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ABSTRACT

The present work formulates the exact solution of the pairing problem in
the Q(spatial)-ST scheme in terms of the matrix elements of the pair creation
and annihilation operators coupled to zero spatial angular momentum quantum
number. This makes it possible to study the pairing interaction with different
strengths for the S=0 (T=1) and S=1 (T=0) pairs, as well as for mixed config-
urations of several single particle levels. The mathematical formulation of the
problem has involved the study of an orthogonal group in eight dimensions, the
so-called quasispin group. The representations are broken down according to
0(8) 2 0(6) ~ su(k) @ 8U(2) X sU(2), where SU(L4) is the usual Wigner super-
multiplet. In addition, the basis is chosen such that the number operator of
the system is diagonal. By using the Wigner-Eckart theorem, the matrix ele-
ments of the pair operators are split into segments of reduced matrix elements.
They are those connecting 0(8) with SU(4) and those connecting SU(L) with the
SU(2)-spin space and SU(2)-isospin space groups. The Wigner coefficients in-
volved in these segments are calculated and tabulated for the representations
needed for seniority v=0 and v=1. In order to do this, the state functions
built from 0(8) to 0(6) and SU(4) to SU(2) X SU(2) are studied. With this
general formulation a sample calculation has been carried out for the case of
a pairing interaction of variable strength connecting two single particle
levels similar to those of the s-d shell. The calculation is done for nucleon
numbers of 4, 6, 8, and 10 and states with seniority v=0. The results show
that (1) the pairing interaction is very effective compared with the particle
energy and wins out in the competition with the single particle excitations
for all but the weakest pairing strengths, and (2) the pairing interaction
tends to make more stable those states built from the largest possible number
of a-like groupings of four particles.
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CHAPTER I

INTRCDUCTION

The quasispin method was first applied tc problems in nuclear physics
by Kerman® in his treatment of the pairing interaction. Quasispin operators
are bullt from palr creation and annihilation operators involving nucleon
pairs coupled to zero angular momentum. In the j-j coupling scheme of the
shell model, involving configurations of identical nucleons (neutrons only
or protons only), the quasispin operators have the commutation properties
of conventional (three-dimensional) angular momentum operators. Generaliza=-
tion of the quasispin method to configurations with both neutrons and pro-
trons leads to more complicated operators and requires more complicated mathe-
matical tcols.

Conventional nuclear spectroscory done in the spirit of Racah is based
on group chains starting with the unitary groups in (23j+1) (or 24+1) dimensions
and involiving the sympletic (or orthogonal) subgroups in these dimensions.
The infinitesimal operators which generate these groups can be built from operators
which preserve the total nucleon number. As a result the spectroscopic problem
for each configuration must be solved separately for each nucleon number.
An alternate group chain discovered more recently be Helmer32 is based on
the direct product of the symplectic (or orthogonal) group with the appropriate
quasispin group; which leads to two parallel subgroup chains (1) that based
on the sympiectic (or orthogonal) group which contains the quantum numbers

associated with the space variables, and (2) that based on the quasispin group



in which the more trivial quantum numbers such as the total nucleon number

N and the isospin T are associated with the lowest subgroups of the chain.

It is the latter group chain which includes among its infinitesimal operators
the palr-creation and annihilation operators and is therefore most directly
applicable to the study of a nuclear pairing interaction.

For configurations of both protons and neutrons there are two basic
coupling schemes, namely the JT and LST schemes. The quasispin groups ap-
rropriate tc the twoschemes have been identified by Flowers and Szpikowski3
and othersas rotational groups in abstract spaces of 5 and 8 dimensions, re-
gpectively. For the J-T scheme, Ginocchio5 has calculated Wigner coefficients
involving the four dimensional (spinor) representation of 0(5) to extract
the N-T dependence of the fractionali parentage coefficients in the seniority

6

scheme; snd Hecht™ has extensively worked out the exact solutions of the pair-
ing Hamlltonlan and provided the general algebraic expressions of the matrix

elements of the infinitesimal operators of 0(5) for states with reduced isospin

t =0, 1/2, and 1,

P

in a scheme in which both nucleon number N and isospin T
are good quantum numbers. Hecht! has also used the quasispin technique in
the study of the N-T dependence of one- and two-body operators in the seniority
scheme . in the LJT scheme, there are six pailr creation operators coupled
to L = 0 (with 3 =1, T =0 or 8§ =0, T = 1) and a similar set of six pair
annihilation operators. Flowers and Szpikowski have shown that these 12 opera-
tors together with the number operators and the 15 operators which are the

SU(L) super multiplet operators of Wigner form the infinitesimal generators



for a orthogonal group in eight dimensions. They have also evaluated the
eigenvalue of the pairing Hamiltonian for the pure configuration N in terms
of the Casimir operators of 0(8) and SU(L).

The present work formulates exact solutions of the pairing Hamiltonian
in the LST scheme in terms of the matrix elements of the L = O pair creation
and annihilation operators. This maskes it possible to study the pairing inter-
action with different strengths for the S = 1 (T = 0) and § = O (T = 1) pairs,
as well as for mixed configurations of several single particle levels. It
is thus possible to study the competition between pairing effects and single
particle excitations. Although the LST scheme may be a good zeroth approximg-
tion for 1ight nuciei, a two body interaction approximated by a simple pairing
interacstion is not sufficlent to describe the excitation spectra and binding
energies of such nuclel. The present work is therefore intended mainly as
a modeli study to further elucidate the properties of palring interactions.

In the present work the group chain of 0(8)  O(7) 2 0(6) is used, where
C(6) can be identified with SU(L) and the representations of the Wigner super
multiplets, whiie the four numbers needed to specify the irreducible representa-
tions of the rank 4 group 0(8) can be identified with the quantum numbers of
the seniority scheme. Although the irreducible representation labels of both
0(8) and O(6) thus have ready physical significance the quantum numbers of
0(7) have no easily identifed physical meaning. Even worse, the nucleon
number operator is in general not diagonal in a scheme based on the group
chain 0(8) 2 0(7) © C(6). To make the nucleon number, N, a good quantum

number it is necessary to find specific linear combinations of the O(T)



representations allowed by the 0(8) and 0(6) quantum numbers. A similar pro-
blem occurs when the Wigner supermultiplet representations of 0(6) are further
reduced to S and T. In the canonical group chain 0(6) 2 0(5) 2 0(3) > 0(2)
only one of the quantun numbers, either S or T, can be identified with the
irreducible representation of 0(3). Because of these difficulties it has

not beenpossible to give a completely general algebraic expression for the
matrix elements of the pair operators, valid for all irreducible representa-
tions. However; if the seniority number v is restricted to O or 1 the single
quantum number N is sufficient to completely specify the states of the 0(8)

to 0(6) chain, while the states of the possible 0(6) representations for these
cases are fully identified by S and T only. Since the seniority v gives the
number of unpaired nucleons (entirely free of L = 0 coupled pairs), states

of lowest seniority such as v = O and v = 1 are precisely those of greatest
interest in problems dominated by a paliring interaction.

By using the Wigner Eckart theorem the matrix elements of the pair
creation and amihilation operators can be split into a few generalized Wigner
coefficients corresponding to the physically significant segments of the
above group chains. The whole set of Wigner coefficients needed for v = O
and v = 1 are worked out in the following chapters. This mskes it possible
to write the matrix elements of a charge independent pairing Hamiltonian in
general algebrailc form for these cases.

A few numerical examples are worked out for the v = C cases involving
two single particle levels to demonstrate the competition between pairing

effect and single particle excitations.



Since the matrix elements of the infinitesimal operators for the chain
0(8) 20(7) o 0(6) are needed for this investigations, a full discussion
of the general group chain O(n) © O(n-1) D... and the matrix elements of its
infinitesmal operators is included as a supplement at the end.

While this workwas in progress an investigation by Richardson has a;ppeared8
dealing with the problem of finding solutions for a charge spin independent
palring Hamiltonian. However, Richardson's approach is very different from
the present one. It requires the golution of a system of coupled algebraic
equations with subsidiary conditions. Furthermore, at the moment it is
restricted to the special case of seniority zero. With general expressions
for the matrix elements of the pair operators, the approach used in this in-
vestigation, it is easier to consider perturbation treatments for the weak

or strong pairing limits for S = O or S = 1 pairs.



CHAPTER II

THE QUASISPIN FORMALISM

A. THE THREE-DIMENSIONAL QUASISPIN
The quasispin formalism was applied by Kerman to a pure configuration

of N identical particles jN with the pairing Hamiltonian

~ 2j-m-m' _+ _+ ~
H = <G m"Zm>O (‘-) a,jm aj_m a‘jmmv ajm' (?.vo.l)

Where Condon and Shortley phase conventions for the second quantization

fermion operator of creation agm and amnihilation ajm are used.
The seniority v state functions which diagonalize H are of the following

general form

+ + +
Ay Ay .. .AL imy  %jmsy  Bimy | 0 > (2.A.2)

Where A, 1s a pair creation operator which creates a pair of nucleons
coupled to total angular momentum zero (see (2.A.3) below); and all the other
v single nucleon creation operators can not be coupled into pairs of total
angular momentum zero. (If the set m values Myy Moyoes,ly include the pos-
sibility my = ~Ig 5 it is necessary to take linear combinations of the state
functions of the above form such that the resultant function is free of pair
coupled to angular momentum ZEero. )

The number of A4 in a semiority v state can be 0,1,2,... up to
1/2(23+1-2v) = 5 + 1/2 - v.

The set of pairing operators



dmm gt gt
b
= L)d-m ,
A mgO () 3~-m %jm
- 5 T (e +al 1) (2.4.3)
AO = 2 m>O ajm a-jm aj_m aj_‘m = ° 05

satisfy the commutation relations of a three dimensional orthogonal group

[A+,A., ] = 2A

[Ao;A-%-]

1
=g
+

[Ag,AL] = -A (2.A.4)
with these relations, the pairing Hamiltonian can be written as
H o= -GAA = -G(A® - A 2+ Ag) (2.A.5)

The eigenvalue of A, is related to the number of particles, N, in the

configuration jN; the eigenvalue A(A+1) of é? is related to the maximum pos-

sible value of Ay for the seniority v.

1
Ay ® E(N - do §)

1 . 1,., .1 *
A = °§(Nmax - - %,) 5(3 + 5 - v) (2.4.6)

Putting (2.A.6) into (2.A.5), the energy of interaction is

E = - %G(N - v)(2) +3 « N - V) (2.A.7)



B. THE EIGHT-DIMENSIONAL QUASISPIN GROUF

There are two ways of extending the above quasispin operators for con-
figurations of both neutrons and protons, that is for particles with spatial,
spin, and isospin variables. In one scheme the single nucleon orbital and
spin angular momenta are coupled to j, and the single nucleon states are

labeled by nisjm.

52 tmy . (The isospin quantum numbers are t = 1/2, and in

the common nuclear physics convention me = 1/2 for the neutron, m, = —1/2

€
for the proton.) In this scheme the quasispin operators are based on the pair
creation operator which create pairs of nucleons coupled to J = O and T = 1.
These lead to a family of 10 operators, the generalization of (2.A.3); they
are the infinitesimal operators which generate a group 0(5). 1In the other
scheme, the one of interest in this investigation, the single nucleon state,
are labeled by nlmz, sMm tmt, The quasispin operators are now built from
pair creation operators which create pairs coupled to total orbital angular
momentum L = O. This leads to a family of 28 operators, and it has been
shown by Flowers and Szpikowski that these generate a group 0(8). The pro-
perties of these operators is reviewed in the following paragraphs based

3

mainly on thelr paper.

