1 (1943). 
17 M. C. Wang and G. E. Uhlenbeck, Revs. Modern Phys. 17, 

323 (1945). 
18 J. E. Moyal, J. Roy. Stat. Soc. (London) BU, 150 (1949). 
19 J. Keilson and J. E. Storer, Quart. Appl. Math. 10, 243 (1952). 

and if in the integral for an(y') the transformation 

l+u 
x=--(y"-y'), y=y' 

2,u 
(40) 

is introduced (x is then the new variable of integration, 
and y the new argument of an). On substituting (36) 
into the integral for an, we then find 

An(Y) =_2_" - f exp[- ~(x+y)2]xnlxldX, 
(21r)ln! 2 

(41) 

and the expansion (37) becomes 

(42) 

3. Discussion of the Kramers Expansion 

The simple appearance of the Kramers expansion is 
somewhat misleading from the point of view of the study 
of the approach to equilibrium, since it is not clear 
whether or how the successive terms represent decreas­
ing contributions to the equilibrium-seeking tendency. 
In fact, we shall find that the expansion of B according 
to the matrix method of Sec. 1.3, and which is adapted 
to the especially simple criterion of deviation from 
equilibrium there introduced, is quite different from the 
Kramers expansion. Thus the Kramers expansion plays 
no fundamental role in this work; however, we shall find 
it useful in deriving actual expressions for matrices. 

The foregoing assertion is foreshadowed by the result 
of the traditional "random walk" analysis of the ve­
locity-space progress of a particle subject to successive 
independent random impacts, which is a valid approxi­
mation in the present kind of system in the limit of 
vanishingly small fJ. But it is certainly not dear how 
one could, at least in any offhand way, apply this 
limiting process to Eq. (42) directly. The "random 
walk" derivation, to be sure, does use the Kramers 
expansion, but it uses limiting approximations for the 
derivate moments from the outset, and does not make 
explicit use of ,u. 

On the other hand, Wang Chang and Uhlenbeckll 

obtained the Fokker-Planck equation directly from the 
linear Boltzmann equation by combining with the as­
sumption of vanishing mass ratio the assumption that 
the velocity variable of the particles never gets much 
larger than the rms value it would have in equilibrium. 
[In our case this would amount to assuming P(y,t) 
negligible for y much larger than fJ.] It can be shown 
that these combined requirements are equivalent to 
taking the first two terms only in the expansion (42), 
and simultaneously approximating A 1 and A 2 by their 
lowest-order terms in y, these being of first and zeroth 
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order, respectively20; and this same result will be seen 
to follow quite simply from our analysis. The work that 
will be presented here extends the procedure of Wang 
Chang and Uhlenbeck in that successive approxima­
tions, rather than a single limiting approximation, can 
be obtained. 

3. Symmetrization of B; Basis Functions of 
the Matrix Representation 

The kernel of Eq. (34) can be symmetrized by the 
transformation 

(
Y'2) ( y"2) B(y',y")=exp "4 B(y',y") exp - 4 ; (43) 

with the accompanying transformation of the distribu­
tion function, 

(
Y/2) 

P(y')=exp "4 P(y'), (44) 

the linear Boltzmann equation (34) is unchanged in 
form: 

aP(y',t) f - -
B (y' ,y")P (y" ,t)dy". 

at 
(45) 

Being symmetric, B is Hermitian with respect to an 
unweighted inner product, thus for any two functions 
cp(y), 1/t(y), we henceforth define 

(1,0,"')= f'" 1,0* (y)'"(y)dy. 
-00 

(46) 

This definition of the inner product is of heuristic con­
venience for the geometrical interpretation, and facili­
tates the use of standard (at least to mathematical 
physicists) definitions of the Hermite functions, which 
we shall use extensively. 

The corresponding transformation of B as a differ­
ential operator [Eq. (42)J is 

Since the equilibrium function of the linear Boltz­
mann operator of the process we are considering is 
(211'Y! exp( -y2j2), we use as the basis for our matrix 
representation, for the reasons given in Sec. 1.3, the 
Hermite polynomials that are orthogonal in the sense 
of Eq. (18) with respect to this as weighting function. 
But with the definition of inner product we are now 
using, Eq. (46), the basis consists rather of the Hermite 

20 As pointed out by H. A. Kramers (footnote 15), the derivate 
moments a. are even or odd functions as n is an even or odd 
number. 

functions 

where (J is the "creation operator" 

(J=exp(:)( - :y) exp( - :). 

