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ABSTRACT

A method for solving various half-space multi-group transport problems
for the case of a symmetric transfer matrix is explained. This method is
based on the full-range completeness and orthogonality properties of the in-
finite medium eigenfunctions. First, the albedo problem is considered. A
system of Fredholm integral equations is derived for the emergent distribution
of the albedo problem, and it is shown that this system has a unique solution.
Then by using the full-range eigenfunction completeness, the inside angular
distribution is obtained from the emergent distribution. Finally the Milne
problem and the half-space Green's function problem are solved in terms of the
emergent distribution of the albedo problem and the infinite medium eigen-

functions.



I. INTRODUCTION

In recent years much effort has been given to solving the energy-dependent
Boltzmann equation. Various approximations have been used. The most reward-
ing approximation to date has been the multi-group technique, and often the
diffusion theory approximation is employed to simplify further the calculations.
However, there is a definite need for exact solutions of the multi-group trans-
port equations, since these solutions serve as a standard against which one
can compare the approximate results.

Recently, the solution of the infinite medium Green's function has been

1 2
obtained explicitly for the two-group and N-group 2 cases. Several two-group

L,5,6

half-space problems have been investigated, and in a paper by Siewert and
Zweifel7 a special N-group Milne problem for radiative transfer was solved.
The general case of N-group half-space problems with symmetric transfer matrix
was studied by Leonard and Gerzigerag they proved full and half-range complete-
ness of the N-group transport equation eigenfunctions. In all these works, the
solution of a half-space transport problem is expanded in terms of the eigen-
functions and then a set of equations for the expansion coefficients is derived.
In this paper we consider also N-group half-space problems .for a symmetric
transfer matrix., This form of/g is not so restrictive as it may appear at
first glance. For instance, all two-group problems (see Appendix II) and the
N-group equations for thermal neutrons may be transformed into such a case (see
Appendix I and Ref. 3). This symmetric’g also appears in the special astro-
physical situation of radiative transfer with local thermodynamic equilibrium,

the picket-fence model for the absorption coefficient, and isotropic scatteringe7
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In our approach, we do not need half-range completeness property of the
eigenfunctions. We solve half-space transport problems in two steps. First,
the emergent distribution is calculated and then the distribution inside the
medium is evaluated by using the full-range completeness and orthogonality
properties of the N-group eigenfunctions. These eigensolutions to the N-group
isotropic transport equation and their full-range completeness theorem have
been known for several years,8 while their orthogonality relations have recently
been obtained by Yoshimura,.2

Section II briefly summarizes the N-group eigenfunctions and their full-
range orthogonality relations as described by Yoshim.ura,.2 In addition it is
shown for symmetric E’that the discrete eigenvalues are real or purely imaginary.
In Section III a system of Fredholm equations is obtained which uniquely deter-
mines the emergent distribution for the albedo problem. It is shown that the
uniqueness of solution of this system of Fredholm equations also implies half-
range completeness of the eigenfunctions. Finally in Section IV, the emergent
distributions of the Milne's and Green's function problems are expressed in
terms of the emergent albedo problem distribution and the complete solutions

obtained from the full-range completeness and orthogonality properties.

ITI. INFINITE MEDIUM EIGENFUNCTIONS

The linear Boltzmann equation for N energy groups in plane geometry and

with isotropic scattering can be written in the form

l
p o) + 2 Plou) = QJ/“/“'%"/“’) ' (2.1)
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The vector‘g(x,u) is an N-component vector, of which the i-th component,
wi(x,p), is the angular flux of the i-th group. The components of the diagonal
matrix,/ziare Oigij where o, is the total interaction cross section for the
i~-th group. The elements, Cij’ of the transfer matrix, C, describe the trans-
fer of neutrons from the j-th group to the i-th group. In some problems, for

instance thermal neutron transport theory, C can be written as a product of

diagonal matrices, D., and a symmetric matrix A (see Appendix I), as

——

Q:PIE-DL . (2.2)

Equation (2.1) can then be so transformed that the elements of the transformed

Y. matrix are ordered as
PV

0’[?623-.,7/0}‘ (205)

and the new C matrix is symmetric (Appendix II). It will be assumed for the
remainder of the paper that the transport equation has this special form of an
ordered.Z;nmtriX and symmetric Eantrixo Finally, by measuring distance in
units of the smallest mean free path we can set Oy = 1.