B.1. The 28 Quasispin Operators, Their Origin
The 28 quasispin operators can be classified as follows:
(a) Pair creation operators: There are six types of pair creation
operators coupled to total L = O. They are those which

(1) Create a spin up protron and a spin down proton.



(2)

(5)

b-p = - L-m + +
i nzl (=) % mep al-mJ’p

Create a spin up proton and spin up neutron

pn 5 l-m
= - at+ at
% m (-) Imprp f-mtn

Create a spin up proton and a spin down neutron

L-m
p-n = ) (- at at
Q+ m (-) imAp p-min

Create a spin up neutron and a spin down neutron

n=-n L=-m
= Y (. + +
o m (=) & pmpn Zp-min

Create a spin down proton and a spin up neutron

-Dn f-m
Q+p B % (=) a}m¢p a;-mﬁn

Create a spin down proton and a spin down neutron

-p-n _ L-m 4 +
G kT e

Due to the anticommutation properties of the nucleon creation operators

these are the only six independent types all the others like Qmu = 0 and

P = -@P vhen a £ B. The (_)l-m appears through the angular momentum

coupling coefficlent., In the Condon and Shortley phase convention:

<£m/l—m|OO> = (-) m
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(b) Pair annihilation operators: There are six types of palr annihilation
operators corresponding to the six types of pair creation operators.

They are defined as their Hermitian conjugates
@B = (QEOL)’f (2.B.1)

(¢) Number-conserving operators: The commutations of pair creation
and pair annihilation operators lead to operators of the general
type Q4 = 2. a’a which do not change the number of particles in
a system. For ready physical interpretation they are divided into
four sets:

(1) Number operators
Pp nn =p-D ~n=-n
Qo ? Q‘o ? Qo ? Qo
(2) Spin-exchange operators

p=p A0=n  ~=ppP A=hD
Qo ? Qo I Qo ? Q'o

(3) Change-exchange operators

pn - A0p  o=P-0  4=0-D
Q2", Q7P, o P, o

(4) Space-exchange operators

p-n n=-p =pn =Ip
Qo s Qo : Qo ’ Qo

For example
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p=n _ at
Qg = a

at .
m  Am?D pmdn

Note thet (_)Z-m does not appear, because &m has the same transformation

l-m
properties in the angular momentum space as (-) |£~m>.

B.2. The 28 Quasispin Operators, Their Relations To The Infinitesimal

Generators of 0(8).

(a) Reclassification of the quasispin operator: The above 28 quasispin
operators which have been presented according to their simple physical
meaning will be regrouped into more convenient form.

The six pair creation operators are rewritten as

1! 1 1
25+1, 2T+1A+(M39MT.) = J“‘é’ ) m% : < fm £-m|00> < Smysmg [TMp > x
2 g

<ilnp 2 mg' [SM, > x at a®
2 8 )

s 2 mmeme p-m m,

+ Ds (2.8.2)
Through the restrictions of the Pauli exclusion principle, the pair
creation opergtors can be coupled either to total spin S = 1 and total isospin

T = 0; or to total spin S == O and total isospin T = 1. They are

13,+
A*(o,M Mo -1, 0, 1
( 5 T) T P J
and
>a(u_,0) Moo= -1, 0,1

Their relations to the Q+ operators are
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Ba*(0,1) = Qi-n 31a(1,0) = Q3F
b-n -
Ba*0,0) = L (7 +ai™) (0,0 = f(Qif P+ Q;7P)
J2!
p (0,-1) = Q@7P 51p(-1,0) = Q[B-P (2.B.3)
Similiarly, the six annihilation operators are
lBA(O,l) — Q:nn BlA(l,O) - Q’E)n
34(0,0) = = (aP + P 3la(0,0) - (g7 4 qpn
) \/? - - 2 \/E\ - - )
13A(0,-1) = Q7FP 31a(-1,0) = Q7P (2.B.4)
The 4 number operators, QO can be grouped into
1 - DY . 1
Qp = E(an + Qg™+ QBP + QZP°P) + o = - 2Nop Q
o, = M apr -z - o
L (qun -n-n op ~P=p
To = Q(QO‘ + Qo - Qo = Qo )
By, = (8% +QzPP - GBP - o;7-m) (2.8.5)

where Nop is the number operator which gives the total number of nucleons;
and Q is the spatial degeneracy of the single level, it is, for example,

24+1 if the spatical scheme is the ordinary orbital angular momentum scheme.

The 12 Q, exchange operators can be grouped into



13

5, = JlE (e " + @27y s, = jl;“ (Qzh + QzPP)

O A B NI C SRy

B, = J%mg'n - B - J—-%(Q;nn - PP)

B, = J—%(Qgp Q""P) Boy = Je(e5" - )

B, = @@ B - QP

Eq = Qg“P Elml = Q7P-1 (2.B.6)

where %15 corresponds to an operator which steps up the mg to m ¥ and my
to mt+B.
(b) Identification of the quasispin group: The group 0(8) is
generated by 28 infinitesmal Cartesian orthogonal generaters.
. d )
J = -i (x - X —) (2.B.T)
mn mExn 0 dxp
where myn = 1,2,...8 and m < n
The commutation relations are
- s o _ _
[Jpq,JrS] = I(Vserq * Blsp aerSq SSqup) (2.B.8)
Since QO, TO, Eoo’ SO form a set of mutually commuting operators they can

be ildentified with the set of operators J__, J J J. . From the com=
P 78° 567 “347 ‘12
mutation table given by Flowers and Szpikowski, the remaining operators

are identified in terms of the operators Jmn as follows:
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j%(J13+iJ23)

i .
By = szth+1J2u)

For = J‘E(J T 5)
1-1 >
g o ygtides) + i(J16+10p6)
11 >
2
13 + -i .
400,00 = Flor-i9ye)
L3y%0,.1) = I517H6p) - HJsp-176g)
2
31A+(1,O) _ i(Jl7+iJ27) + (J18+1J28)
2
-(dJ -iJ
1a*(0,0) “Usridsg)
J2
Sly*to1,0) = LW1771a7) * (91g-idpg)
2

1 .
S = =(J.._-
B \/_2( 15 1J23)

1o

T = Hlus-idyg)
-1 )

10 = Bl

T
Fo-r = FlIs195)

~(9y5-10p5) - 1(314-105)

B o= .
E = (‘,T15’1J25) - 1(J16-15¢)
-1-1 5

2
135(0,0) = J%(JuTiJMB)

(J57+1J67) + i<J58+iJ68)

La(0-1) = .

Slp(1,0) - —tJ177ep) ; (718-i72g)

31A(0,0) = ﬁi};ﬁ) |

Slp(ar,0) - —HIrtider) ; (J18%1J28)
(2.B.9)

From these relations it can be seen that the set of operators §, T, EIB form

a subgroup O(6) in the 1,2,...

6 subspace of 0(8). Within this 0(6), the §

operators form a subgroup O(3) in the 1,2,3 space and the T operators form

a subgroup 0(3) in the 4,5,6 space. The S and T commute. The Eip) E_1p and

So form a subgroup in 1,2,L4 space; and the Eps EO-l’ and TO form a subgroup
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in 3,5,6 space; however the S operators do not commute with EO,il5 nor the
T operators with EilJO' It is quite clear from such a representation that
0(6) has subgroups formed by the direct products O(3) x 0(3). The most
meaningufl of these are the § and T operators. Further, 15A+(O,O), 13a(0,0)
and Qg form a group O(3) in 4,7,8 space, and 21A*(0,0), 31A(00) and Q, form
a group O(3) in 3,7,8 space; but of all these operators only Q, commutes

with S and T, and it is related to the number operator.

B.3. The General Properties Of The 0(8) ® 0(6) 2 0(3) x 0(3) Quasispin
Group Chain

The n dimensional orthogonal groups are generated by a set of EL%:ll
operators Jdao These operators are governed by the commutation rule (2.B.8).
The rank of the group, which is the number of mutually commuting operators
and also the number of integers or half integers required to specify the
representation, is k for n = 2k and n = 2k+l. For example 4 numbers are
necessary to specify the irreducible representations of 0(8), whereas only
% are required for 0(6) and O(7).

(a) The irreducible representations of 0(6): The irreducible representa-
tion 0(6) are specified by the highest weights, that is by the largest
possible eigenvalues of the 3 commuting operators Tos Egps So¢

Since 0(6) is isomorphic with SU(L), the irreducible representations
can also be labeled according to the notation standard for the
special unitary group associated with the 4-dimensional spin-iso-

spin space. It is convenient to include the number operator (or
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QO) which commtes with the 15 operators §, T, Exﬁ; and together with them
generates a group U(4), so that the irreducible representations can be specified
by the symmetries of n-nucleon spin-isospin functions. These symmetries are
characterized by Young tableaux or partition numbers [flfafﬁfh] on N objects

where A4 are integers such that

f. +f, + f

17 o =X

3

with

The partition number fi specifies the length of the ith row of the Young
tableau. S8ince the number of single nucieon spatial state is Q whiie the
number of spin-isospin states is four; the Young tagbleaux are restricted to
have at most Q columns and 4 rows. Since there can be at most fy neutrons
with spin up, and subject to this restriction at most f2 additional neutrons
with spind down, etc..., the largest possible eigenvalues of the 3 commuting
operators T05 Eqos S, are specified by the partition numbers f;. Independent

of the ordering of the single particle states, the highest weights which de-

fine the O(6) irreducible representations are thus characterized by

P = (] + £y - £z - )
Gk ,
P o= g(fl = £y + f5 - fu)
P ;(f f f +f) (2.B.10)
S A L > B
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These P, P', P' are the Wigner super multiplet quantum numbers.
(b) The irreducible representation of C(8): The irreducible representa-
tion of 0(8) are specified by the highest weights, defined by the
largest possible eigenvalues of the L4 commuting operators QO, Tos

Eoo’ Soe In a state of speicifed seniority v, there must be at

least v nucleons (the number entirely free of pairs coupled to L = 0).

No

NOj-

The highest possible eigenvalues of the generator QO = = p°

igs therefore

=Qm;£
? 2

v

Subject to the restriction to the highest possible QO, the highest eigen-

values of T , Ej,, and S, are therefore speicifed by the symmetry of a v

Q0

nucleon spin-isospin function characterized by partition numbers [ulu2u3u4]

on v objects, where
ST R R T

and where the p; are agaln integers, satisfying

=)

X2 M 2 M 2 Hz 2y 20

)

Among the set of v nucleons corresponding to the highest weight state
there can again be at most W neutrons with spin up, and subject to this
restriction at most o additional neutrons with spin down, etc.... The

highest eigenvaiues of To’ E So in the highest weight state of 0(8) are

00’

therefore specified by
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poo= ol oy - -y

, 1
p' o= Bup - g - )

Poo e e ) (2.B.11)
b VP TR TR T My e

The p, p', P are called reduced supermultiplet quantum numbers. They
are supermultiplet number of the v nucleons free of pairs coupled to L = O,
In analogy with (2.A.2) the state function for such a representation can be

written as

ATAT. AT e ) (o>
v

%,JAL
IR
k . A
Y
1
f.
N 7
L.....J_E.

1.

11

(¢) Decomposition of 0(8) into 0(6): For a specific v, ¢, p', 7',
the 0(8) irreducible representation is denoted by (Q - %v, p, ', )
which decomgposes into different irreducible representation of the subgroup
0(6) characterized by (P,P',P"'). This decomposition is due to the fact that
the (n-v) operators A* with O(6) irreducible tensor character (100) can be

2
coupled to the 0(6) representations (p,p',p') in many different ways.