These satisfy 

where 
N r = (2'11')tr! 

The Hermite polynomials are 

(48) 

(49) 

(50) 

(51) 

(52) 

They are the counterparts of the polynomials preV) of 
Sec. 1.3. If in that section we take No (which is arbi­
traryat that stage) 

N o= (2'11')1, (53) 

let y correspond directly to V, and put 

F(y)= (2'11')-1 exp( -y2/2), (54) 

then No times formula (18) corresponds exactly to (50). 
The matrix elements of B as defined by (21) now be­

come matrix elements of B with respect to the new 
definition of inner product: 

( 
hr h. ) 

B .. (sense of Sec. 1.3)= -,B­
N,! N.1 

=B .. (sense of this section). (55) 

Henceforth matrix elements are to be understood as de­
fined according to the second of the foregoing equalities. 

For X02, Sec. 1.3, we now have 

4. Matrix Expansion of jj 

B can now be written in terms of creation operators 

00 ( J.' )" B=VRJ.'iL: - (JnAn(y). 
.. =1 1+J.' 

(57) 

We are now ready to derive the matrix expansion of B 
analogous to Eq. (7). The crucial step for this derivation 
is to expand the An in Hermite polynomials 

'" An(Y)= L: AnkHk(y), (58) 
k=O 

where the An" are constant coefficients. It is just this 
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device that will be seen to make possible a simple ex­
pansion of the matrix of B. 

It is shown in Appendix B that the expansion co­
efficients A "k have the form 

( 
"" ) (k-n-2)/2 

Ank= (1 +",,)-t -- ank, 
1+"" 

(59) 

where ank is independent of "". It should be noted that 
a"k is nonvanishing only when nand k have the same 
parity.20 This gives 

B= (~)! V R i: r:(~)("+k-2)f2anijnHk(Y)' (60) 
1+"" "-1 (k) 1+"" 

in which the sum denoted by (k) is over all positive k 
values having the same parity as n; or, by transforming 
the indices of summation 

B= (~)!VR i: (~)m 3:1 

am+P+1,m-p+l 
1+"" m-o 1+"" p~m 

XCm+P+IHm_P+1(Y). (61) 

The matrix form of B is obtained almost immediately 
from the foregoing. We define the matrix element of C 
as the inner product between normalized Hermite 
functions: 

(62) 

In order to ascertain the properties of H r (y) as an opera­
tor, it is convenient to introduce the destruction operator 

15= y/2+d/ dy, (63) 

whose effect on the Hermite functions is given by 

Dkr(y) = rkr_ 1 (y), (64) 

and whose matrix element with respect to normalized 
Hermite functions is 

Since 

we have 
C=y/2-d/dy, 

y=C+D. 

(65) 

(66) 

(67) 

The matrix characterization of H r(Y) then follows im­
mediately from its functional form and from Eqs. (62) 
and (65), if one substitutes for y using Eq. (67) 

(68) 

The important thing about Hr is that its matrix ele­
ments with respect to normalized Hermite functions 
are independent of p.. 

The upshot is that Eq. (61) may just as correctly 
stand for the matrix equation giving the matrix ex­
pansion of B, as for a differential operator equation; 
and in this matrix expansion the coefficients ank and 
the matrices Cn and H k are independent of "". Thus 
Eq. (61) corresponds to the desired expansion (7), 
provided 

5. Fokker-Planck Equation and the 
Next Approximation 

(69) 

We write B{mo) for the approximation to B obtained 
by terminating the sum in Eq. (61) at m=mo. Then 
from the expressions derived in Appendix B we find, 
for mo=O, 

B(O)=8V R( P. )\ -Cy+(2) 
2r(1+p.) 

= -SVR( "" )'CD. (70) 
2r(1+p.) 

This stage corresponds to the case mo= 0, 8 0= bo= qoqo t, 
of Eq. (14), and the approximate operator is exactly 
factorizable. Being in the form of a negative numerical 
factor times - CCb - CD, it very transparently~'ex­
hibits the negative semidefinite property. To get the 
operator which operates on the true probability density 
function, we invert the transformation (43) on~B(O), C, 
and D. We find • 

(71) 

and 

(72) 

Thus 

(73) 

which is the Fokker-Planck operator, as promised. Note 
the convenience of the form (70), from which it can be 
seen by inspection that the eigenfunctions of B(O) are 
the kr(y), and that the eigenvalues (also those of B(O» 

are -SnV R!)L/2r(1+",,)]t. 
B(l), the next approximation to B which would be 

obtained by an uncrit~al inspection of Eq. (61), in­
volves the addition to B(O) of the operator 