Using the analogy of the one-group problem,9 one seeks a set of eigen-

function solutions, V¥(v,x,u), to Eq. (2.1) of the form

}?(Wﬁxyu) = 63v70@/ Q9(7é/x)
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Substituting Eq. (2.4) into Eq. (2.1) the self-adjoint equation for the eigen-

vectors, ¢(v,p), is obtained:
~/

!

— /;L : — , ii0
(L= 5£)900) = clo oy, (29

where E is the unit matrix. The explicit form of these eigenfunctions hasg
. 1,2,38 . . .
been obtained by several authors. 7" We will use, with slight changes, the
. . 2 |
notation of Yoshimura.
The eigenvector spectrum is divided into two regions.
(a) Region I: v ¢ (-1,1)
In this region there may exist an even number, say 2M, of discrete eigen-

vectors, which in component form are written as

'Vns AI(VOS) .
. — —— t= I~N
Q(%s)/i) T Vs — M (2.6)

\»

2
where b(y ) is a well defined vector.” It can be shown that if v  is an

. 0OS 0Ss

eigenvalue then also - Vos and vgs (complex conjugate) are eigenvalues with

é(%s) = é(‘%s) = é*( ). (2.7)

For our case of symmetric {, the discrete eigenvalues, v , are either
os

real or imaginary—never complex. To see this, multiply Eq. (2.5) by §}(V,p)



and integrate over u. (Here the superscript tilde denotes the transpose.) In

this way one obtains the equation

{

/
/ Y paé
ZS-/@/M f*(%sw)f(%s/x) = /DZ/A Azp*(%s,/u)z @/%;w)
-1 __, ~ =

J ;
By ~
‘I/CJMAZP/%S,/Q) ’Q:%//UI ¢‘/%,/Ll/) . (2 8)

Since ), is diagonal and C is symmetric, the right-hand side of Eq. (2.8) is real
since it is a sum of products of complex conjugate terms. The integral on the

left-hand side of Eq. (2.8), which in view of Eq. (2.6), can be written as

/

/ 3 du
I I~ _ Z (s ?e/a/oS LA
Vps Vo;‘ :/;/,’(/&L Aip (%S’%‘») Azp(%s/d) ";‘:1 A{ /7/ ) A: )-‘I (%SO;"}(&)(%:‘O? T/U.) (2' 9)

is also real.

If the above integral (2.9) is not zero, it follows then that the eigen-
value, Vos? must be real! It will now be shown that this integral can vanish
only for purely imaginary eigenvalues.

Let us assume, for the sake of the argument, that Vos is complex and

Re[vos} > 0. It can easily be verified that in this case

o< (%5077)(%5"0;-/&) < (%0 +/x)(%f07+/u) ,/‘>O'{:1'VN'( )
2.10



Hence, each integral in the sum on the right-hand side of Eq. (2.9) is strictly

positive, and since at least one of the terms bi(vo ) b?(v ) is also strictly

S 0S

positive in view of Eq. (2.7), the sum is strictly positive for Re{vos} > 0.
Similarly, it can be proved that for Re{vos} < 0 the sum is strictly negative.
Thus the integral (2.9) never vanishes if Re{vos} 4 0.

However, if Vos is purely imaginary, we have

(o) (w0 o) = (i) OBTge), o

and each integral in the right-hand side of Eq. (2.10) is zero. Thus we con-
clude, the discrete eigenvalues, Vos? lie on only the real or imaginary axis.
(b) Region II
This region is divided in N subintervals, v,,j = 1 ~ N, such that for
J
1 1
v € Vj’ ;“-— < ]v| < ;—. For the j-th sub-interval, there are (N-j+1) linearly