For fixed (Q - %Ng p, p', p') and (P, P', P') the decomposition from

0(8) to 0(6) is not unique. For the 0(8) D 0(7) D 0(6) chain it can be seen
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that three other quantum numbers which specify the representations of 0(7)
are needed to identify the "parent" of 0(6). The physical content of these
three quantum number in not so easily determined.

A similar problem occurs in the decomposition of O(6) into the direct
product O(3) x O(3) of the spin and isospin groups. Once again the set of
(P, P', P') and (S Mg, TMp) are not sufficient to give a unique decomposition.
Two other quantum numbers are needed to completely specify a state. Although
Moshinsky and Nagel” have succeeded in finding the needed operators, they
are of third and fourth degree in the infinitesmal operators of 0(6) and the
physical content of these two operators is again obscure.

The search for such missing operators, though noble, may thus not lead
to any practical results. The present work tries to do without them, at the
cost of limiting the scope of interest to include only states of low sgeniority.
Since these are precisely the states of greatest interest for problems in
pairing theory, this is not a severe restriction.

In the most general case a state vector for a specific 0(8) irreducible

representation would be completely specified by 16 quantum numbers .
(@ = @ -% pp'p"), (3005), (FP'P'), SUTMp, wp>

Where, for example, ® and $ could be chosen as the eigenvalues of
Moshinsky and Nagel's third and fourth degree O(6) operators, while (alagaB)
could be chosen as the representation labels of the group 0(7) in the group

chain 0(8) o 0(7) 2 0(6). The general branching law for the group chain

0(n) ® 0(n-1) D... (which is discussed in detail in the supplement to this



thesis) requires

a > P P>ay > P P' >0 > [P

If the seniority v is restricted to be either O or 1L, p p' p' are restricted
111 _ . .

to the wvalues 000 or 5 5 &, respectively. In these special cases the re-

maining quantum numbers are therefore also severely restricted as indicated

in the following table.

For v_= O For v.= 1
o(8) = (app'p") (2000) (2 -555%)
o(7) = (ayo0) (00) (@ 3 3)
o(6) = (pp'P") (noo) (n - % 5,43)
o = integer a = % integer
Q>a>n Qm%ZO"}_nu%

In both cases therefore only a single 0(7) gquantum number is needed
to completely specify the states. However the quantum numbers & have no
ready physical significance. Even worse, a state of definite & is not a
state of a definite number of nucleons, N. The number operator is in general
not diagonal in the 0(8) D 0(7) D 0(6) scheme. (The highest weight state
is an exception.) Since it can be shown that the number of distinct eigen-
values of the number operator is equal to Q - n+l, which is equal to the

number of distinct values of & (or &') in the above two cases, the number
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operator itself can be used, in place of an operator whose eigenvalues deter-
mine &, as the additional operator which make the decomposition of 0(8) into
0(6) unique in these two cases. Restriction of v to either O or 1 implies
a restriction to the O(6) representations (noo) or (n - % % %) and (n - %.% - %)ﬂ
It will be shown in the next chapter that the decomposition of 0(6) into
0(3) x 0(3) is unique in those special cases, so that the quantum number SMq

TMT are sufficient to completely specify the states of 0(6).

B.4k. Matrix Element Of Operators In The 0(8) 2 0(6) D 0(3) x 0(3) Scheme

A general irreducible tensor operator in the 0(8) 2 0(6) D 0(3) x 0(3)

[
chain can be identified as TEPP’ P) (a 10003 ). Its matrix elements can be
(SMgTM ) ( wé
calculated by the Wigner Eckart theorem. The matrix elements of interest

in their work are those of the infinitesmal generators of 0(8), or their

linear combinations which have the tensor character Tg%%?ggN
SM,T
where (PP'0) = (100) or (110) (SMgTH)
(SMgTMp) = (1 Mg00) or (001Mp)
N = 12 (Pair creation or annihilation operator)

or 0 (number preserving operator) .
A table of the 28 operators and their tensor properties with respect

to the group chain spaces are included.
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TABLE 2.1

TENSOR PROPERTIES OF THE 0(8) QUASISPIN OPERATORS

Generators P P! P" S MS T MT
% o o o 0 o 0 0
T, 11 o o0 o 1 0
B 11 o 1 o 1 0
S 11 o 1 o 0 0
s, 11 o 1 1 0 0
T, 11 o 0 o 1 1
B, 11 o 1 11 0
B, ) o 1 o 1 1
B, 11 o 1 101 -1
Eyp 11 o 1 11 1
S1a*(10) 1 o0 o 1 1 0 0
5% (00) 1 0 0 1 0 0 0
Sha*(-10) 1 o0 o 1 -1 o0 0
Pato1) 1 o0 o 0 o 1 1
4+ 00) 1 0 0 0 0 1 0
La*(0-1) 1 0 o 0 o 1 -1

Properties of their conjugates and phase relations will be
discussed later.



CHAPTER III

THE SU(4) PART OF THE PAIRING PROBLEM

A. INTRODUCTION

In calculating the matrix elements of the pair creation operators, the
Wigner Eckart theorem will be applied to each segment of the quasispin group
chain 0(8) 2 0(6)  [0(3) x 0(3)]. In this chapter the 0(6) > [0(3) x 0(3)]
part of the chain and its Wigner coefficlents are taken up first.

0(6) is generated by the 15 infinitesimal operators S, T, Ex&’ By
choosing the group chain 0(6) 2 0(5) 2 0(4) 2 0(3) » 0(2), a canonical way
of specifying a state function is obtained; that is, the state function of
a given irreducible representation of 0(6) are completely specified by the
irreducible representation labels of the subgroups in the chain. A state

function can be denoted by

Me1 Mgz Mga
Mg Ms,
Mgy My

where the my, are the irreducible representation labels for 0o(n).
In the notation of Chapter II (m6lm62m6§) = (P,P',P'). (The group chain
0(n) ©® 0(n-1l) @ ... is studied in detail in the supplement to the thesis

where the possible values branching laws for m

i are discussed.) Besides

the three 0(6) labels, six additional quantum numbers are needed. However,
if mg, and [mgz| are fixed at either O or %, msy and |my,| are also fixed,

23



so that only four additional quantum numbers are needed to specify a state.
Although the specification through the above group chain is natural in the
mathematical sense, it is not the physically relevant one, since S and T ap-
pear on a very different footing and 82 and T2 are not simultaneously diagonal.
Either S Mg or TMp can be identified with m}l’ myq 5 but if SMS are chosen,

a linear combination of the states with different M5y, M) are neede to diago-
nalize T° and To. The physically relevant way of specifying the state function
therefore requires the group chain 0(6) D [0(3) x 0(3)]. In the special cases
mentioned above the quantum numbers of O(3) x 0(3) are sufficient, since

SMS TMT completely specify the states.

Since 0(6) and SU(L), as well as O(3) and SU(2), have Lie algebras of
the same structure, it will be convenient to substitute SU(L4) o [SU(2) x
su(2)] for 0(6) o [0(3) x 0(3)] in the following sections. The quantum num-
bers S and T are then more easily recognized.

Since the calculation of the SU(L) D [SU(2) x SU(2)] Wigner coefficients
needed for the matrix elements of the pair creation operators in rather lenghty,
a brief outline of Chapter III and the general method of attack will be given
here first. A review of the general properties of SU(L4) is given in section
B where the step-down (up) operators are discussed. The explicit construc-
tions of the state functions, in terms of repeated application of normalized
step-down operators, are given in section C and D for the SU(L4) representations
of primary interest in the pairing calculations. After a brief review of
the general properties of SU(L4) Wigner coefficient in section E, matrix ele-

ments of the infinitesimal operators are calculated in section F and expressed
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in terms of SU(L4) Wigner coefficients. With these matrix elements of the
infinitesimal operators, recursion relations are set up from which further
SU(L) Wigner coefficients are calculated. The simplest such coefficients

are those involving the coupling of one-particle states to the representations
of interest. These are calculated in section G. Finally the SU(L) Wigner
coefficients involving the coupling of pairs are calculated from those in-
volving a coupling of one particle state by a build up process illustrated

in section H. The final results are shown in Tables 3.12-3,19,
B. PROPERTIES OF SU(L4)

B.l. Generators and Their Commutstion Relations

The SU(4) basis is generated by the four state functions in spin and

isospin space

|1 = 1M
12y =T{)
2= 11

4% =Y

(3.B.1)
where the first arrow indicates spin and the second arrow indicates

isospin. The generator of SU(L4) are the number conserving operators:

4
A,:.j ";ﬁ Rgm; Q:ij
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The i, j correspond to |i> and |j>, for example

f.
'A‘lﬂr:g Aympy Lymwy

Recombining these generators into Wigner supermultiplet operators
50 - 2 (Au"’Azi’A_za"AM}

To= ’ZL (An- Azz"’Ass"AM)
an= é (A/:_Azz—A33+A44}

S.,,: AatAg 5_= AQIZA‘%Z

NZ 2
T = Al2.+A34' T = ﬁ;@:ﬁ%—
+ N Z - 4{3{
E;. = flna"'/\39' = /ABI'__/q4H2
o Nz =10 Nz
E, = A%A% E, = AZ\}‘;A4

where

(3.B.4)
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T
ED(F; ’- E_a—/;

The commutation relations of the A can be worked out through the simple

anticommutation relations for a® and a. They are

I Aﬁg‘ j A/nﬂ" AAJ@ 5&4’ - Alzj g,«:,z
(3.B.5)

With the aid of these relations, the commutation relations for the Wigner

supermultiplet operators are as follows

[:F) gl = 0O

L[S0, B =By [T, Expl=pEus

[EMJ E'O] = ¢ {Eoo, E-o]: Ts [ana Eu]'-‘o
Eco; S = Eio [Eoo »T:,{ =Eo

[S‘\'J E—\D:J - Eoo( [S+ ;Eoo:_l = O [S+ , EM}-‘—O
[T-l— ’ E“"] = E,(O [T+ , Eo(o] =-F " [_T-t-, Exn_l‘-“o
[E(O) E—lO]:: So [EO{,EO%]:; To

[E\\ s E—l—\] = So+-ro [,El-t D) E-t I‘] = So_To



[E—io, EH] =T+ EE..(O ’ E-'_,_J = ~T_
[Eo-\, EH-I::: S+ [EO—G,E—H-:("_:"S-

(3.B.6)

B.2. Step Up and Step Down Operstors

Within SU(L), there are some irreducible representation for which the
state function are uniquely determined by SMSTMI such representations are
the ones of primary interest in this investigation. Their state functions

are denoted by

]
@ mS) (,T YYH-)

(3.B.7)

Where [f] characterize the SU(L) irreducible representations ([f] is
a short hénd notation for [fyfyfzf) | discussed in Chapter II. For SU(L),
unlike U(L4), f), = O, Since the Kronecker product of the U(L) representation
[kkkk ] with [flf2f50] leads to the single representation [f{+k, fo+k,
f3+k, k] and since [kkkk] is invariant under unitary transformations with
determinant 1, the irreducible representations of SU(L4), unlike those of
U(h), are restricted to those with fh = 0,) The relation between the
standard O(6) notation (PP'P") and the SU(L) notation [f] is given by
(2.B.10). To avoid confusion in the following sections 0(6) quantum num-

bers will always be placed in parenthesis while SU(L4) quantum numbers are

always enclosed by square brackets.
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In order to shorten some notations which appear quite often later,