Vr ( ~ ) tCIJ13CH3+a22C2H2 
1+p _ 

+a31C3H1+a40C4Ho]. (74) 

This must be simplified. From Eq. (68) and the defini­
tions of the polynomials H r, it may be written as a 
function of creation and destruction operators. In the 
resulting expression all fj operators may be moved to 
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the right of all (J operators with the aid of the commuta~ 
tion relation, and the numerical values of the anI' may 
then be substituted. When this is done, we find 

B(l)=-SVR( p. )i 
211'(1+p.) 

X[(JD+~ ~«(j3Jj-6(J21)2+(JtJa)]. (75) 
61+p. 

It is evident by inspection that this expression is Her­
mitian and has ho(y) as eigenfunction for eigenvalue 
zero, as it should. But it is not negative definite, since 

(hn,B(l)hn)=-SVRN,,( . p. )1 
211'(1+p.) 

x[n- ~(n-1)], (76) 
1+p. 

which becomes positive for sufficiently large n. Thus the 
procedure of Sec. 1.2 must be used. 

The construction of a negative semidefinite operator 
from B(l) as given in Sec. 1.2 amounts to "completing 
the square" of the expression in brackets, Eq. (75), as 
follows: Conditions on three constants a, {:J, and 'Yare 
found such that if 

(77) 
then 

(7S) 

agrees with the operator in brackets in Eq. (75) to terms 
of order p./(1+J.£). The conditions are found to be 

a+,y=l 

{:J=-3. 

We thus have arrived at the following operator: 

B1=-SVR( p. )* 
211'(1+p.) 

Xli (J+~ ~[a(Ja-3(J2D+(1-a)(JJj2J} 
61+p. 

(79) 

. {D+~ ~[atJa-3(J1)2+ (1-a)(J2DJ}. (SO) 
61+p. 

This operator, multiplied by [(1+p.)/p.Jl, agrees with 
B, multiplied by the same quantity, to terms of order 
p./ (1 +p.). It is Hermitian, and negative semidefinite 
with the transformed [according to Eq. (44)J Maxwell­
Boltzmann distribution function as its stable stationary 
distribution. As a differential operator it is of sixth­
order, and therefore is probably easier to handle in the 

form (SO) than in strict differential-operator form. It 
does not appear likely that any simpler operator can 
furnish an equivalent approximation. 

131 is somewhat arbitrary in that the constant a is 
arbitrary; only the two Eqs. (79) determine the three 
constants a, {:J, and 'Y. However, tbe arbitrariness is in a 
term of higher order than that to which the operator is 
accurate; when (SO) is multiplied out we must, of 
course, get 

Bl=-8VR( J.£ )! 
211'(1+J.£) 

X 1 (JD+~ ~[(J3D-6(J2Jj2+(JtJa] 
1 61+J.£ 

+~(~)2 [a(J3-3(J2D+ (1-a)(J1)2] 
36 1+p. 

x [atJa-3(JD2+ (1-a)(J21)]} , (81) 

in which the term inside the braces with coefficient 
p./ (1 +p.), which is the first correction term, is inde­
pendent of a. However, the higher-order term in braces, 
which has coefficient [P/(1+J.£)], will not, except by 
coincidence, agree with the term of like order in the 
exact operator 13, no matter what the value of a, since 
the former is in general only part of the term in the 
exact operator. 131 is, however, not meant to be accurate 
to this order (this higher term in 131 would not be accu­
rate even if there were no arbitrariness), and computa­
tions should not be carried beyond terms which are 
determined bytheJ.£/(1+p.) term in braces in (S1). Then 
the arbitrariness due to the indeterminateness of a will 
play no part in the results. 

It should not be concluded, from the fact that the 
[P/(1+J.£)] term in braces in (S1) is to be disregarded 
where it affects computational results, that it can be 
dispensed with. By ensuring negative semidefiniteness 
it prevents runaway solutions; without it, probability 
modes hr(Y) of very large,. value will grow indefinitely 
in amplitude. It is to be expected that, when used in the 
proper range of deviations from equilibrium, 131 will 
yield nonarbitrary results. The term which contains the 
arbitrariness must be included to prevent the intrusion, 
into solutions of the approximate equation, of spurious 
effects. 