J-1 J
independent eigenvectors, g?(v,u), whose i-th component has the form

[fgm[VWL = T @7;{7” [é;(v)/i + 4 (027/7@[):&)]{

m = J'vlv )
l =1~N .
(2.12)
where P indicates the Cauchy principle value is to be used when these functions
, m m ) . D
are integrated. The vectors Ej(v) andzﬁ(v) are also defined by Yoshimura.
From the eigenvalue equation (2.5), one finds that the eigenvectors are

orthogonal in the following sense:



/
J/ﬂaﬁ‘/‘ f(V/‘) Plvu)=0 4 V=V . (2.13)

Moreover, it is possible to choose particular linear combinations of eigen-
vectors for the independent eigenvectors of each subinterval, Vj’ such that

all the "continuum" eigenvectors are orthogonal in the following sense

L Gt Gievipy = N1 dulvr) (

2.14)

Similarly for the "discrete" eigenvalues, we have

[ Potey) B p) = #Nebisr | s=1om . (g

The functions Ns’ and N?(v) are given by Yoshimura.2

Finally, there is one more relationship between the eigenvectors which we

m

J(v) are

2
will need later. From Yoshimura's work the functions Eg(v) and \

even functions of v, and it follows

f(—yw) - '?6/’7”) ’ (2.16)
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I7I. THE ALBEDO PROBLEM

In this section we will consider the albedo problem for a half-space.
This problem will be shown to be important because the solutions of all other
half-space problems can be expressed in terms of the albedo solution.

(a) Emergent Distribution

Let us now consider the albedo problem for which the incident neutron
beam belongs solely to the i-th energy group. In this case the angular flux
will be denoted by l{i(o’“o;x’“)’ It is the solution of Eg. (2.1) with the

boundary conditions

(1) J/i(O,/e/a,’o,/u) = & fgu;ao) ,/u >o,/uo>o , (3.1)

Dim
(i) X->00 ,}g(oyh;x,/u) = 0 (3.2)

where -y is a vector, all of whose components are zero except the i-th, which
. : , : . 2,8 , .,

is unity. Since our eigenfunctions are complete, the solution for this al-
bedo problem can be expanded in terms of the eigenfunctions which satisfy the

boundary conditions at infinity:

. X/
ﬁ(o,/uo;xyu) :55 (%) Pbus,p)e

Z/q /7/) %(‘//u) —7‘/7/ 5 {= 1,\,/\/

?" T (3.3)

11



where 7 = l/qj

We will assume that all the Vs are real. Clearly eigenfunctions with imaginary

eigenvalues cannot satisfy our infinity boundary condition. Setting x = O,

and using the full range orthogonality relations plus boundary condition (3.1),

we obtain the expansion coefficients as

/
Ao o~ / ~
K (%) = W;— Aip(%&/uo),@; - 7\/:/09//4 f(%»)«)ﬁ’(%o;d)—/&)) (3.1)

and

/
m _ /ud m ___/_..__ 7
A *‘e”/\é,m(y) & (o) g2 —Aé.“(v)[%“fi W) Y lop;0,-) . (5.5)

Substituting these coefficients into Eg. (3.3) with x = 0, we obtain the fol-

lowing inhomogeneous Fredholm equation for the emergent distribution:

/
ﬂ'(@//élo;oj—/u> = fp“)gé d'[;;ul/“’ Zn(y%)’"}é(o%o;Oj;a,). (3°6>

Here we have defined the matrices

12



=4, (L
P e (3.7)
and
)
Klipd = [ Plrew) B, )
Z / Z[Z i G 5
(3.8)

It can be verified that K(u',u)and F(u) are continuous functions of their argu-

ments,

(MecwlwﬁooMmﬂlasﬂ@MﬁriMmgalemwtbnfbrﬂﬁO”%ﬂ%ﬂﬁbycm%
sidering the incident distribution as given by Egs. (3.3), (3.4), and (3.5);

explicitly

{(u-p)e. = flue: - f%u'i@/"w)ﬁ("%ﬁi@7'2<a,9>

Either Egs. (3.6) and/or (3.9) may be used to determine the emergent dis-
tribution. Case has obtained the same pair of equations expressed in terms of

10
the infinite medium Green's function, by using a different approach. When
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explicit expressions for the Green's functions are substituted into his equa-
tions, Eqs. (3.6) and (3.9) are obtained.