1 It 1
\ {s,73 = |8

A step operator is defined by

€] |
Oo(ﬁ l\g% /= N:/-S(STD\ {S‘*o( T‘!’/’>>
(3.B.9)

|
¢ 7
Nok/b (ST) /\J {.ST}[
(3.B.10)
T4 Sl
N D= N ﬁ(8+N,T+/[§)
(3.B.11)

The choice of the positive sign specifies the phase convention used in this

investigation since



50

Yﬂ I+
$ sT}> =T lEsT}

(3.B.12)

Therefore, the qu

i.T—i—) o(/;K ( \é-g-[-']}

must satisfy

(3.B.13)

and

t5+ > Q‘ﬁ_] Eﬁ%

To construct QXB’ one starts with EIB and with (3.B.6) more terms are

added until a closed form is obtained

On = El\

Oy = Eo*+ S-E1 T

Qo= Bo T TETH

| __
Q) = Eoot S-E:o'g{}T T T +SJ:E.@;%H>

00
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- = T
O\-—\"' C\—l T~E|OT; T: E“E(‘aﬁl}-ﬂ-l)

- E,-SET -SaThE

G S, 28D

o

- L Lo
O = Bou * S ERF) “FET, ~ TEiTam)

L 2 l
-3 E\OTD(S,;H) — 1 S'EH@;O‘E(&E-H)

_ _ . _ 1
O——(o- E‘D*-‘——b_“-roﬂ) S-Eoo_é_: _S}\:W&(ZSJH)

A _ 2 l
TN R N T o vraaper= |\

_ . - L e L
O = & —T.__E__w - "‘S.{:o_( <, —EE—“EC?:E‘H)

\ 4
= S_ZEH SOCLS;&-D + 8T Euo G +S.2T: E{ox

| + ! | ~
>80T ra-T EO‘SD‘Q(z‘t;+l)+S‘ - B
|

STLESH T+ (3.B.1L)

The QJB are not unique. For example, if qx satisfies (3.B.12) so does

g
Qdﬁ + T4, and many others. However the most simple form of QIB have been
chosen in (3.B.14). There are all together nine step operators in terms of

nine E generators. Sometimes it is more convenient to use E. The E generators

can also be expressed in terms of the O operators.
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C, = C/\l

- —
= e, -OH(S +1)
E Q- T Q“Q—'H)

Eo= Qo™ 300ty TOM(TH) -0t
\—\ = Q-t *T“(/(o ar Q\ Q}-H)(m—rt)

__L_ 2~
5\‘-'-’-@.\’*‘ SO “S-Ql<’so+l><z>

= 0, * 0T ~S-OuGx : TSOTE

- T~%‘C§%§-D’@+l) STG Qsoﬂ)(r-ﬂ)@To*D
- Q.+ 0. T ~TSGIEm
- <20, [é?ﬁ@-t') TEEQ 6‘4«})(35%0(25?
= Qut s_o - +TQ T tTSASE

o -—l‘—_"
0O \(SQ.H )@Sm + T Q\Q’ﬂ)@w

—— ———i_———’
TGO, — T8O T et DG

\S(T-\—\XTOD
* TSRO

(Tt \)(g+ ) (25;% Xﬂ_‘“

(3.B.15)



55

B.3. Casimir Operators

The quadratic invariant of O(n) is

Co=2_ %4
T P

Since 0(6) ~ SU(L4), putting the quadratic invariant in terms of E,

> >
S, T operators, gives

C = ZE—HEI *ZEIDEO‘(’ZEMEO' +26—-HE"1

4258, +2T T +S+ Ts t Eeo
+4S.+ 2To (3.B.16)

B.4. Tensor Character of the Generators

The fifteen Jgg in 0(6) transform according to the representation (110),
and their linear combinations transform according to [211] in SU(L). The
branching of [211] is to nine states of S =1 and T = 1, and six states of
§=1T=0and 8=0T-=1. State functions of [211] can thus be uniquely

> =

expressed by S and T.

The 15 infinitesimal operators of SU(4) can be classified as ineducible

tensor operators of SU(L4) tensor character [211] through the commutator

equations.



Sk

» 2ud EXIN
["‘%; Lfoc >ér/5’f8 é_ S, o<+a<’)<77'(3’;/$‘) \ E“/ﬂ}@d‘)@s’b

T— T
o), p1a)
(3.B.17)

And the analogous well known commutator equations involving § and f in
-> >
place of ﬂx& above. In terms of the latter the components of S and T, using

the standard SU(2) phases, can be identified as

Lu] _ il -
T (o0) (11D - -D' T(n)(ao) S+

Ua (] T —
T@o)cw) To Tao)(oo) SO

Yzt - =] _
T(oo) (-0 T T Q) (e0) S"

(3.B.18)
In order to investigate the tensor properties of the remaining nine

operators, a few matrix elements must be worked out. Note that

el iy D= A s kel

The normalization constant of
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-\ > (\)Bu? [ D]

L S107
t"—“—] ’} J< E-L\I_J il
L cu 2 [ o |67
= Ktéﬂ BNz e./r’(,‘§7> |

Bl e
210 |Gy

=] fm((‘]
E—\c \ iy = Eol}>
—_ L=, EZH‘—J B——llj
&“‘ ‘ u(} > I @D)((o}
(3.B.19)

Similarly by using
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o loaad| &3d-
<%\g - (o
< l207] .H (\:fj:>‘
’nd R H}‘ >’*""’ |
/i;zﬂ L
then E:.Og i l

Eﬁ \_%Hj
0| €163 > - Cf&ltj
1) (10)

~ U
= <ﬂ§?>“ (Bﬂj
Swy

V2]
€M¥>_’ zuﬂ \
600 l L2l -
gc:y>= "( ik
Qo) ()

E thl-] \ L
=] >

.4"

e 1 Say
£ .
- l Y2u] -
ouo@\\

(3.B.20)
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with (3.B.17), (3.B.18), (3.B.19), (3.B.20), and (3.B.6), the tensor classfi-

cation is

P2 (

e — Tl
- T (l)“(n} E\O”’T@) (10) T(n)(l )

— Bl ] - il ]
E&( - T ED‘)” G0)(o Eo- TC\to)Q—D

- _ ——Tud] - _ T = T=ti]
ST T(H)(n) S -D(o) S T\-D(t-D

(3.B.21)

C. CONSTRUCTION OF WAVE FUNCTION OF [nno] IN SU(k4)

As discussed previously, the Wigner supermultiplet state of primary

interest in this work are given by the 0(6) representations (noo) (n + %, %,

(V][

)

and (n + =,= -=), In terms of the SU(4) quantum numbers these are the repre-

-
o=

NI

sentations [nno], [n+l,n,o] and [n+l, n+l,1], respectively. Their Young

tableanx are

-

This section is devoted for the construction of [nno]; the construction

of [n*+l, n, o] will be carried out in section D.

C.l. Branching Law for [nno]

It has been mentioned that these wave functions can be specified uniquely



38

by SMS, TM’Te But what is the complete set of S and T present in [nno]. The

answer to the branching problem has been given by Racahlo

in general algebraic
form for any irreducible representation of SU(4). Using Racah's general pro-
cedure the reduction of the representation of SU(4) into the representations
[ST] of SU(2) x SU(2) can be carried out. The general branching law is given
in Table 3.1.

TABLE 3.1

BRANCHING FORMULA FOR [nno] - [S,T]

Ls,T]

o]
51 ]
W2,2]  [n2,0]
In3 3] D=3, 1

el il Tl
... Uhatol ...

/s .
7 7 7

\

203 [3ws]  Ta,n»7l -- - .
[z, T2,m41 Te,mbl . .. (2,nud] -- -
Dol Tond] D8] oo o owae] .
Lol To,n2] [Lo,m4] ... [o, 0 |

where only S and T are indicated. In fact for each S there are

¢ e e e

(25+1) states and each T there are 2T+l states so that there are (25+1)(2T+1)
states in [S,T]. The first column starts with s = n, the second column starts

with s = n-2, and the ith column starts with s = n-2i+2.
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Stepping down to the next row in each column S decreases by 1 whereas T
increases by 1. The sum of S and T of any member in the same column is
the same, for example it is n for the first column and n-2 for the second

column, and 1(0) for the last colun if n is odd (even).

C.2. Casimir Invariant
The quadratic Casimir operator of (3.B.16) has eigenvalues which depend

only on n. Therefore

V‘V‘O‘I o uho]
< B3 I T:€ST}7> <%no}

gt =
(3.c.1)

A1l the E operators of (3.B.16) give zero when operating on the highest

. nno |
weight state |£no}]:> except E__. Hovever,

vn el
O >=0
-0 | thoy
since {n-1,0} does not exist. Thus

wne] | Wn6
< Es«“o} O Qlo rE‘,n;}> =0




Lo

which together with (3.B.14) and (3.B.6) implies

{5 lent Gy =0

Hence

EDQ

D\V“ﬂ V\V\O

(&) e S
g“o} Y)O} (Sc +To + C(’So“- 2’Tc

Enol

Mno|
R

CUM] = n+4n

Using the well known properties of the operators Si, T4

I;ﬂv\éj

hno|
<E ( 2E € +2€ B, +2E S *2E C 2 E. fori

é351i} 24 ) =0 IC

= MAEn-$-T 4827

(3.C.3)
which 1s a useful relgtion for the calculation of the normalization coef-

ficients of the O operators.

[nno}|

C.3., Matrix Element < (ST

E [nno] > lizati
- EJB!{ST} and Normalization Constants

In order to evaluate the normalization constants of the step operators,
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the matrix element of the type

)—'ymo_] DY N
<€>T3 b “f §ST}>"' E_«-/SE%

must be evaluated first. There are altogether five independent types,
namely 11, -11, lo, ol, oo for & and B, respectively.

From the branching formula, it can be seen that two neighbor states dif-
fer from each other by more than one unit step, that is |AS|+|AT = 2.

Therefore

Lno]
O 65T3>
{jw&;e:ﬁ,\ %=1 p=o
& X=o |p]=|

This implies

w0 Tano ]
t\SST} e e o| £5T} > =0

and 'éfUY D<‘== :t.l

EVmo—] Drw\ca]
< %&ﬂ $sT% > O




These lead to the 4 equations

|

— |
E.E0 = S.& (=)
= |

S8 = SN

(&+1)
T = = A _E = -E
E__\OElO + o401 Sm@D <) B +1) 00 o
+ TCGHD o
@+ l
E—ioglb-‘_r_(\@ + Efom &8 Sti) ~EcoborT

Solving these in terms of E, By, one gets

€o0Cro (St (R )
o Coo (541)

o1 Eo = oo (T

(T
(M
I

B = SE @rDGsH) + T (st

EnEy = BB @G+ S (D

(3.C.4)

Putting (3.C.L) into (3.C.3)

maai———————)

= -3t s+ T+ )
o6 o (25+3 ) (@™R)

(3.C.5)



The normalization constant as defined in (3.B.10) can be determined by using

(3.C.4) and (3.C.5)

Tane]

W G = J GG (n-5T) (iS4 T+ 4)

s ) @T+3)

Lnno] = | 5t @) (T (=51
Ny 6D J ERIET*)

(3.C.6)

Normalization constants NlO and Nol do not appear simply because the
unit step operators do not give states which exist in [nno]. Once the

above normalization constants are known, one can start from the highest

state [[nno] > and step down to any state l[nno] > by operating with 0_;
{no} (8T} -11
and Omlm1 a suitable number of times. By operating on such state with T_

and S_ a suitable number of times, these states can be further reduced to

|[nno]

(SMg) (TMp

) >, with the use of the well known SU(2) normalization constants.

