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A detailed investigation of the stability of the solutions and the growth of secondary solutions
beyond the critical points is carried out for the Burgers’ model equations. It is found that the trans-
itions at some critical points are very much like the intuitive description given by Landau; however,

the possibility of finite jumps is also encountered.

I. INTRODUCTION

The problem of the transition from a laminar to
a turbulent flow, as the Reynolds number is in-
creased, is one of considerable interest. Various
theories have been proposed.” Owing to the mathe-
matical difficulties, not much calculation has been
carried out to verify these theories. Here a branching
theory is verified for some model equations pro-
posed by Burgers.

The branching theory of the transition to turbu-
lent flow is well described by Landau.” His theory is
briefly reproduced here.

If one investigates the stability of the laminar
solution by the linearized Navier-Stokes equations
for small perturbations, one finds that the laminar
flow is stable at low Reynolds number, but be-
comes unstable beyond certain critical Reynolds
number R{!. At a slightly higher Reynolds number
R = Rii’, an undamped sinusoidal oscillation of
frequency ,(R) which depends on R is super-
imposed on the laminar solution. The equation for
the growth of the amplitude |A4] is

d AP

g =4l -

B 1Al% 1)
with @ « R — R{’. Here 8 is assumed to be posi-
tive, otherwise the solution goes to infinity at a
finite time. (It will be shown in Sec. II, however,
that 8 is not always positive.) The solution of (1) is

2 AOPep@) o
a = B [AOF T — exp @]

Ast— o, |A]" > 0for R < R and |A® — a/B
for B > R!Y. Thus, the amplitude of oscillation
[A] « [R — R&1? ie., is proportional to the
square root of the difference between the actual and
the critical Reynolds number. The transition is

|A* =

! See, for example, 8. Pai, Viscous Flow Theory—Turbulent
Flow (D. Van Nostrand Company, Ine., Princeton, New
Jersey, 1956), pp. 6 and 7.

*L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Pergamon Press Litd., London, 1959), pp. 103-107.

continuous, i.e., for an infinitesimal increase of the
Reynolds number beyond R(!, there is an in-
finitesimal increase in |4|. The phase of the oscilla-
tion is arbitrary. Its value is determined by the
initial phase of the disturbance, hence, there is one
degree of freedom. If one further increases R, the
solution is no longer simple sinusoidal, but is of

the form

4o
2. A, exp (— in®),

where ®, = w,{ + By, and B, is the arbitrary phase
depending on initial conditions. One may write a
set of linearized Navier-Stokes equations for small
perturbations of this solution, and one finds that
this solution becomes unstable at some larger critical
Reynolds number R!¥. Slightly beyond R!¥, the
solution is sinusoidal with two fundamental fre-
quencies w,(R) and w,(R), and there are two arbi-
trary phases. One may proceed in this manner and
the solution will quickly have many frequencies
and the same number of arbitrary phases. The flow
becomes ‘“turbulent.”

A rigorous mathematical description of this pro-
gram is one remaining to be given. An investigation
in this direction was recently made by Velte in the
case of rotating coaxial cylindrical flow,® and it was
verified experimentally by Donnelly et al.,* that in
this case the flow beyond the critical Reynolds num-
ber of the laminar flow was indeed of the form de-
scribed by Landau. However, no time-dependent
description was given by Velte. In what follows, a
time-dependent description will be given for two
sets of model equations due to Burgers,” in the
neighborhood of some critical points analogous to the
critical Reynolds number. It will be shown that a

3 W, Velte, Arch. Ratl. Mech. Anal. 22, 1 (1966).
¢ R. J. Donnelly, K. W. Schwarz, and P. H. Roberts, Proec.
Roy Soc. (London) A283, 531 (1965).
5J. M. Burgers, Verh. Nederl. Akad. Wetensch, Afd,
Natuurk. (Amsterdam) 17, 1 (1939); or Advances in Applied
Mechanics, R. V. Mises and Th, V. Kérmdn, Eds. (Academic
Press Inc., New York, 1948), Vol. 1, p. 171,
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Fra. 1. Velocities as funetions of y for 74, Ty, and Tz,

situation similar to that described by Landau,
namely, a continuous transition, occurs at some
critical points; while at some other critical points,
an infinitesimal change of the analogous Reynolds
number beyond the ecritical point induces a finite
change in the solution. The mathematical method
used will be the generalized Bogoliubov-Mitropolsky
perturbation method.®

The one-dimensional Burgers’ equations are con-
sidered first. A brief summary of the necessary
results obtained by Burgers in Ref. 5 will first be
given. Section ITA and the first part of Sec. IIIA
up to Eq. (19) will be restatements of Burgers’
results. The time-dependent descriptions will be
carried out after investigating the stability of the
solutions. The investigation on the two-dimensional
model is carried out along similar lines.