In the one-speed case, the singular integral equation (3.9) and the Fred-
holm equation (3.6) may be solved together in closed form,lo However, for the
multi-group situation no closed-form solutions have been obtained and to deter-
mine the emergent distribution numerical procedures must be used.

It will be shown that the emergent distribution is uniquely determined by
the system of Fredholm integral equations (3.6) alone, and this system of equa-
tions can be solved by standard numerical techniques.

Once Eq. (3.6) has been solved for gi(o,po;o,_p), u > 0, the expansion
coefficients can be completely determined from Egs. (3.4) and (3.5). Then
Eq. (3.3) gives the complete solution for the albedo problem.

(b) Uniqueness of Solution of Fredholm Equation
To show that our Fredholm equation has a unique solution, we consider the

homogeneous equation

2 ’ &
Hlopso) = ‘/f/’“/'“'/f«/’/“)«" otz s puz o, (3.10)

Defining

’X(/,L) = \’/u A%{ (o,/,o}o)_/u) , (3.11)

A

——

Do) =Y [y 5.2

1k



we have

/
Al) = —G/wag(/) A (3.13)

Let us assume a nontrivial solution exists. Multiplying Eq. (3.13) bylﬁ*(u),
integrating over p, and substituting explicitly for D(p',u) from Egs. (3.12)
and (3.8), one obtains

/

/ag/L E(J*(/A) Xp) = '/;5,4 40(%5,/)7< 9«] Fﬁms&u))jy)

¢}

/
:—— ¥, , ™
/V”WJ 1K ]owfez )X /);
—7 q&# 1} 4
(3.1k4)

Since all the eigenvalues are real, 3(v,u) is also real and hence both sides
of Eq. (3.14) are composed of terms which are products of complex conjugates.
Thus we have the contradiction that the right-hand side of Eg. (3.1L) must be
real and negative, while the left-hand side is real and strictly positive.
Hencelz(p) must be identically zero, or equivalently, the homogeneous equation
(3.10) has only the null vector as a solution.

Because a system of integral equations may be transformed into a single
. R S . .
integral equation, it follows from the known properties of Fredholm integral

equations that the solutions of Eq. (3.6) exists and is unique since the homo-

geneous equation has only the trivial zero solution.

15



An immediate consequence of the uniqueness of solution of Eq. (3.6) is
that the coefficients in the eigenvector expansion in Fq. (3.3) are also unique-
ly determined. This in turn implies that the eigenvectors ¢(v,u), v > O are

9

half-range complete in the sense of Case.

IV. SOLUTIONS OF TYPICAL HALF-SPACE PROBLEMS

By using the results of the previous section it will be shown how the
emergent distribution for various half-space problems may be expressed in terms
of the emergent distributions of the albedo problems, Ei(o,po;o,-u), i=1~N.
(a) Generalized Milne Problem

For every positive eigenvalue v ¢ (0,1) or v = Vs 87 1 ~ M we define

a Milne problem ¥ (x,u) by Eq. (2.1) and the following boundary conditions,
~y

(1) Fbtop) =0 50, (4.1)
(i1) ;'Z_‘:"@M%(Xw) = M@(‘V,/{)e'x/?/ ' (4.2)

where ¢(-v,u) may be any of the eigenvectors—regular or singular.
First let us determine the emergent distribution, V¥ (O,wp). Congider a
~y

solution of the transport equation, W(x,u), defined as

Plhxpu) = Blou) + Hlop), (4.3)

16



where wa(x,p) is also a solution of the transport equation with the boundary

conditions

Therefore from (L4.3), ( ,u) must have the boundary conditions

(1) ,?(0,—/() = g(—V,/,J M

(1) L Yo = Plogp)e

A

Clearly the unique solution for y(x,p) is

o) = Plyu)e™”

gs. (4.3) and (4.8) then yield for x = O,

@(%/u)—- %{ /M)4- (%/u>

17
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(boh)
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Using the results of the previous section the reflected distribution‘ya(o,_p),

p > 0, can be expressed in terms of the incident distribution, 3(~v,p) as

N /
Valop) =) [l @o], Blosrion) . usa . oy
£{=/ "o

Thus the emergent distribution for the Milne problem becomes, in view of

Egs. (4.9) and (2.16)