D. CONSTRUCTION OF WAVE FUNCTIONS OF [n+l no] in SU(%)

D.1. Branching Law For [n+l no]
The branching law which shows how the SU(L4) representations [n+1,n,0]

are reduced to representations of SU(2) x SU(2) is shown in Table 3.2
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TABLE 3.2

THE BRANCHING FORMULA FOR [n+l no] - [ST]

Us, 773

Tt 3
Uy, 2] Tny i
[jyhbjzll .[n;id LiI ‘IW

Wi eIl [ SRS
SR A
Il Eed] 12 wE] 12 1] . -
el ] TEei] |1 wIl --- [z
Again only S and T are indicated. Each column starts with T = %

and changes T by 1 and S by -1 for every downward step, so that the sum of
S and T of any member in the same column is the same. The sum is (n+l) for
the first column, n for the second column,... n+2-1 for the ith column down

to the last column for which the sum is 1. All S and T values are half in-

tegers.
D.2 Casimir Invariant of [n+l, n, O] in SU(k4)
G:FS+\,n,6] [b+lr\d] C Thtl n o]
=<ty | Cl sy )

D\.{-\hoj
¢ it

<<:[E}+I no |




)

where the C operator has been given in (3.B.16). Since n + % is the highest

possible value of S

[ Seiid=o for A =21,0

and

Thtl vxcﬂ >‘—O

$ntd &

o

Also, since the lowest possible value of T in %,

[]n*ﬂ n c{]
O, > o

\/h+

and

E\-\-\no_l

(nt 43

D\-anq
iy = O

Ool :0 -
with these relations

Tt ne]
_ L
Swii} )= 4

o
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The eigenvalue of the quadratic Casimir invariant in therefore

(EEH" v‘ﬂ -2 S
= N +Sn—+ —

<+,

(3.D.1)

Combining this with (2.B.16) one is led to the relation

//hg+l ne N
\ s (Zt Wt 2E B0t 26 Eo T 2 Bk,

ln+1 no]

fsTY%

= no+Sr+ -‘z,rg -—Sl-—TL—JFS - T

+ E00Eve

(3.D.2)

[n+1 no] |

D.3., Matrix Elements < {sT) OB Exﬁl[n+l no ] > and Normalization

ST}

Constants.

Since the unit step operators QJO and de do not give zero when acting
on states of the representation [n+l, n, O], the construction of the state

functions for this representation is much more complicated than in the case

of the representation [nno]. However, by using

[+t n'] T+ n o] ntl n ntl no]
< EST} = d/s\ {sTY > <{ *vj{ T;]/[s ‘Ov(/é -«/GE \ >

%-ro(, T-:;ﬁ}

(3.D.3)
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One can get four equations, from the &f values 11, 10, Ol, and 1-1.
These four equations combined with (2.D.2) are sufficient to calculate the
five needed matrix elements. However, equation (2.D.3) are recursion equations
relating matrix elements of states in the kth and (kﬂ1+6)th columns of Table
3,2, so that the needed matrix elements must be evaluated through rather
complicated recursion techniques, One possible recursive process is illustrated
in the next paragraphs. First gll matrix elements are evaluated for the first
column, then the 2nd column, the third column, etc.

(a) The first column: Ell’ ElO and EOl give zero when operating on

a wave function of the first column. Since EOo commutes with E~ll

which is equal to O_j; in the first column, E  E,  has the value

% for all states in the first column. Knowing E sE. ., Ei_1E_q7

is obtained from (3.D.2)

Eé&\vw5] [+ n
<€S,T3 S,&n 8T >l W G+HED)

<E«+\ no) L+l no]
ot | STY ook

Lo+t nof En+\ho'1
< STh \ Cio | Ss13 = O

Istek.
lntino], _  — | Tt no
< {sTh | R ERXS o >1$+ o C

o=l c>|

and
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T+t wo Ih+l n o]
< {s, T} -—Hq—\ {3T7 >S1_ QS+ XT"tB
Lovt v o \ Do+l no] LS.L)CS'FFH)
< s, T3 \ o Quo| ETY frcd 28 (TrD)
[+l wo] Grinal  — (EH)(E™)
< ST Q @ T lsm@ 2T (5+)

< Tl no‘] o Tinsl. _ (s LXT D)
%_S,T,} u ——\ -\ €ST~9 >S

(%.D.k4)
(b) The second column: By using (3.D.3)and (3.D.4)
<D\ hcﬂ Ch+' nof
EST% Q| g3
(o] no‘] \ Tntl v &] o) (sthe)
< s, T3 |0 Qaa | 5,403 >&me GBI
To+! no‘z T n o]
< gﬁﬁy —\o lo GSTY Audad

— /D no] Tnt) hoJ 44T+
ESﬂT}\ 0 —m\ § ol T}>gm—é 2 (1)
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In the 2nd column S+T = n, therefore

iy =0

[ht) n o] ( T+l no] CFF\?: AstT2)
L6 STt >MM 2(stR))
(i nel \Cvm nol (st Ystm2)
LT} \ = Sl £s,T >@&,@ 2G+HDEH)
(3.D.5)
L+ no] Latl ne
< S8 ‘O-u - SsTY >MQ¢,0
<G+\ " 5] [n+1 0] >
st Tﬂ' Ca -\\ sl T Ad b
(3.D.6)
<[V\+i no | Tt 1 o [
lgTT ( - SSTQJ 2»«4@0

Equation (2.D.6) can then be written as a recursion equation
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(n+2)<ﬂ+2;)(S—T+|>

Aor= XS* VT 2 (D DT ) + (T2}

(3.D.7)

with the initigl term

_2n(nt)
Kty = 3 (n+2)

which is derived from

Erilao

The recursion gives

va+\m0:{> N

E)Hno__-(

SSTS

Col N o (S+ Y Tra)stT+2)
EST?r 2.\4& &+ D

+(5+)=1)

(3.D.8)

—\\EH

The only matrix element left is that for Egofoo which can be obtained from

(3.D.2)

ol

€000

Tl nc’>j> CSH‘ +2.)

ts T3 MG
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Once the above five type of E operators are worked out, one gets, by re-

grouping the terms

“ﬂ*;f‘r?tomo.w

Em\ n 0]
< EsT"r

[n+in o]
< EoTh 1Q.Q-

(c) The kth column: The general procedure to work out the matrix

Lol n 3] (s=Y)(s+1)
L Th khaue 28 (T+1)*

— (T‘LXWD
éST} weded 2T (s

Untl h o] @“L>G:L>(S+T+‘)
STH L1 ST

elements for the kth column is as follows:

Unti n ol
s+l T}
‘Z)té,.p

N+l no [n+ né]
E{s‘T 73] <{s+| m}‘ Q Q,-,

H nfil
<{S|T} 2.

Since the matrix element of the (k=2)th column is known one immediately

i nol
N >

obtains

BH v\o]
<{ST73 lb\—t I\
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with this knowledge and the knowledge of the matrix elements for the (k-l)th

column

¥l n o]
<{ST‘S‘ -\o IO

T+l n o]
{sTy >4<‘“\QQ

_ b+t no]
- <{5+l T ‘ 0 Qo

En+\v\0'l>
ES-HT} QéDﬁ\LrQ.

One obtains

G\"'WO] Chtl n o]

< ﬁST} E10Ei0] S5 )
vt mo] Tl no]
tSTY l or | {sTY >Eﬁ~c.Q

Having determined the above three matrix elements, one gets to

&w\ n O__(
< $STY \ Q O- 8Ty >42d‘ 0
/[_m.l no| Chtl no [

= \ Cstl T} tOn <)) {S—HTI} l{t&aﬁ
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A recursion similar to (3.D.7) is then set up.

An initial condition is derived from

Cnv\ n o]
{W‘"%"k/t}

<t¥\+\ n ol o

ﬁ“%‘k,t

O—-n Ol-l

and

)l n 0]

(o) w 6]
< v | S tsTYy

UsTY W)

is then determined. By using these 4 known matrix elements and (3.D.2)

E+\ no__! ) Chil no J
< foth | €uton| E7y >"&“é

is determined. By regrouping the five EE matrix elements, the five 00 matrix

elements are obtained from them. These correspond to the five normalization
constants N. Table 3.3 gives the results. The results have a different

algebraic form for the columns with S+T = even, and S+T = odd.
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TABLE 3.3
[n+1 n o]
MATRIX ELEMENT < E ntl n o] > AND
. (ST} | - aBI{ST}

NORMALIZATION CONSTANT OF O OPERATOR IN [n+l n o]

S+THn+i

("l} — 1- | )S-\-T-H'\-\-\ — —L
@SDETHIMST)(=5=T+)  @SHDETr)(r+$+T+4)(n-5-T)
16GHDT+) [ACIIG))
@srD0-ST+Os+T) @SH) (ST (=5=T+ )
8 (D) g (s+1CT+1)

@st1 )Ty (¥ T3) (ST QSﬂ)(ZTHXY\-S-T-fZ)(ﬂ'B’FFP“r)
GHXFD)+ 16 (s+1) (T+) Sre)rE)+ AESNGED)
@) (n-8-T+ kst T 4) QD -s-Te D(+5+T+4)

8 (SH(T+1D 2(s+1)(T+1)
=T GesHTH4) L, Q5T Ovts+Tr)
+ (s )T+ ¢ G &

@S- RT-1)(+5+T43) (n=3=T+3) (25 )YaT) (et T ) (h-5-T+2)

68T l6sT
(2371) (-4 T 3) O 84T+ 3) Qs (es-T ) (n=8T#2)
6 S (=)™ 168 ()™
RT=D(T+3+3) (48 +T3) @) (h+Te §+2) (n=6T2)
\ 6T (st )= ISIGHE
E-H n o] | a4t no7
..u-p Aolp < ¢73A,t/& ) {sT}
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E. PRELIMINARY REMARKS ON THE SU(L4) WIGNER COEFFICIENTS

With the normalization constants given in (3.C.6) and Table 3.3 the full
set of states for the representations [n,n,o] and [n+l,n,o] can be constructed
in terms of repeated application of the O operators. With these construction
and (5°B°15), matrix elements of the E operators can be calculated. Since
these matrix elements form the starting point of the calculation of SU(L)
Wigner coefficients and since they are themselves best expressed in terms
of SU(L4) Wigner coefficients, the general properties of the Wigner coefficients
are discussed next.

Before proceeding to the calculation of the Wigner coefficients, some
preliminary remarks are needed on the phase conventions, orthogonality,
and symmetry properties of the SU(L) Wigner coefficients, as well as the

generalization of the Wigner Eckart theorem.

E.1l. Definitions, Orthogonality, Phase Convention

Since the only representations of interest in this work are those in
which S and T fully specify the states of the representations, only SU(L)
Wigner coefficients involving such representations will be discussed. (Quantum
number such as @ and ¢ are not needed and will be suppressed.) The full
SU(L4) Wigner coefficient can be considered as the scalar product of a coupled

function with the product of uncoupled functions. It can be written as
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'] [ i >
S, msxT\ mT) S, M) (omy) (‘Sa ms? (TS mTQ

_ o1 4

\ L£%J
T NST &R

Eia-ﬁs\j>> <:55.W15‘§52Yn5} s?n%é:7<]:rnT;T;yn1ihEJYH;>

(3.E.1)

that is it can be factored into a reduced SU(L) [SU(2) x SU(2)] Wigner
coefficient (denoted by double bar) and two ordinary SU(2) Wigner coefficients
in S and T. The latter carry the entire dependence on the magnetic quantum
number MS and MT‘

From the orthogonality of the full Wigner coefficients, it can be seen

that the reduced Wigner coefficients satisfy the orthogonality rule

"1
ST ;a‘

| 7
Z <B‘] [+] LH> <EH [(£°]
ST %L | ST/ ST ST
STST
= e Spp!
151 9pp
(3.E.2)
The indices p and p' are needed only in those cases where the products
[fl] p'e [fz] are not simply reducible. For example [n, n-1, 0] x [211] con-
tains [n, n-1, O] twice. However, this is the only case where an index p

is needed in the present work. All other products of actual interest in
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this investigation are simply reducible. Even for the case [n,n-1,0] x
[211] > [n,n-1,0] the only SU(L4) Wigner coefficients needed are those which
give the matrix elements of the infinitesimal operators.