II. ““ONE.DIMENSIONAL” BURGERS’
MODEL EQUATIONS

A. Preliminary Considerations

To investigate the effects of the nonlinear terms
of the Navier-Stokes equations, Burgers studied two
sets of simpler model equations similar in form to
the Navier-Stokes equations. The one-dimensional
equations are as follows:

d—Q=P—yU—1f Py,

dt T Jo (3)
81)__ ,621) i 2

9t = Uv+v——ay2 3y @©9).

¢ K. M. Case, Progr. Theoret. Phys. Suppl. No. 37, 1 (1966).
T A factor of = is inserted to facilitate calculations.
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In these equations, U depends on £ only, and is
independent of y, while v = v(y, £) is subjected to
the boundary conditions

oy =0,t) =vly = =, ) = 0.

An obvious solution to Eq. 3) is U = P/,
v = 0, which will be called the laminar solution.
Further stationary solutions may be obtained
by equating the right sides of Eq. (3) to zero.
Making the substitution n = — (2/U)(dv/dy) in the
second equation of Eq. (3), and integrating, we
obtain
UV 1/2 s
v=:t(7) C—n—Ind+ )" @
where C is an arbitrary constant of integration to
be determined by initial conditions. The expression
on the right side of Eq. (4) has exactly two zeroes
for a fixed C, say 5; and »,. These two values corre-
spond to # at y = 0, n/m, where m is an integer.
Integrating Eq. (4) to-and-fro between the two
zeroes, one obtains solutions with no node, one
node, two nodes, etc., as shown in Fig. 1.° Let us
call these turbulent solutions Ty, Ty, Tz, ete. The
shape of T'; between y = 0 and = is similar to that
of T;; between y = 0 and 7/2 or y = #/2 and .
This is obvious, since the same function is integrated.
Let us expand ¢ into a sine series in y,

@
v = D Esinny,
n=1

then the boundary conditions are automatically
satisfied, and Eq. (3) becomes

du 1 e

S =P—U~—3 Z} £

ddé_tn = (U — n%)t, = n(% > Edns — Z&EM) ;
k=1 k=1

=12 ©

It is easily seen that T, is obtained by solving
the right sides of Eq. (5) with ¢, ({ = 1,2, --+) in
general all nonzero; 7;; is obtained by setting
Earer = 0, 8. 7% 0, (k= 1,2, ---); Ty is obtained
by setting £s-2 = &1 = 0,8 # 0, (k= 1,2, ---),
and so on. In particular, in the neighborhood of
P =n"(n = 1,2, --+) the solution 7, is obtained
by substituting P = 2% + e, fmw: = O,
(k =1,2 --- ,’& =12 ---n— 1);E‘nk = ek/277nk
(k=1,2 ---) and U = 2% + eu into (5), and
solving the resulting equations in successive powers

8 Burgers has shown in Ref. 5 that for a given finite P,
only a finite number of solutions are allowable.



of e. In fact, as we will see later, such a substitution
allows us even to obtain the time-dependent solu-
tion at P = v* 4 ¢p. Owing to instability of the
other solutions, such a perturbation cannot be ap-
plied to obtain the time-dependent solutions at the
other values of P.

B. Truncation of the Sine Series

The exact forms of the turbulent solutions are
not known. However, we may truncate the sine
series, and hope that the result will be a good ap-
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Tasig L. Stability of L, Ty, and Ti;.
P L T, Ty
P <y stable xx
P o= start to be both (%) coin-
unstable cide with L
2 < P < 492 unstable both solutions
stable
4y < P < 37 y? " unstable both solutions both unstable
stable
P > 17,2 unstable T'yr. is stable
and coincides
Wlth T] at P
3 vt Tiri
is unstable