N
Blou) = Plyu) ’2/’4“'[?("9“')]{”%/%': 0,-u)

(4.11)

Finally to obtain the complete solution for the generalized Milne problem

we use the following expansion:

~ X/ 3
Bl = Plmpe Z o) Plots p)e”
7
J 2 e
2= Yl Umzg LR " (h.12)

The expansion coefficients are obtained by applying full-range orthogonality

relations and Eq. (L.11). Explicitly they are

X(%s) = @50(%/)/4?(7/ ) Z/ [W?/ )] %(/, ,/«J (4.13)

18



and

/[)m(wl)_ m/’;’) Oﬁu % (7/)/ ¢(V/‘) Z/#[¢(‘y/ >j %(o)/u )0)/“)

(b.1k)

(b) Half Space Green's Function

In a manner similar to that used for the Milne problem, the emergent dis-
tribution for the half-space Green's function can be expressed in terms of the
emergent albedo problem distributions. The half-space Green's function, with
the source neutrons belonging to the i-th group, gi(xo,uo;x,u), is defined by

the equation

i

(/*ax )é ("/Oioy“) = ¢ a}t'@'(xoy/o,‘x,/u') 40(91071,)5(*‘(0)@49

Xo>o0
(k.15)
with the boundary conditions
(1) @‘ (Xoy/a,' O,/u) =02 L M>0, (L.16)
(11) Lo Go oo i) = 2 (1.17)

19



To determine this function, we will assume the infinite medium Green's

. d . . o . 2 L
function, Sxi(xo,po;x,p), which also satisfies Eq. (4.15) is known.  This in-
finite medium Green's function can be expressed in terms of the half-space

Green's function as

§:°(xa,//o,'xw) = G (opo;xu) + Hluu) x>0,  (1.18)

where ﬁa(x’“) is an albedo problem solution satisfying Eq. (2.1) with boundary

condition

(1) fﬂ[OW) = Ag_fiw(x,,/uc)'o)/u> » M0, (4.19)

(i1) Lo oo ) = 0. (L.20)

x>

Expressing the emergent distribution for this albedo problem in terms of

the known incident distribution and the vectors LLri(O,pO;O,—p), Eq. (4.18) yields

L.21)

N 1
22}
’Q'(XO}UQ)‘O})M) = ,,6;2 (Xa,/Uo,' 0/;0‘) ’Zy/d/ﬂ[gtooo(x%g;0]/[4')]"“%{0’/[/';0)71)
J‘:I (] 0Z .(

20



Since the angular flux for the half-space Green's function is now known at
x = 0 for all p, the complete solution can be found by using the full-range

completeness and orthogonality theorems. Explicitly

M
§¢’(Xowo)Xw) M{'m(Xa o,X/a) +Z°<(%’5)9(%Syu) 6-X/%S
N 25 N
’ /4’ Z A Gtyle™™”
7y, L (4.22)
where
/ s
O((%S): _A_f/%/uf(%b/b‘)écn(Xay&ﬂ;O)/u)
N
//M ¢( Z‘/@[((Xa 0)0/1)] %(G‘w Q/‘) (L.23)
/ /
=~ [ B 60,0
/ N )
*W Y)/@/ ,.87' (v’)“/)g B/"}‘ I[-:é' ()(”/’”) 9H ')_LM{DA (O)U o, '/") .
(k.2oh)
V. SUMMARY

It has been shown that the solutions of all multi-group half-space prob-
lems involving a symmetric transfer matrix can be expressed in terms of the

emergent albedo problem distribution and the infinite medium eigenfunctions;

2l



This emergent albedo distribution is uniquely determined by the Fredholm equa-
tion (5,6), which can be solved by standard numerical procedures.