If the orthogonality role (3.E.2) is considered as one involving sums
over row indices, there is a second orthogonality relation involving sums
over column indices. This i1s more complicated but is not needed in the pre-
sent work.

The over all phase of SU(4) Wigner coefficients is fixed by a generalized
Condon and Shortley phase convention. The coefficients can be chosen to be
real, and the leading coefficients connecting the state of the highest Sy
and highest T7 with the restriction of the highest 57 to the state of the
highest 85 and T5 with the restriction of the highest 83 is chosen to be posi-
tive. This is sufficient to determine the phase of all the reduced Su( k)
Wigner coefficients of actual interest here. The only exception ocrurs when
[f;] = [211] and [f] = [f;]. In this case all three values 8 T = 10, Ol,
and 11 can connect the highest weight states. Here the phase are fixed by

the further restriction

] T aulll
L;T] t\oq HLST> >0

(3.E.3)

and
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1 Ez\[( i‘f‘j
< ST ol > > O

which is a natursal choice since it follows from

(1 —m \Y_\CZ
> (S MM

and

w63 ) Rl
(SWLS)(TMTU

E.2. Conjugation Properties

The representation [flf2f5] and its conjugate [f] = [f ,f fﬁ’f f ]
are intimately connected. The basis vectors of an irreducible representation
and their ccnjugates are thus also simply related.

The conjugation operator K appiied to the infinitesimal operators has

the simple pruperties.

k:ZLd #: = _:;D
KEQbK - "E ’b
KT;K "'To KT:I:K.\’:- "'T:".

K S, K'=-5, K S K = -8

(3.E.4)
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For states which can be fully specified by SMSTN&

KIETsMarhay = ST (S

(3.E.5)

The (SMg) and (TMp)-dependent factors are chosen according to the usual
angular momentum phase conventions associated with the spin and isospin group
The n factor carries the dependence on [f] and any additional S, T-dependence

Starting with the assumption that the one particle and cne hole state

are related by the simple conjugation relation.

l[moj( (T mo) €3 mT)>*= (__)Jg-my{--mr l a (’{' ~m5)(‘7'_‘ ‘MT>

(3.E.6)

The two particle (or hole) states [110] can be built from the one parti-

ciple states above and the Wigner coefficients

<[\oo] E\oé.] “ [\\oj> 1
<U_°°3 Elco] t\‘°'1> —1

P N
D\O]> 1

< [-::\E] E\P l\ E\\O‘]>= 1

MCJ

S
L

<B\G[\
ol
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These are derived by simple recursion techniques and the knowledge of the
matrix elements of the infinitesimal operator (see Section 3C and 3D).

Thus the conjugation properties of the states for [110] follow from
those of (3.E.6). Similarly, states of [220],...[nno] etc. can be obtained
by separated coupling with [110], so that their conugation properties follow
from those of [110]. By such a build up process the conjugation relations
for all representations of interest have been determined. The phase factors
n are as follows:

TABLE 3.4

PHASE REIATIONS BETWEEN A REPRESENTATION
AND ITS CONJUGATE

¢ )1
nel Y = S
thn ] Q_)n-(s-ti)
Tntin o] &) jraD=(s+)
Ez‘ ‘j (__) (+S-T

E.3 Symmetry Properties of Wigner Coefficients
With these phase relations between the vector and its conjugate few

symmetry properties of Wigner coefficients can be derived.

1
SéT%

(3.E.8)

(y <TET 5]
ST %

[ Nt /6T €D
\ 3E> ) STL S
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Proof:

Gt R \ C£*1] >
2 SMe) (T (sSMOGEMR | (SM) T M)

STS, =
MsMy; MsMn L-é 1 AR 2'1
V) MT?.)

- [4 ¥1
(ssMQ % MT;>

Taking complex conjugates

Z ST T L, <Bl3 ] H"1>

L GMATM (5 )EMIE My
A AN RN N
(SM >(T- M@ *@CM

Where [Si] = SimMsi, [Ti] = Ti”MT.
Taking the scalar product with the uncoupled states [%;], [Eé] from

the left

€7 If'] %3 > ES T+ T, T+ ORI [RI+th,
S mjﬂ—M‘r) C MQCEMQ @3 M%XTSMT?

< [%] \ (£ . )YSJ*'EE}*%
MS\ [T-Mr) (5 MIEMD (& MTG My
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With (3.E.1) to express the full Wigner coefficients in terms of reduced
Wigner coefficients and maing use of the well known symmetry properties of

the ordinary SU(2) Wigner coefficients, one then obtain (3.E.8).

Ge'7 2] | U7 §o¢Sum Syt T+ T T + Yt o
@) < ST S0 \ SSG 7T © g

e

(3.E.9)

[dom 0637 GSH)GETH) RS E‘?ﬂ \
dim T£'T DR V8T ST

Where dim [f] stands for the dimension of the irreducible representation

[fl’fZ’fB]

dim G6,%,%,1 = @\*3)(“2*25(*3*\'3_<ﬁ-9L+'Xﬁ-ﬁ*@(ﬁ- D)

(3.E.10)
The phase factor 0 is chosen to be consistent with the phase convention
for the Wigner coefficients. The proof of this relation follows from standard
techniques (see, for example de Swart's approach to the symmetry properties

of SU(3) Wigner coefficients™l)

(2 <E€‘:( ] \

%> — /o SI+SL_SS+T+TL—T3+OV_V3+7;
ST Sk > =) x

31 o
]
ST

dowm [€37 ST <L’fv33 \3\‘7‘3\
dim T4'T GSFDERH) Y2k ST

(3.E.11)



63

The proof of this relation follows from the combination of (3.E.8) and

(3.E.9).

A Table of 0 for some of the case of interest is listed here

TABLE 3.5a

PHASE FACTOR 0 FOR SOME SIMPLE REPRESENTATION
WITH [f2] = [110]

'3 I3
Thnol Cnl n+l O
Inn ol Th-l v=t O]
Tnet n 01| (wtz nel O]
[n+) v o1 Tnd axt ]
Tty MmOl Tn wn-l o]
Ih n | Tavl ned 0]

Ihn n V1| Cn ne of
Ln n ][ Teel o=l 1]

o —00—000|7

TABIE 3.5b

PHASE FACTOR ¢ FOR SOME SIMPLE REPRESENTATION
WITH [£2] = [100]

4] [£*1 o=
Cnn ol Ut n o O
Lh hol Tn wn 7] {
L+l no o] [nrl nel o l
Th n V] Cn=l n-l o] O
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E.hs Matrix Elements of Tensor Operators,; The Wigner Eckard Theorem
The matrix elements of an SU(L) tensor operator Tgii)(TB) can be split

into appropriate Wigner coefficients and SMSTMf-independent reduced matrix

elements. In general

"1 7 |
<( Mat) (T M;v,@\Téa()@,s) (SMA@™D

%, <% \\TR.JU[G}% <§4€ ECS ‘(E,, ,"l'" <3M53xls"M§o><TMrT/slmﬁs>

(3.E.12)

The indices p, however, are again needed only for those cases where the
product [f] x [f'] is not simply reducible. The only such case needed in
this work involves the representation [n,n-1,0] and the operator [211] for
which there are in general two independent coefficients, with p =1 and 2.
The [211] operators arise since the infinitesimal operators which generate
SU(L) have irreducible tensor character [211] as indicated in (3.B.21). The
reduced matrix elements of the infinitesimal operator, however, are such that
they are diagonal in [f] and can be taken to define one of the two independent
coefficients of 3.E.12, say the one with p = 1. With T(211] » B therefore,

<O G IE Fmdly

and only the Wigner coefficients with p = 1 are needed.
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211 nn -1
F. THE WIGNER COEFFICIENTS < éigz] [SQP;II[ sg} > and < [Sf?l 0] éi%;} I
[n,n-lo]y 0 =1
ST

The E operatos are written in terms of the O operators in (3.B.15),
and the tensor properties of E have been identified in (3.B.21). Further
since the normalization constants have been given by (3.C.6) and Table 3.3,
the Wigner coefficients can be evaluated by using (3.E.12) with [f'] = [211],
[f"] = [f] = [nno]. 1In this simple case no index p is needed since the pro-

duct [nno] x [211] is simply reducible.

[nno] [211] I [nno]

F.l., Wigner Coefficients < ST

S1T1 SoTp
The unit step operators do not appear for the [nno] representation

= Q.+ T84 ‘1? <t Q-'csaaoésoﬂ) 10 @Dt

T2
* TS O, GG DEEREED
(3.7.1)

From (3.C.6) and (3.F.1), one gets

(wnol [hnol [hV15]
<{ITG - ES@\> <iﬂTﬂ 24
_ \JfST =S +T+2D(n+ S4+T+2)
@sH) (T+1)

Lhno]
£STY

(3.F.2)

From (3.B.21) and (3.B.22)
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[hndl -
<{s—1 =1} -

Cnnél] Cang] Thno]
(TS > <{s—\ i—n}(ﬁgo l)\ $STY
— tnncﬂ Ei\l] H E’\]Y\_;_.\(> ¢sS; |- !g_| g-|> X

<TT‘; - \T‘—l ™ > < Tnal | T r“”°j>

_ [&sDGT= vind] L2 [.‘71”07
45%&0(2;8 <o °1“T”f"‘”_-(><[37‘ ZHJ [sim)

Putting back into (3.F.2)

TI'M of B.ﬂ (( EZ h 10_3 <Tmé] “Tll [hn 5J>=7J S‘gg;ssl‘éz_;f\‘n;&TJrZ)

By shifting indices, and using

<Tan | ThTwnad > = ditdn

one obtains
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<\:“‘” o1 Tl l Lnne] > ST (r-¢-Tw2) (ntStT+2)
ST O ST

Similarly all the other Wigner coefficients can be evaluated. They

are tabulated in Table 3.6.

TABLE 3.6

WIGNER COEFFICIENTS FOR THE COUPLING
[mno] x [211] » [nno]

< o T2l u&m o]

SU T SH N ST Sh W\ ST
(S (D (=T (41T 4)
ISHL T |0 \I (Rs+DGETH) (W 4w)

S=1 [T | \[ S () Gt STH) (543

. T 0D On41=58+1) (s-T+ )
SN J DG Gt g n)

RSt G Griadny

s I N I By (=T ) (M+SFT+Y)
Qst)) G D) (zr 4n)

} S (s+1)
T |10 W~ 411
‘T(Tﬂ)
el n+4wn
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[n n-1 o] [211] I [n n-1 o] >
p =1
5T SoTp ST

Since we are interested in the matrix elements of the infinitesimsl

F.2. The Wigner Coefficients <

operators, only SU(L) Wigner coefficients of type p = 1 are considered
for the coupling [n, n-1, o] x [211] » [n, n-1, o]. Henceforth this will
be understood and the index p = 1 will not be explicityly indicated.