proximation at sufficiently low values of P. It will
be shown later that in order to obtain the correct
solution 7', in the neighborhood of P = %, at least
two terms have to be taken (one term w111 not
give the correct solution even to the first order).
Similarly, 2n terms will give the stationary solution
T, correctly in the neighborhood of P = »**. This
gives us a rough idea of how many terms we have to
take for a particular value of P. In any case, the
truncated equations are of interest by themselves,
since they could be considered model equations
individually. Let us note that all solutions, including
the time-dependent ones, must be bounded as
t — . This is easily seen from the energy equa-
tion® which is obtained by multiplying the equation
for dU/dt by U, and those for dg;/dt (i=1, 2,- -+, n)
by &:/2, respectively, and adding all the resulting
equations; the final equation is of the form:

a (U’ s%) P S F
dt( +2;2 =PU U ,;,2”5" ©
The expression
(U2 + Z%)
t=1

may be considered as the square of the magnitude
of the total velocity, »*. Then Eq. (6) states that
3(dv*/dt) is negative outside the ellipse

PU —yU* — Zl—guék =
or
U — (P/%)
( P/% ) + ,; (P/\f P i

It is obvious that all solutions will eventually go
into the ellipse
2
+5£5-0)

and hence are bounded.

®In Ref. 5, Eq. (7.3), Burgers has obtained the general
untruncated energy equation.

Detailed studies are carried out for the cases of two
terms &, &; and three terms &, &, £.

C. Two-Term Case

When only &, and £, are taken, Eq. (5) becomes

=P U — 1 - 1,
B Wk b, g
%gtg = (U — d)§, — E?
The stationary solutions are:
(1) Laminar : U = P/, L =6=0;
. _ 2P + 3°
@2 T,:U= Br-a— |
_ [ _@P—1n7@P — 2»2))”2
b= :l:< 25 !
2P — 2°
=53
(3) TU U = 411, El = 0,
= £[2(P — &%)
Note that at P = »*, the laminar solution and 7',
coincide, and at P = 45°, T, and one of T
{namely, & = —[2(P — 4/°)]'?} coincide. These

two points are critical points.

The stability of the solutions is found by setting
the linearized small perturbation equations for
Eq. (7) and by straightforward application of the
Hurwitz criterion of stability for the resulting
eigenvalue equations (i.e., the conditions for all
eigenvalues to have negative real parts so that all
solutions decay in time). The results are given in
Table I.

Therefore, the stability changes exactly at the
critical points.

Now the quasilinear perturbation theory is ap-
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TasLE II. Asymptotic values of u, &, 2 at P = »* + ep.

p<o p>o
P 2p
u v 5v
6p) /2
& 0 + [-g]
£ 0 _g;_;
v

plied to Eq. (7). First of all, consider the lower
critical point, P = »% Let
P=vV+e, U=v+ ey

£ = el/2"11:

The particular powers in ¢ for U, §,, &, are suggested
by the exact stationary solution 7';. Substituting
these expressions in Eq. (7), we have

& = ena

K. M. CASE AND 8. C. CHIU

Solving for the second equation of Eq. (8"), we
obtain ‘

_ 230)p exp [2p/»)1] v
= i(%xf(o){eXp (@p/mt] — 1} + P> !

where 2,(0) = 2:],-0, and the sign of z, is the same
as that of z,(0). This dependence on the initial
conditions can be considered to be an extra degree
of freedom analogous to that mentioned in Sec. I.

From Eq. (8") and Eq. (9), we may readily find
the limiting values of «, &, & as t — . The limiting
values are listed in Table II.

From this we clearly see that the solution ap-
proaches the laminar solution or T';, around the
critical point, depending on whether one decreases p
or increases p. The sign depending on the initial
condition is a sort of arbitrariness; and if P/»* is
considered to be the analog to R, the Reynolds

)