The arbitrariness due to a does not affect the possi­
bility of constructing a sequence of approximations to 
13. As constructed according to the prescription in 
Sec. 1.2, [(l+J.£)/J.£]t13N will always be correct to order 
[P/(1+J.£)]N. Thus in B2 the error due toa will be made 
good, although a new error will be introduced in a term 
of higher order. 

The results obtained will now be considered in relation 
to Brinkman's assertion that the condition (23) requires 
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that all an vanish for n> 2 (our a,.= Brinkman's p.n). In 
the first pl~ce, the fact that F decreases when P(V,t) 
oheys the hnear Boltzmann equation, as proved in Sec. 
I.S, makes it impossible from our point of view to agree 
with this conclusion, since the linear Boltzmann operator 
in general has nonvanishing derivate moments of all or­
ders. However, in any case, what we have sought is an 
approximation to an operator which in its exact form 
does satisfy the requirement. If this operator can be ex­
panded in powers of p./(1+p.), then it is clear that suc­
cessive approximations to its effect on P(V,t) can be ob­
tained by breaking the series off at successively higher 
terms, and that these approximations might be useful 
even if they did not satisfy some of the requirements the 
exact operator satisfies. 

m. MORE GENERAL SYSTEMS 

The above work can be generalized to other linear 
Boltzmann operators in the following two ways: by 
leaving the ank general, and by suppressing explicit 
reference to the expansion parameter p./(1+p.). In the 
following sections we take up these two modes of 
generalization successively. 

1. Case of General ank 

The ank are not mutually independent. Let us write 
the expansion of jj in the form 

B=VR(~)ii: (~)m6m. 
1+p. m-o 1+p. 

(82) 

Each 6m in (82) must end in a destruction operator in 
order that ho(y) be a stable equilibrium solution. In the 
case m=O we have, from Eq. (61), 

60= [anCy+a20()] 
= [allC(C+D)+a2oC2]. (83) 

The stable equilibrium condition here requires that the 
coefficient of (J2 vanish, or 

(84) 

This is, of course, just the classic relation between vis­
cosity and diffusion coefficient discovered by Einstein.21 

A similar relation can be found in the next order: 
After bringing D operators to the right in all terms, 
we have 

61 = (a13+ a22+a31 + a(0) C'+ (3a13+ 2a22+ aSl)C· D 
+ (3alS+a22)(J2V+a1sCV. (85) 

The condition that this annihilate ho(y) is that the 
coefficient of C4 vanish: 

(86) 

In this case another restriction on the a"k must be 
satisfied too, in order that 61 be Hermitian. Namely, the 

11 A. Einstein, Ann. Physik 17, 549 (1905). 

coefficients of cafj and of CV must be equal: 

3a13+2a22+a31=a13. (87) 

With Eqs. (84), (86), and (87) we can eliminate a2o, 
a3l, and a40. When this is done, we obtain 

B(l) = VR(~)t{allCfj+~[a13C3.z) 
1+p. 1+p. 

+(3a13+~2)C2fj2+a13CVJ+oC:p.)}' (88) 

In the Rayleigh process the ank are known, and in fact 
the relations derived above can be verified for the ex­
pressions given in Appendix B. However, Eq. (88) may 
also be applied in the following way. Suppose thermal 
fluctuations are to be studied beyond the range where 
linear friction applies, in some system whose linear 
Boltzmann operator is unknown, but in which the fol­
lowing hypotheses may be justifiable: (a) The (un­
known) linear Boltzmann operator is expansible in terms 
of some parameter analogous to p./(1+p.), and (b) the 
successive derivate moments are expansible in Hermite 
polynomials. This amounts to saying that the random 
process involved is mathematically of the same type as 
the Rayleigh process. Equation (88) or its equivalent 
then tells us that in order to study the random process 
in a consistent way with inclusion of the va term in the 
friction22 (Le., in the first derivate moment), it is suffi­
ceint to know just the coefficient of this term and 'that 
of the V2 term in the noise, i.e., in the second derivate 
moment; the remaining relevant coefficients au and a,o, 
which appear in the third and fourth derivate moments, 
being determined by the former two. 

As in Sec. II.5, a negative semidefinite operator agree­
ing with B(l) to order [P/ (1 +p.)]t can be constructed by 
completing the operator absolute-square. The result is 

Ih= (~)i V R{a111C+~all-t 
1+1-' 1+p. 