In this paper, attention was restricted to those cases which could be
transformed such that the transfer matrix was symmetric. This assumption was
necessary to prove that (i) the eigenvalues of the transport equation are real
or imaginary, and (ii) the emergent albedo distribution is uniquely determined
by Eq. (3.6). In a future paper, this restriction will be relaxed and the case

of a general transfer matrix will be discussed.
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APPENDIX I. THERMAL REACTOR MCDEL
The linear Boltzmann equation for a homogeneous nonmultiplying medium in

plane geometry and with isotropic scattering may be written as
| )
() ’ » - ’ ’ ’
(o 2 J40) W) = [ Luteor) 0000,
-] Yo -

where V(x,u,E) is the angular flux, and 2(E) and ZS(E'+E) are the total and dif-
ferential scattering cross sections, respectively.
. . . 15 . . s
Using the usual multi-group technique, the energy variable is split into
N regions and integrating Eq. (A-1) over the i-th region we obtain the i-th

multi-group equation

N /
(w3 v a) hlop) = ) cylatibp) (1e2)
[7:/ Z

where we define

X, ) = O/E (X/l'
%(X/) 4)5!, % /4/:) 5

07 %lx, /a/e’Z(k) Wluu, £) J (A-L)

;&(){’ /c//: 6/5 Z(E’-)E) %(x/)/:’) . (A-5)

2£; T8
25



To make the multi-group constants Gi and Cij independent of x and p, it is
usual to assume that the energy dependence of the angular flux is separable.
Further for a system in thermal equilibrium a good first approximation is to
assume this energy dependence is Maxwellian with some effective temperature, T.

With these assumptions the multi-group group parameters are given by

Cy = aJ'/o/g dE' ) (E'~E) M, T) )

(2-6)
AE{ Aﬁc—]'
O.zt - d{‘/JF[(E) /\7(&-‘} T) 5 (A—7)
AF;
O—/Zi = dEMUE, T ) , (A-8)
AE,
The cross section ZS(E'—>E) must obey the detailed balance reil_ationlll
Ty e T) =2, (E2£) MTET) (h0)
or
A, C‘tv’ = °<J CJ{ .
(A-10)
Finally, defining the symmetric matrix A as
[A]; = <5 ¢
SaRY: 7 7 (A-11)

2k



the transfer matrix can be written in the special form

¢ = 5;—? 5 (A-12)

where D is a diagonal matrix with elements, o, > 0.
~
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APPENDIX IT

In certain physical models the transfer matrix may be written as G = Ql A 92

where D. and 92 are diagonal matrices with strictly positive diagonal elements

1

and A is a positive symmetric matrix. The elements of the z;matrix generally

will not be ordered but will be arranged as

OG22y« v 30m 70, 1<k m<N . (B-1)

It is possible to transform Eq. (2.1) into a form which has a purely symmetric

transfer matrix and an ordered matrix. First, we construct a permutation matrix,

P, such that

[»P]//a - 1) [
[Pl = 1 [Pli=o,ix4

o

b{
i
o
(W9
'

o

\

+

v

[B]Nm =1, ["P]Nt'

=0 ,{x™M .
(B-2)
By multiplying Eq. (2.1) from the left by P, one obtains
9 ! ’
o - AN /
[/"olx £ +Z ]f’(xw) :,ﬁﬁ,;pz/daf/xw) (5.5)
=1 -

26



where —‘{A /()( v/b,\ ) = /D (%\/X ’ »4> >

?

(B.L)

it can be shown by inspection that Y is a diagonal matrix with
~s

YR

Since P'l =
A

ordered elements

/ / I
G20 5 20 (B.5)

Furtherlg’ and D' are diagonal matrices with positive diagonal elements, and

A' is symmetric.
]

u : , 1/2 -1/2
Now we define the diagonal matrlceslyi and_lgi as

1/

*+i, _ -
| D Lk - [@J# ,i=1,2 . (5.6)

- 1
Multiplying Eq. (B.3) from the left by D 11/ 2 32/ 2 we have

{

!
[/“a% é——fz"] f,?xyu) = ﬁlﬁﬂf”(xf() i (B.7)

A

where

27



(B-8)

For the two-group model, there exists a transformation, S, which will sym-

metrize any strictly positive { matrix and leave‘g’diagonal, namely

o Cn

- Gar O (B-9)

On the other hand, if one or both off-diagonal elements are zero, the resulting

multi-group equations can be solved consecutively by applying one-speed theory.

28
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