du L2 42 number, then £,, constituting the first order term
gt T P T U T 2 T gem, of v, varies as [R — R!¥]"?, exactly analogous to
d the case described by Landau.
Ent—‘ = efun, + n2m), (8) Now, letzus consider the second critical point
at P = 45" Let
gl_'ilg = —3 — a2
3t = T3vm T m A+ e(un). P=%"4e¢ U=4d+e,
Eatl)vzeroth order, disregarding terms of order ¢, we £ = 'y, £, = —3 + e,
2
u =gz exp(—st) + 2 -4 then,
v 2 .
=2 = const, ®) Wyt B — =
2
X
72 = T, exp (—3vt) — - d
3 S = ewn + mm), (10)
Now let z, x,, and z, slowly vary with time. After
substituting Eq. (8) in Eq. (8) and applying the dns R
barring operation,® which discards the appropriate g = Tdu ot e,
terms that decay as exp (—#f) and exp (—3ui),
we have By the transformation:
dzx 8 3 172 o api/2
R GRS 5 L) LRI, f L CB
dx 5
o a(t-5), B m=mt o,
dos (p 7xf> z; Eq. (10) is put into canonical form, and to zeroth
da - N T e/ 3 P @) order, neglecting the e terms,
_ 6 ( 24 (=35 2> (_ 1 + 1(35)"” t)
Lo = (_35)1/2[1 + (_35)1/2]1’ p 6 T + yO exp 2 4 )
6 2 — (—35' 2> ( 1 — 4(35)* )
=~ N Ml - 12) NS B L 12
T2 T (=35 — (=35 (p 6 %1) + ya exp e ), U3
Ty = Yi.



BURGERS’

Tasre 111, Asymptotic values of u, i, n2at P = 3L v + ep.
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p <0 p>0
2p
u '5—," 0
12
n -+ [—%B] 0
2 -P
ke 5y 3v

Repeating the quasilinearizing procedure as before,
we have the equation for dy;/df; in particular,

dy,

= eia (= 6p — 5. (13)

The solution for Eq. (13) is
6py1(0) exp [— (2p/3)1]

1/2

= _(61’ + 551(0)[1 — exp [— (2p/3V)t]]> '
(14)
Again‘ the asymptotic value of u, £, & are readily

found from Egs. (11), (12), and (14) and are listed
in Table III.

1803

Hence, the solution approaches T; or Ti, de-
pending on whether one decreases or increases p.

D. Three-Term Case

The case when £, &, & are taken is much more
tedious. The procedure is the same: The stationary
solutions are found, their stability investigated, the
critical points are located, and finally the time-
dependent perturbation theory is applied at the
critical points. The results are stated briefly.

The equations are

dU
di

%E_tl = (U — »)t, — (— & — ),

=P—U—3E+&+8),

(15)

%E_tz_ = (U — &)t — 2638 — &8),

@& _ -
dt - (U 91})53 3&152-

The stationary solutions are:

(1) Laminar solution:

q=&6=§=0,U=

= MY

.
H

(U — ) (U — W[— (U — %) + [(U =N — 120U — ) (U — W]

®) Tiih= 1900 — %) F 60(0 — &)° — 12U = (U — 93] )
p - (U = 9) & (U = 9)° = 12U = )(U = W]
2 6 b
, _ Sk

U—%’

while U is related to P by the equation
(U — W)[67vU — 27° + 24P))°

= (=11U + 3»)[250U + (3»* — 12P)P%. (16)

The graph of Eq. (16) is shown in Fig. 2. The
solutions with (4) sign in the numerator will be
called T';, and the solutions with (—) sign in the
numerator will be called T,_. T, exist in the range
3By > U >vand 9 > U > 4»; but T;, exist only
for 9 > U > 4».

@ Tu:t=65=0,U=4,

£ = x[2(P — 47
0,U = O,

£ = £[2(P — %))

@) Tt =& =

The stability of the solutions is as shown in Table IV.
Again there are two critical points of interest:

(1) At P = »* the laminar solution agrees with
the two T';_ that begin to exist. When P is decreased
slightly, the solution approaches the laminar solu-
tion asymptotically, and when P is increased

13,3 7
1
R B

Pin»2

Fig. 2. Graph of U vs P for Eq. (16).
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TasLe IV. Stablhty of solutions L, TI; TII) TIII'