X [aC*+l(3a13+a22)C2fj+ (a13-a)CD2] } 

X { au t D+..!:..-all-i[aV+! (3a13+ a22) C.z)2 
1+p. , 

+ (a13-a)C21)] }. (89) 

1I2 Carried out to its second term, the expansion of Al is 

(l+p)l{ I' } 
A1(y) ... -- 4 11Hl+-4uH t +··· 

p 1+1' 

(l+p)l{ I' } ==-- 411Y+-418&-3y)+'" . 
p 1+1' 

If 1'«1, the HI contribution will not come in until T""1/p and 
then the -3y term will be negligible compared to T. Simllarly 
with all higher H~ contributions. If they contribute significantly 
at all, the highest power in them will dominate. Thus when p«l 
the Hermite expansion will not be appreciably different from' a 
power series. And this will, of course, hold for the expansion of 
any derivate moment. 
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2. Suppression of the Expansion Parameter 

Let us put 
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APPENDIX A 

Derivation of the Transition Probability 
for the Rayleigh Model 

We here evaluate the function C(y"ly') of Eq. (36) 
in the text. To do so we first work in terms of the ordi­
nary velocity V. Let 

B1= V R[k/j+k2C3+kaC2D+k4CD2] 
= [k l D+k2D3+kaCD2+k4C2D]. (91) C(V" I V') = probability density-in-V" per unit 

This form of Bl would be usable, if valid, for a system 
not possessing an expansion parameter, or for which 
this parameter was unknown. In the absence of as yet 
unsuspected restrictions, the four k's of Eqs. (90) are 
mutually independent; they certainly are so for the 
Rayleigh model, since a, au, al3, and a22 are independent. 

The form of the operator of Eq. (91) with arbitrary 
k's is sufficient for negative semidefiniteness. Let us try 
to define the conditions under which it is also necessarily 
the next negative semidefinite approximation after the 
Fokker-Planck operator. In terms of a"k, the kth Her­
mite coefficient of an(y), Eq. (61) reads 

This is a perfectly general formal expression for any 
linear Boltzmann operator, since it may be derived 
without any further assumptions from Eq. (37). If the 
equilibrium distribution of y is Gaussian, exp( -y2/2), 
sufficient conditions on ank/n! in order that B be Her­
mitian and promote stable equilibrium are the same as 
Eq. (84) for the ank/n! with n+k=2, and the same as 
Eqs. (86) and (87) for those with n+k=4. To prove 
these conditions necessary as well, a variable expansion 
parameter analogous to J£/(1+J£) is needed, in order to 
make possible the device of setting the coefficient of 
each power of the parameter equal to zero. However, in 
the spirit of a phenomenological approach it may be 
justifiable to hypothesize the existence of such a pa­
rameter, when definite knowledge about a given system 
is not available. Assuming the hypothetical parameter 
to be small as well-as would be reasonable for any 
macroscopic variable which fluctuates due to molecular 
impulses or contributions-Eq. (91) would then be the 
most general form for the indicated approximation. 

time that a particle with given 
velocity V' undergoes a collision 
which changes its velocity to V" 
("transition probability" from V' 
to V"). (Al) 

Let v stand for the component of velocity of a mole­
cule in the direction of the constrained motion of the 
particles (note that v therefore does not stand for the 
speed of the molecules). Given a particle with initial 
velocity V, and assuming the distribution (31) for the 
vector velocity v, the probability density-in-v for a 
collision of the particle with a molecule having velocity 
component (in the foregoing sense) v, per unit time, is 

(A2) 

if A is the area of the disk of the particle, p the spatial 
density of molecules, and jo(v) the one-dimensional 
Maxwell-Boltzmann function 

fo(v) = (211'VR2)-t exp(- ~). (A3) 
2VR2 

The fraction of all disks which are knocked out of the 
infinitesimal range dV at V by molecules in dv at v is, 
per unit time, 

Apjo(v) I V-vIP(V)dvdV, (A4) 

where P(V) is the velocity probability density of 
particles. 