The E operators can be written in terms of O operators, for example

_= Q\-\—\—S-@a —L +\T Q _:I:; TS QST QST
- O.-.(H)(zs;\) O, G
+ T :S C:% ,:3 (z]-;kL>6E3+|) -T‘ES' <:%0 7;(&5-&£XS'P|)
+ T‘ S— O\\ @,HXS;H)@.SJOQ—_E'PD (3.8.15)

From Table 3.3 and (3.B.15)

" ne o]
<Es~l\ T\} 24~}

n h—\O__1> n n-l §:(

Ch n- o]
£5TY {s-l 1Y ‘O—H tsTY >

There are two cases

(a) For n-8-T = even:
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b w o]
<{s—:\ ‘F-?}\

Tnnto] o] Tl Eﬂ n—(o?

| ey D= = (el T 2R
88\ s> < TT - a\'r-n T—l>
<Tm e 1T On 161 >

- ‘J—%S;\%:‘ED CThwt 1| T T V>~|6J><G’ 0] E‘Ll d n -S-_er_‘-_llo

= |GG ) (M+s+T+2)(h=5=-T+2)
\esT

Then

C Urneiad|| Tl Tawmd 0]><E‘ 0] EZIU“ Th n-1d] >

S T=I

- _ lJ @ADETH )(n+54T+2) (n=5=T+ )
osT

(b) For n-S-T = odd:

// t}ﬁ N\ ol
N S R l S

Tn v e]> J@s-l)(ﬂ'—— DmstFD(-ST4)
\6ST

Then
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(e | ThEn ey Lt o1 Bl T i o] \

- _ ,\) @&HDET) (n+$-+T-t-l)(n—$—T+D
|6 ST

With < [n n-1 o] || T|| [n n-1 o] Jn +3n-3 1l this gives the desired
Wigner coefficients for the two cases. The other Wigner coefficients are
calculated in a similar way. The results are tabulated in Table 3.7
G. WIGNER COEFFICIENTS < [£1] [100] | £) >; couPLING WITH ONE PARTICIE
REPRESENTATTON Siy 24 ST
With the knowledge of the Wigner coefficients of Tables 3.6 and 3.7,
the matrix elements of the infinitesimal operators can be used to calculate
further Wigner coefficients by recursion techniques. The SU(L4) Wigner co-
efficients needed for the pairing calculations are those in which the SU(L)
irreducible representations [nno], [n, n-l, o] or [nnl] are coupled with the
2 particle representations [110] to representation of the preceeding three
types. These are most easily calculated by a build up process from the simpler

Wigner coefficients involving the coupling with l-particle representation

[100], therefore these latter are calculated first.

100] | [nno]

11 e

22

The coupling of [n n-1 o] with [100] yields the representations [nno],

G.1. The Wigner Coefficients < B 01 o]l
51T1

[n+l, n-1, o] and [n, n-1, 1].
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TABIE 3.7

< [s " o] [ufl E\ n 07>

S:.-G,
‘ S, T IS, T, -1 >n1-S+T — }nfsﬂ' —
Gr3Yest3)n-sT)(ntstT+4) | [ CT3XeS*D-5-T1 ) n15+773)
StL T+l 11| - 4 (sH)(T)@n=+zh-1) | FC+I(TH )@n +Izn-)
| @) s-T)(rsT+2) | [esB) (s +Tr)rtstT#3)
St T F(st) T @r=rien—) |A 4-(5tD T(Tt1 X 1zn)
st1 |7=1 |1 P-ﬁﬂ)(ﬂ@(n—sﬂ) (r$-T2) /Q_;«B)(?—T—D (r+5-T3ns7)
AT Gt @ +zn-) § 4T D E+lzn-)
s [l @r3) (n=-D(r-S+T7+2) [ (@73)(n+$-THD (115t T+3)
| 4s st )@ )| | 43 (D)@ r=+and)
s | T i - L3 )+ z(s%)(]iﬂ —[(n+ %) ~2(s+ L)L
NFSTGCHOTH) @r+lzn-) | {4+ TG D(Gnm+ o)
< | | ‘ T s+ DMSTD | [QE(n=S-T+0+-S4T+1)
| | 4S(sDT &=z n=1) 45(s+ )T @r=rlzn-1)
o) [ Tel \[ @S DET Y resT+2)(n45-T) / (2D ETH (-] (h-5+73)
| T 4S CT’+/>(‘M 2 h=l) 4S(T+3>C4n"+tzn-l)
- | | T ’ o J(zs—l Yn=s+T+(N+5tT+2) J@s—\)(n-s-TH)(Mﬁ?D
EST@HD@zn=1) N~ ST () (@)
L =1 J@ﬁ*ﬁlﬁ &m}@s _Q(zlg =$-T+) )4TSR T-1)
45T (4 zn=1) 45T (avi+lzn-|)
, SCHD) S(s+)
S | T 1o *}2 ) 855 gﬁ" J(‘Fn"—r [2v-]) &5'3"7"
! T ) T(T+!) S
| S T O ( 2 @hL‘HZV? ) 114 TT (4}71._*_,2“__]') C?SS 6TT
[on\ T 20Ty an —_( VR Sitl= S,,Tz W 0] il mi
< STy STk \\ 5T &) ( ST 52,:27:1._ // 1Ty ;

I
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1, g— l\_}+»1 11 4 1

Tnny 0] Dool Innol  [Umtlmto] Tnnit 1]

The Wigner coefficients of interest are those involving the coupling
to [nno]. These are calculated in the present paragraph.
Expanding a wave function of [nno] in terms of the base vectors of

[n n-1 o] x [100], one gets

Tane] . tnn-iol [oq] Tnh ol
(sMg) (TMT3> "Z.l < Mg )M GMEMR (S M@(TM%>

MS.MSZS\
MiMLT ) Cnonel 6] > Tioc]
(5, Ms> (T; MTP (’z‘f M 52 (Ji MTZ)
(3.G.1)

By operating on (3.G.1) with %15 recursion relations for the SU), Wigner
coefficients are obtained. As a special case Ell is chosen to iliustrate

the method.



>

E\“ o] Canol Thno]
(3 MH)(T' MT*-> <($ M,g"‘l)(T'MT-I-l) ‘ S CSMs) (TM
Z Tnn-lo] Tiool Chnol
6M5>CT.MT> MM | (SMOTMD

"Msss, a0l Chnol Ch vH 5]
MeMeT T <(3 Ms-\-\)CT'M{H)\ W s MeOMM ﬁ3> \@‘ M;*D(‘l‘. )

Lioo]
EMEM,

— Z <Thh—l o] Leol E"V‘Oj
GMOTMD M OEM | (M EMD
S\M&. < Yool 106 ] LN Lioo] \
T S ) ) B Msxmm (s MM/ (M M)

By shifting variables and using the orthogonality of the base vectors, one

gets the recursion formula



Th

[n n-10] Tee | Tun o] >
SZ;_, < G, Ms Tt EMEME le MtD(TM#1)
Tnnol Eh n O_I
< (8" Mt M) &, CSMQ(TMT)>

_ Z:‘<ih h-i 0 Cool U\Vw__l ><@ n.;uj ) Chwn-t 03

(S'Ms0E MY M X‘LMﬂ (M S MM
o] o] Thnol Ceq] ' Qool
fcﬁs;gl%m CAVCAYEY QSHQ(TMQX T Hs)(-tr@\ HEMDEME)
(3.G.2)

From the restrictions on the possibleS+T values of [nno], [S+T) must have

the same parity as n.

Example: The coefficients < [n n-1 o] [100] “ [nno] >
%1 TJ% %% ST

The procedure is to relate thec;e by repeated recursion to the Wigner

[n n-1 o] [100] nno]
coefficient with < 1 1 11 “ >. The latter can be set equal
2 2
to 1 since it eorresponds to a 1 x 1 unitary transformation matrix.

O



™

Although the recursion formula (3.G.2) will in general contain a large

number of terms, it collapses to a two-term recursion formula, with the choice

of quantum numbers Mg = Mp = T; MS2 = MT? = - %c With this choice (3.G.2)

reduced to

"l o] Doe]
<is+L ™) (3-
<[}1 n-1 0] [\coj
{3{3{ =3 } &Y Y- L)

lhno] [nna] Thnol
€Srﬁ3 >> <<{$*IT4[}\E:“ {ﬁ;r}‘;> _;;:—:i?_—
Unnel o] \E Cn v 6] TN
NI

(3.G.3)

The repeat application of this recursion formula is illustrated by the

following diagram
STl - $+T- = €
T, T e - < s R < ek Y

U U s

n+$-T-2 n—S+TZE - - Etl {s+\ T-t-\'} ’é‘Eﬂ ES'T}

1—;

(%.G.4)

The top row illustrates the {Sle} values of the wave function

[n n-1 o] and the bottom row indicates the {S,T} values of the wave function

[nnQ]. The only intermediate SoTo values possible are always %.%, Every

application of Ell brings an increment of both S and T by 1. After
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-T . 1) successive applications of such recursion, the [SlTl], {ST}
values reached are such that Sl + Tl =n-1 and S + T =n -2; that is, both
correspond to states in the second column of Table 3.2 and Table 3.1. The

result of the successive application of (3.G.3) gives

Cono]

334 >

= l‘ﬂ"S-S <@ h-\ o BYTY Chno]
U M dpeep | € 2

(3.G.5)

nn-| ol f_\ oo]
i} (-HE-)

In order to relate the above coefficient to one with S+T = n and
Sl + Tl = n; that is to ST values corresponding to the first columns, a
recursion formuls based on the Eol operator has to be used. This recursion

1s illustrated by the diagram

2/ ) 2 3 ’2.

Ut [
%Y\ & S -l S-\'T } =Y { n+S=T-2  h=-S+T=2
- > 2

in.,_g_‘\'_l y\—<_,+T-+|} B €n+s—T—l M-S+ T—|
2 | € i

(3.G.6)

and is given by



Tr

Th -l o]
E N+S-1-2 h—S-\-T-Z }>
[h miO] Tiec]

EM.S,:H h—&;ﬂl] & 't)é:"q‘:)

<E\ -\ O | Tieo]

{ nt =T y\-s-!-\‘\} ) (_L L

— -

E W o’l
(asT pesg )
2 - > 2
(3.6.7)

With the use of appropriate ordinary Clebsch~Gordan coefficients and

(3.G.5) and (3.G.7)

<E" n-1ol Ted] \ Thno]
tsre T} @G-DE- | {sTS >

= _5 n=-$=T < n - o] Cleo] n n- O]
N+3=T {NS;T-l h-S;Tﬂ} (L4)(L-L) VH:Q-T h—s+‘|‘}

(3.G.8)
The coefficient with S+T = n can be related to that with s = n, T =0
by a further repeated application of a recursion formula obtained by opera-

tion with E_1q, illustrated by

(2,73} < ot w3
U _ \|? B &+T=n
S| 1} < tS, T:%

2
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<<j3q n-\ C{l [:lDé;]
o]l Tool
{ il GHED

[Gw o]
EST}>

o]
{s—{ﬁ">

Tnanol > Cnnel
éST% <{S-—\ T+l3 Z\

hneld < Th w4 5.]
$ -l T ti T’f» =

= | S
Sl

Then

J@mol Twdl | Tnnesd

Coor vt ahen | L1 >
- S
<Eﬂ n-) Oj Ciee | Chno] "
rtt 4}

fnol

(3.G.9)

With (3.G.8) and (3.G.9), and use of ordinary Clebsch-Gordan coefficients

1

gil , the reduced SU(L) Wigner

I3

1 11 _1 -
such as < & + §=S + 53 7[.§:| 5S> =

\

\S

coefficient becomes



79

W] Teol nnol - .
Cotrg 2 st >=-f(hn§z?fm3%$§

v

(3.G.10)
By similar recursion techniques, the other coefficients can be calculated.