Laminar TI TH TH[
0<P <2 1 stable
2 < P <3l 1 unstable (i) 2stable T;_; L — T,
for P > 2
15 < P <4.002 1 unstable (i) 2 stable 7';_, oo
(1i) 2 more stable 77_. 2 unstable
4.0 < P < 4.3;2 1 unstable as above
P = 4.3 1 unstable (i) and (i) coincide 2 unstable
4.3t < P < 5.2 1 unstable (i) 2 stable 77, 2 unstable
(1i) 2 stable 7T7_.
5.2 < P < 5.9, 1 unstable (i) 2 T;. (probably stable), (i) one becomes
(1) 2 77 (become unstable stable, transition
somewhere). with T7y (iii) at
P = 5.2p2,
(iii} 4 more unstable solutions, (ii) one remains unstable
TI_ and 2 T1+.
592 <P < ® 1 unstable (i) 2 Ty~ (stability unknown). (i) 1 stable
(1i) no longer exist. (ii) 1 unstable
(iii) 4 unstable.
P <P <9.22 1 unstable (i) 2 Ty (stability unknown). as above 2 unstable
(1i) 4 unstable
9.2 < P < 192 1 unstable (i) 2 T';- (stability unknown) as above as above
(iti) 4 unstable
(iv) 4 more unstable solutions; as above as above
coincide with (iii) at
P =192,
192 <P <192 + ¢ 1 unstable as above
194+ e <P < w» 1 unstable (i) 2 T;— which begins to be as above as above
unstable somewhere.
(iii) and (iv) no longer exist.
slightly, the solution approaches T;.. It should be PN 1 %= B 1A
noted that in the neighborhood of P = »* £, and &, a = BlAO)

agrees with those in (¢) when only two terms £, and
£, are taken. In fact, it can be easily verified that
around P = »* 4 ep, the method of truncation
gives T, correctly for the £’s taken.

(2) The situation is different at the second critical
point

_ 2
P = @—56@.@—112 ~ 5.2,

Here, a “T,"” agrees with a T;; at U = 4y,

5 — (205)'*

6 v 2 1.55v.

51=53=0,52=

However, this T'; branches out into two unstable
T, namely, T;_, when P is increased, and T; does
not exist when P is decreased; while the 7. is
stable for P > 5.2/% but is unstable for P < 5.2+%
So for P Z 5.2°, the perturbation theory would
clearly break down. If one applies the time-de-
pendent perturbation theory at this point, the
equation corresponding to Eq. (1) for the amplitudes
has negative 8 and @ ~ —p. It is clear from Eq. (2)
that when « is negative, i.e,, when p > 0, |4]* — 0,
and the whole solution approaches T';;, but when «
is positive, orp < 0, |4 = = as

But formally, as ¢t — «, |A|* — a/8 so that |4] is
imaginary. This shows that there is no stable solu-
tion in that neighborhood when P is slightly de-
creased. Since it was shown that the solutions are
bounded, the asymptotic solution must be some
function finitely different from the stationary solu-
tion at the critical point. This suggests the possi-
bility of a transition to turbulence by a sudden
finite change, in addition to continuous changes.
That is, it is possible that an infinitesimal change of
the Reynolds number may cause a finite change
in the solution. In the future, we will call such a
transition a finite jump.

E. The Untruncated Infinite Set of Equations

The perturbation method may be used on the
untruncated system of equations (5) at least
at one critical point, namely, P = »°. For P < #°,
the laminar solution is stable. From previous ex-
perience, we set ‘

P=V4e, U=+ ey,
gl=g‘/2m,1=1,2’3..._

The equation for 3, is just the same as that in the
case where the sine series is truncated to two terms
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£ and &. Once the asymptotic form of £, is found,
the other £'s may be successively deduced, and one
readily sees that the solution approaches the laminar
solution for P = »°, and approaches T; for P < »°

Application of this perturbation method to further
critical points is of interest. We may hope that there
are continuous transitions to other turbulent solu-
tions. The fact that there exists no such transition
is partially revealed in the case when three terms
are taken, and in general is easily seen from Fig. 1.

_ (vU(O) _ V) - E;O)
30 3

56" — 5k

The determinant (17) is simply the determinant of
the coefficients of the linearized perturbed equations
of (5). The superseript (0) denotes stationary values.
It is easily seen that the above determinant being
equal to zero is also a sufficient condition for T,
coinciding with 7;. The fact that there exists no
such transition means that the determinant is
never zero, and it is readily shown that 7';; is un-
stable at P = 4»°, with (17) negative. By continuity,
T,; is unstable.

If T, is always unstable, all other higher T’s
cannot be stable, since they contain extra modes of
excitation in addition to all those of 7';;, which
are those modes in Ty, for example, that keep
vy =0) = vly = 2x/3) = 0.