The coefficient of dvdV in (A4) is the probability 
density-in-v-and-V, per unit time, of the process de­
scribed. However, for use in Eq. (35) we require the 
transition probability between two values of V namely 
V' and V" (ultimately, y' and y"). These may be related 
to v and V by the dynamics of the collision, as follows: 
Let 

V'= V. (AS) 
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Assume that molecules are reflected specularly from the 
disks; then V', V" are related to the variables V, v by 
Eq. (AS) and by 

where 

V"- V'=2~(v-V) 
1+#L 

(A6) 

(A7) 

To obtain a transition probability for V' ~ V" from 
the expression (A4) one must (a) write this expression 
in terms of V' and V"; (b) make it a probability density 
in V' and V" by mUltiplying it by a (v,v)/a (V', V") 
= (1 +#L)!2,u, and (c) divide by P(V') to obtain a proba­
bility conditional in V'. In this way one obtains 

C(V"\ V1):=:AP(1+,u)2jo (1+,uVII _ l-,uV1) 

2#L 2p, 2p, 

.[ V"- V'I. (A8) 

An expression formally the same as this would be ob­
tained if the gas were linear instead of three-dimensional, 
with the particles on a line with the gas molecules, and 
if every encounter between a particle and a molecule 
resulted in a collision. The latter is the model originally 
introduced by Rayleigh,l1 and the present one is mathe­
matically equivalent to it. 

Now transform to the variable y [Eq. (33)]. Writing 
C(y" \ y') for the transition probability per unit time 
for the event y' ~ y", which is a probability density in 
y", we shall have 

C{y"\y')=C(V"1 V')dV"!dy" (A9) 

(in this equation the C's stand for transition proba­
bilities with respect to the arguments in their respective 
parentheses; since the arguments are different random 
variables on the two sides of the equation, the C's on the 
two sides are not meant to be the same functions). Put 

Ap=l, (AlO) 

since this combination of constants plays no further 
part in the analysis. Equation (A9) applied to Eq. (A8) 
then gives Eq. (36) of the main text. 

APPENDIX B 

We here evaluate the Hermite expansion coefficients 
of A .. (y). From Eq. (58) and the normalization constant 
of the H,,(y), 

An,,=_1_ f exp(- 7)Hk(y)An(Y)dY. (Bl) 
(211-)tk! 2 

We utilize the generating function of the Hermite 

polynomials, 

( 

Z2 ) '" Hr(y) 
exp - -+zy = E z'--, 

2 m=O r! 
(B2) 

whence An" is the coefficient of Zk in the power series 
expansion of 

2" f (y2 Z2 ) =-- dyexp - - - -+zy 
211"nl 2 2 

Inverting the order of integration, it is possible to 
integrate immediately over y, using the formula 

It;() exp( -ay2-by)dy= (~)i exp( b
2 

). 

-co a 4a 
(B4) 

This gives 

But here we recognize, in the first exponential in the 
integrand, the generating function according to formula 
(B2) of the functions 

From this it follows that 

xf exp(- #L X2)Hk 
2(1 +p,) 

X([l:J! x )xnIX\dX. (B6) 

Changing to ~/(l+,u)J!x as variable of integration. 

Ank 
(_1)k2" (#L ) (Io-n-2)/2 

[211"(1+p,)]tn!k! 1+p, 

X f exp( - ~)Hk(x)xnlxldx. (B7) 
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The integral can be simplified as follows: 

=0 if n+k odd. (B8) 

The dependence on parity of n+k agrees with the fact 
that A,,(y) is even or odd according to the parity of n 
(d. footnote 20). 

The integral in (B8) is 

J= £'" Hk(x) exp ( - ~)X"+ldX 

'" ( d )k x2 
= i X,,+l - dx exp ( - 2" )dX. (B9) 

If k~n+1 we integrate by parts k times to get 

where the double factorial N!! is defined by 

N!!=N(N-2)(N-4)·· ·3·1 (N odd) 
=N(N-2)(N-4)" ·4·2 (N even), (BU) 

and, by convention, O!!= (-1)!!= 1. 
If k>n+1 we integrate by parts n+1 times: 

= (n+1) !Hk-n-2(0) 

= (_1)(k-n-2)/2(n+ 1) !(k-n-3)!!, (B12) 

the last form being obtained by adapting, to our defini­
tion of Hermite polynomials, formula (13.15), Sec. 10, 
of Higher Transcendental Functions [edited by A. Erde­
lyi (McGraw-Hili Book Company, Inc., New York, 
1953), Vol. II]. 

If we combine the foregoing results, we get 

( 

p. ) (k-,.-2) /2 
Ank= (1 +p.)-! -- a,.k, 

1+p. 
(B13) 

with 
2,,+1 n+1 

ank= (_1)k (k~n+ 1) (B14) 
(21l')l k!(n-k+1) !! 

2,,+1 (n+1)(k-n-3)!! 
= (_1)(n+k+2)/2 

(21l')! k! 
(k>n+1). (B15) 