The results are given in Table 3.8

TABLE 3.8
WIGNER COEFFICIENTS Tnn-10] Mool || Chnol:
ST £+ llosT >
Ch w0 L\oo'_[ Chn 0]
O T o )\
3- L - (”‘S'DCSﬂ)(T-rQ
Stz T+3 J nCze 1) T )
L L J (=8t 1) T (S+1)
>z Tz n &0 @T 1)
L L [Ch+s-T+Ds ()
S~z  1*3Z J TNESSDICTY
- L T L _J (n+3+T+2) ST
- = n G (T 1)
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The Wigner coefficient < s[ él o] ii I
52

(3.E.11) with the knowledge of Table 3.8.

3.9.

nnl ] > can be obtained by using

The results are given in Table

TABLE 3.9

WIGNER COEFFICIENTS

Cnnol [ioo]
ST =k

2

=

<

Chn 1
ST

n (h n]
hnol Lool
S\ T[ -L-L—

gl

%
4
N
n

AN s I L

N
—

"
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—
+

NE N

o

T

F Y‘zq‘b(snfz-+ 35)
|
-
-

N+S—=T+2
2 (n+2)

N-3+T+2
2 (n+2)

N-S=T+|
2 (n+2)

G.2. The Wigner Coefficients <

sT; L

2

[nno] [100]

“ [0+l n o]>

1 ST

2

The (coupling) of [nno] with [100] yields the representations [n+l n o]

and (nnl) both of which are of interest i

n the work.
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x O —> 4 +

| |

L
Cnnel x o] Cntl oo Chn )1

The coefficients of the type

Cnhn¢] Cioo] Cnt)l n o]
ST %% ST

can be calculated by recursion formula analagous to (3.G.2). And

] 100) | B8l 0 o be obtained by (3. 11). Thei 1t
S1Ty 11 g can be obtained by (3.E. . Their results

22
are given in Tables 3.10 and Table 3.11.

1 3
H., WIGNER COEFFICIENTS < [£7] [110] I éfT]
REPRESENTATION 51Ty 85Tp 33

>; COUPLING WITH TWO PARTICIE
In general the [f1] x [£2] + [£)] coupling coefficients can be generated
by recursion formulae similar to (3.G.2). 1In practice, at least one of the
[f], say [f2], is simple, so that the recursion is manageable. However, if
a simple [f2] and its coupling coefficient with respect to [fl] and [fj]
are known, a coupling coefficients involving a more complicate [fe] with the
same [f1] and [f3] can be obtained through a build up process using techniques
similar to those employed in the recoupling of angular momentum.
A recoupling process for three representations [fl], [fp], [f5] is

illustrated in Figure 1 by a diagram generalized from those introduced by
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TABLE 3.10

[nno:] Dool “ [+ ”\ o]
WIGNER COEFFICIENTS 1L
2 ‘L

S, T <Eﬂﬂ0:( E\oo] “ E)’\+l n oJ
StE T+ e fgf{}ﬁ
Svr T GO
5 Tk e
st TE || SRS

I TABIE{L‘;T“ _]1‘".( [i;ofj “ [t el o]>
S, T E\SV\ _E( E—‘;—_o? “ [n—\ n-t 0]

(n+3+T+3) (S+1) G=+\)

S+ T+% (r3) C2SHD) (2T+))
S A I
5 T+5 || %;?f&?ﬁf&g 5
- L [(h-s=T+1) 5T

(+3) ESHD T+
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French12 for the recoupling of ordinary angular momentum

£"] X1
I+1 7/ )
+\1] ﬂ?. [fa:( —> g ¢ 3 Ez -I

¥R 5 SMTM WP B16,035 SMsTMpa,

The recoupling process involves a transformation from a scheme in which
the intermediate coupling involves [fl] x [f°] to one in which the inter-
mediate coupling is [f2] x [£3].

Since the product representations may occur more than once, the p
indicateswhich type-occurs. The two coupling systems illustrated in
the above figure are connected by a unitary transformation whose matrix

elements are the generalized SU(L) Racah coefficients or U-coefficients.

[N TR TT) T £, 5 5 SMs, THy, 0 P

= 2: '( 7§ (@ 162D ﬂs}) (€1 §0a5 SMSTMT;“JCP> X

C£5] fisfies TET; 7] 5. 9,
u <H3J OfI 5 4] 5%; S;:;)

(3.H.1)
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Similar to the SU(2) U-functions which are independent of the magnetic quantum
numbers, the SU(L) U-functions are independent of the SMS TMT\wé quantum nume-

bers, and are real. They satisfy the orthogonality relation

U () =

2
A
- - --—d — /
2;;;. ()(.( _,_../AL :)l/(. - - -/kL ) o égo(c(

(3.H.2)
where O is a short band notation for [f1%'] P12 P12,3 and u is a short band
notation for [£22' .

1eo50 o3
Through the decoupling process as in the case of SU(E), the U function

can be related to this Wigner coefficients by

1 675 [£2] ¢, ¢,
(G res | [£°] );2; ;2)

= 0 (H'Ie; 16| K™ a.;; Il
RN CR e T caa B m e ST TR

§i3
L (5,5:5 555925 ) ut(\‘.vrs s T Tes )

(3.H.3)

whezﬁréd_is a short band notation for T; S5; w; [

i The sums over Mg and

MI have been performed and give the ordinary spin and isospin SU(2) U-

functions. By using the orthogonality of the Wigner coefficients, a "reverse'
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formula of (3.H.l) is obtained

o . rgtd HILET ; (£ 42 %,
LI Il €18y Uyt cergi )

= 2 £ Ea 13 s 6] &\ 1 in>ﬁz<EF'zJ &7_3&3—1 €4l EF] E'> fiz,3

Ez, 2.3 EIZ

KEMg,; e \ BT eu>5,ﬂu (5,555 S2Ses)

UTRTR TeTs)

(3.H.h)
This is the basic equation for the build-up process. Although the
quantum numbers p have been retained in the above, the build-up process is
used in this investigation only in relating simple cases where none of the quantum
numbers p are needed. Algo the labelséare here fully specified by S T.
The two body operator of tensor character [110] can be built from the coupl-
ing of two one body operators, it is obvious that [fp] and [f3] are chosen

as [100], and (3.H.4) is simplified into
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1, Tuel | LH £ Ciead ; T€™]
<5.T.5 57_12 > U(Uoﬂ €1 5 Tual

Z <E<-"J L’\ooj E@“j><t£ o E\Ooj( |

s‘zo-‘-z I’Z.TZ. SI'LTZ- 2 2

W (s% st 39250 U (TETE 5T Ts)

(3.H.5)

where in (3.H.4) has been replaced by S;T,, and from (3.E.7) the

(100] [100] [ (110]
1 11

coefficients < Sng

> have been replaced by 1 for both
22 22
T9 0 and 82 =0 T2 = 1, The coefficients on the right

oo

the cases 82 =
hand side of (3.H.5) are known. The SU(L) U~function on the left can be
treated as an normalization constant @.

Example: Calculation of coefficients for, [n n-1 0] x [110] -~

[n+l n O]
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= T '] [n-l-\no] D\ n-\ O___( Doo] 3 Cnndal
<E$'T\"o(‘j ol “ >u Tieel ot ne] ‘Euo—_\)

< (hn1ed Eloo'l " Chn ol >< Ch noj Doa] “ [+ noj

ST 13T St T3 Y £ L
(L(STSTsSH 0) Ul TE s =5 1D
+  Bwid] Tiedl \:wno:l> lnol Deo‘z E*\nrﬂ
v

S T=I 'zL/L S_LT S‘LT‘L 'uv.,

U(stskss-20) U= £TE =L l)

= _ L [G@F) T+ =81 T+2) ST
4 i (DT ’B‘Wm cerlc) = |
= -+ [(@FDOs+T+3) (n-8+TH ) “*S*I -
| e o Bocome ) = |

Similarly for the other possible values of ST, 82T2° If all the terms

of

<En

are calculated, the magnitude of U is determined by the restriction that

2

ST

+\ nol thn-l o] Qoo Luwal
>(’Q( Lioe] Intl n o] Dw])

Inna o] Dc:o] E’\‘H V\O]
< ST ST >(
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By using the phase convention that when S; =n - % Tl = % and S = n + %
T = %, the Wigner coefficient is positive, the sign of U can be found out
also, and all the Wigner coefficients of [n n.l 0] x [110] »+ [n+l n O] are

determined.

Similarly, the Wigner coefficients for [ny\\_l XYHO.:( -_ [:V\ h=| O]
Can v Ax Tio]=> In-l 0 \]
[n ool xliie] = Thn ]

are calculated, and the coefficients for

U=t n-y l]x Liio]—> L_V”\l-_-(

Lrtln e{xTue]l—> Cnn-l o]

are derived from the conjugate relation of

Thova olxDite] = Intl nol

Ex n \Zx[uo'j —> Ind \J
respectively, using (3.E.8), (3.E.11) and shifting the n index by our unit.
These are the SU(4) Wigner coefficients needed for the calculation of the
matrix elements of the pair creation and annihilation operators. They are

all tabulated in the following tables.
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TABIE 3.12

WIGNER COEFFICIENTS EWY\O—] EH O] [h+i\ he| O']
6‘-1—‘ ‘SLTz. S T
lng tioT || Intl ntl O]
S il <s% s | 75T
_ | G -5+ 2 ) (n=s=T+1)
St | T \} 2(n+)) (n+2) @S+ )
S T+ | - | (4 zl ) (Ch T+t (=T
D (@ T+ 1)
S T | T O seT+3) (e T 842
2 (1 () (2T+D
- S CH+S+T+3) Cvx+§~T—r2_)
S-] T \/ Z—C“'HDC“‘*Z:)CLS-(—M
TABLE %.13
Tnnod Tuol| Tnind o]
WIGNER COEFFICIENTS .S\_K Ssz \ 6 _|_.
el Tael || b=\ na &
9, T, 5T SH Il T
\) (nr3-T+2 I+ s+T+3) (St)
el T 2 (1+2) (ne3) (25T
— | (=3+T+2) (n+3+T+3) (T+D
S T+ 2 () (n+3) (2T+1)
S Cn=s=T+ 1D (n+8-T+2) T
T Z (n+2) (n+3) (2T 1)
oot (e
‘S—‘ _\... _ (h S=T—+ )CY\ S-\-T-{-Z}S

2 (nt2) (n+3) @SH)
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TABLE 3.1L4 E | ]
- ” o
WIGNER COEFFICIENTS < E\S\h'l'}\ oj E\:‘?r]?_ \ " >
Land o] Cie] |t nod
ST Sl ST
s T - )n-rs+T _ 4 ST 1 ]
T -t ‘l@—s-‘r) (n-s+T+2) 258 | _ L [(n-s+™ YT ) 25H3)
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S;=1 ¥ J (s )0 T+t | o ({3 (rs=T41)
S T 17275 (n+2) S(s+) Z 2n (n+2) S(st))
1 e s s o) | L [ @) (s EsYinescFrl)
S-1 T Z JLZ_) NS 1j 2h (NS -
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