III. TWO-DIMENSIONAL BURGERS’ EQUATIONS
A. The Untruncated Equations

The two-dimensional Burgers’ equations are of
more interest, since here one finds the possibility
of periodic solutions, and the arbitrariness of phases
as suggested in Ref. 2. But here one again finds the
additional possibility of a finite jump at a critical
point. The equations are '

L Y 2 2

=P U Wfo dy @ + o),

% _ _ " 9 .. 2

FYi U w)-—l—vayz By v — ), (18)

dw v , 0
é_t— U(v+w)+1/5‘z'/—2+5§(22)w),

subjected to the'bbundary conditions

~ @+ E)
— (U = ) — 5

1805

For a continuous change from 7; to T, the node
of the velocity distribution must go continuously
fromy = rtoy = /2 (or from 0 to 7/2), as P is
increased. However, from the method of integration
of Eq. (4), the node can only exist at y = =/m.
Therefore, a continuous transition from T; to T,
is impossible. This leads to the belief that all 7,
n > 2 are unstable. '

A necessary condition for 7, to be stable is that
the determinant

— P E)

> 0. a7

vy = 0) = o(y = =)
=wly = 0) = oy =m =0.

Making the substitution V = v + 4w, and repre-
senting V by a Fourier sine series in 3,

V. = Y & sinny,
n=1

where the £,’s are complex, Eqgs. (18) are transformed
into

alu 1 <

dt - _VU_2"=21£7»$:
L o 10+ U — b,

o n—1
o B - 5 2 gk, (19)
k=1 2 k=1 . .
where * denotes complex conjugation. Again there
exists a trivial solution
U=P / v, & = 0
(laminar solution). This solution is stable for P < »Z.
The critical point is P = »”. It is tempting to apply

a time-dependent perturbation method near this
point. Making the substitution

P=V2+ep,U=v+eu,
£ =

and after cancelling appropriate powers of ¢ and
then keeping terms up to order ¢ the following
equations are obtained:

/2
P Nay N = 1,2, see
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4v—
3vi

2y ———

Fia. 3. Graph of U vs P for Eq. (26). v

g—? =p —w — 305m — ednin,
I oy + (1 + Dum, + tn] + 0@, @0
%%' = [(1 + 2)» — n%]n. — g ’; - wnd
+ (1 4+ Dun, + nofni]
+ 0(@);n =2,3---.
To zeroth order,
TR N hﬂf)
U= pe "+ (p WA
7 = p; exp (i), 1)
-
1 = pa exp [(=3 + ipt) — LEIEE exp (i

; 1. 18 readily found once we find
(n — 1); in particular, when

forn =2,3, -«
ni forz =1,2, -«

+n
t— ©, Ny ™ Z Ak(pl; Tty pn—l) €xp (ikVt).

k=—n

Substituting Eq. (21) in the second equation of
(20), letting the p’s slowly vary with time, we have

. 2 ) 2
%%=e§l<(1+7')p_ ;_Z;le)'

Multiplying Eq. (22) by p%, and the corresponding
equation for dp*/d¢ by p,, and adding, we get

(22)

dlof _ 2lolg _gppp. @3
di v
Solving Eq. (23),
_ ? |2 )] exp [(2p/)1] v
A AT IE ) e

where |p,(0)| is [|p1]]:=o. Note that the phase of p,
is arbitrary, and that the asymptotic value of [p,|
is independent of |p,(0)|; if p < 0, |p1|i»e = 0. From

CASE AND 8. C. CHIU

the zeroth-order solutions for 9,, and Eq. (24), the
asymptotic values of |p,| and % can be found. Thus,
one reaches the interesting result that as P > %,
the solution approaches a periodic turbulent solution;
and the amplitude of oscillation is proportional to
(p)*”* the analogous difference of the actual and the
critical Reynolds number. The periodic solution
has one arbitrary phase, as mentioned. Note that
the - periodic solution is found without previous
knowledge of its existence.

B. The Truncated Series

Only the case of two terms is considered. The
equations are

%lt—’ =P — U — 3(8%, + £45),

dé,

D=+ 9U — o e, (29)

%f_tg = [(1 + )U — 4]t — &,

The following solutions are obtained:

(i) laminar solution: U = P/y, &, = & = 0
(ii) first periodic turbulent solution T,

b = o oxp [itwl + )] where o = p2b
P U - )(U—4)(1+——U—2—)
p= ” ’ U — )%’

p2 exp [2(— 2wt 4+ ¢,)],

= (U — ) (1 +(—17’“£Jz§§5?> ,

U
tan (2(91 +¢2) = _U_ 21/’

so that thefe is only one arbitrary phase, and U is
related to P by the expression
U*
P"‘VU-“%V(U—V)<1+((]—_§V‘)—2)=O. (26)
The graph of Eq. (26) is roughly shown in Fig. 3.
(iii) Second periodie turbulent solution 7';:

U =4,

£ =0,

& = ps exp it + @2)],
where

ry 2P — 451"
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TasLe V. Stability of L, T, T'r.

U Laminar T, Tn
0< U<y stable e
v < U < 2.533» unstable stable (continuous transition from L at U = »)
2533y < U < 4r unstable unstable i
4H<U unstable e exist but unstable

The stability of the solutions is shown in Table V.
Two critical points are present: U = » and U =
2.533v. The time-dependent development at U = »
is just as before. The time-dependent caleulation for
U ~ 2.533» is briefly stated. Let

P = P, + ep, [where P,
and U = 2.533» are related by Eq. (26)],
% = 2.533 + eu, 0, = —4.61y,

Yo —0.445 0.456 — ¢0.325
Y| _ |—0.445 0.456 + ¢0.325
Ya —0.0876 —0.357 — 40.107
Ys —0.0876 —0.357 4 40.107

After a straightforward but tedious caleulation,
we have

Yo

7 = 17.96w, — 0.445p + e(a:Y:95),

,j=0,1,2,3 (28

where a,; are complex numbers,
%2- = (—0.394 + 716.7)y, — 0.0876p + O(e);

dy,/dt and dys/dt are just the complex conjugates of
dyo/dt and dy,/dt, respectively. Thus, to zeroth
order,

Yo = T, exp (¢7.96vt) + %%{2 ,
' (29)
Y: = Z, exp [(—0.394y + 716.7)1]
+ 0.0876p .
(—0.394 4 716.69)
After quasilinearization of Eqs. (28), we have
o — ((~0.00287 ~ 0.117) Lz, (30)

p1 R 7.081y + eny,
p2 R 7.336v + eng,
201 + @3 = 2e10 + ¢20)
+ ez wheretan (2010 + ¢50) & —4.61;

substituting these into Eqgs. (25), the equations for
du/dt, dn,/dt, dn,/dt, and dx/dt are obtained. These
equations are put into canonical form by the trans-

_ formation
—0.380 — 70.170 10.561 u
—0.380 + 10.170 —10.561 M|

27

0.352 — ¢0.0961 0.0716 — 70.846] |,
0.352 + ¢0.0961 0.0716 4 70.846) (x

and a similar equation for z,. Thus, for p < 0, z,
grows exponentially, while for p > 0, z, — 0 as
t — o, 50 that y, — 0.445p/77.96» and the solution
approaches T'; as expected. Hence, there is again
the possibility of a finite jump. Note that the par-
ticular form of Eq. (30) is a result of the assump-
tion that p; = p{” 4 en;. Hence, if 7, becomes
unstable at nonzero values of £&,7 = 1,2,3 ---. ,
then perturbation will lead to equations of the type
(30) and a finite jump will occur at the correspond-
ing critical point. (Actually, we have another un-
mentioned critical point similar in nature to this
in the one-dimensional case, with the series truncated
to 3-terms. Referring to Table IV and Fig. 2, clearly
there is such a eritical point for T';_ between 13v»/5 >
U > », since T;- is unstable near U < 13»/5.
Further, one can easily show without truneation of
the infinite series that for the one-dimensional case,
if T, 1s unstable beyond a certain P, where all the
Fourier coefficients £;,, are nonzero, then a finite
jump will occur.) It is also interesting to note that
the transition from the laminar solution to 7 in-
volves the increase of a spatial degree of freedom
(namely, the extra y dependence), while at the



1808

second critical point, no extra spatial degree of
freedom is available, and the solution could only be
stabilized by a finite jump.

IV. SUMMARY

The time-dependent perturbation method works
well whenever there are stable solutions in the
neighborhood of the critical points; the failure of
the method indicates the absence of stable solutions
near these points.

For the Burgers’ one-dimensional equations, there
is a continuous transition from the “laminar” to the
turbulent solutions at the lowest critical point P =

K. M. CASE AND 8. C. CHIU

v*. But it is believed that the transition at the second
critical point is a finite jump. The eventual insta-
bility of “T;’ remains to be proved in order to
confirm this finite jump, in general.

For the Burgers’ two-dimensional equations, a
periodic solution is obtained with an arbitrary
phase. The ‘“laminar’” solution transits into the
periodic solutions continuously at P = »°. The
second transition is again believed to be a finite jump.
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