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A new Hamiltonian partition method, used previously for cooperative excitations in molecular 
crystals, has been adopted for the treatment of surface exciton states in molecular crystals. The 
formation of surface excitons depends on the relative magnitude of the exciton transfer integrals, J 
terms, as compared to the environmental shift integrals, D terms. This was established for a sample 
calculation on a simple cubic molecular crystaL It was found that when the absolute value of the 
nearest neighbor D term exceeds the corresponding J term two localized states emerge for each 
value of a two dimensional wavevector. The two localized states are degenerate in the limit of an 
infinitely thick crystaL The localization of the surface states increases with an increase in the 
magnitude of the D term. 

I. INTRODUCTION 

The existence of surface states in pure crystals has 
been proposed by Tamm, I and later by Shockley. a Fol­
lowing these pioneering works, surface states have been 
a Subject of many investigations. Particularly worth 
noting are the comprehensive works of Koutecky3 and 
Grimley.4 These studies were mainly confined to elec­
tron states in intrinsic semiconductors. However, sur­
face states in molecular crystals have drawn only limited 
attention. Recently, Stern and Green5 have explored the 
possibilities of surface states in naphthalene and anthra­
cene. They have utilized an extended Grimley4 method 
in their investigation of surface electron states in naph­
thalene and anthracene crystal systems. Stern and 
Green's5 calculations are relatively involved and tend 
to be more complicated as more intermolecular interac­
tions are taken into account. 

In this paper we shall concentrate on some aspects of 
surface electronic excitons, rather than on the problem 
of surface electron states. Just as for some of the elec­
tron states, Frenkel6 exciton states are determined in 
the tight binding approximation. 7 However, the major 
differences between the electron states and the Frenkel 
excitons is that when dealing with excitons multiple elec­
tron wavefunctions are employed. (In the electron the­
ory in the tight binding approximation only a single elec­
tron crystal orbital is const~cted.) The introduction 
of multiple electron wavefunctions in the exciton case 
gives rise to intermolecular interaction terms which do 
not have a direct counterpart in electron state theory. 
These terms are the environmental shift term (the D 
term) and the exciton transfer term (J term). In the 
light of the preceding discussion the following questions 
are pertinent: 

(a) The localization problem: The Frenkel-Davy­
dov6

,7 theory predicts the formation of bulk states in 
molecular crystals corresponding to the various values 
of the wavevector (K). An interesting question in this 
context is whether the simple Single band Davydov the­
ory can be extended to account for localized surface 
states. 

(b) Density of surface states: It is interesting to in­
quire whether surface states form a continuous exciton 
band in two dimensions. The question is whether local-
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ized states are formed for all values of the two dimen­
sional k vector, or are there gaps in the energy disper­
sion curves which might lead to forbidden zones in the 
density-of-states in two dimensions. 

(c) Energy trapping: Just as in the case of impurity 
trapping, localized surface states could trap bulk ex­
citons. Since surface localized states form extended 
states in two dimensions, it is worthwhile to investigate 
the possibility of energy surface transport. 

(d) Optical properties: Optical absorption is gener­
ally associated with the bulk of the crystal, however, 
the correlation of absorption with crystal thickness is 
of interest. On the other hand, reflection is more 
closely related to surfaces, so that surface states may 
effect the reflecting properties of the crystal. 

In the following sections we shall utilize a new method 
for treating surface states. Although we confine our in­
terests to molecular excitons, the method can be pro­
jected to other elementary excitations, like phonons 
where the tight binding approximation is applicable. In 
Sec. II we shall apply the Hamiltonian partition method 
to surface perturbation. This method was used by 
Hoshen and Jortner8 in determining the properties of 
cooperative excitons. Section III is devoted to the solu­
tion of a simple problem utilizing the result of Sec. II. 
In Sec. IV, some numerial results are displayed for the 
simple model of Sec. III. 

II. THEORY 

Consider a molecular crystal containing N unit cells 
with one molecule per unit cell. There are NI , N a , and 
N3 unit cells in the direction of each of the primitive 
vectors: aI, aa, ~, respectively, so thatN = NI Na N3. 
We shall first assume NI - "" and Na - 00, while N3 is 
finite. Thus we may invoke cyclic boundary conditions 
for the plane spanned by a l and aa. We can define sym­
metry wavefunctions for the lattice plane parallel to al 
and aa primitive vectors: 

[k, l) = (NI NatI/a z= e ik' Rn [Rn, I), (1) 
n 

where IRn' l) is a localized excitation in the lth plane. 
Rn denotes the coordinate of a molecule in the lth plane 
and is given by 
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Rn oonl al+ n 2li:l , 

nlooO,1, .•• ,Nl -1 

n2 = 0,1, ... , N2 - 1 

l = 0,1, .. , , N3 -1 , 

1Rn,l) has the following form: 

(2) 

(3) 

where a is the antisymmetrization operator permuting 
electrons among molecules, and f denotes an excited 
state of the molecule. The wavevector k is defined in 
two dirnensions on.ly. 

It is convenient to define a crystal Hamiltonian H rel­
ative to the ground state. 

A A 

HooJe- Eo , (4) 

where JC is the cryslal Harniltonian and Eo is the ground 
state energy in the first order. Since H is diagonal in k 
we can restrict this discussion to operators in the k 
space only. 

At this point we shall write down the matrix elements 
of H(k). The diagonal element of H(k) is given by 

[H(k)]II=(lIH(k) Il) = (I + ~1 DII' + L J(Rn)eikRn , (5) 
1'=0 Rn 

where (f is the gas phase excitation energy of a single 
molecule and Rn oonl a l +n2 az , implying that the summa­
tion over the J terms is carried in the lth plane. The 
exciton transfer term is 

where W(O, Rm) denotes electron interactions between a 
molecule at the origin and a molecule at site Rm. The 
DII' terms in Eq. (5) are planewise summations of the 
environmental shift terms and given by 

(7) 

again the summation is carried over Rn oonl a l +nzli:l, but 
the interactions are between molecules of different 
planes for l *l'. The environmental shift terms D(Rm) 
are 

D(Rm) 

= (a [c1 (0) q/(O) - ("o(o)(l(o)] I W(O, Rm) I a<{l°(Rm)cpO(Rm». 
(8) 

The off-diagonal elements of H(k) are given by 

[H(k)]ZI,oooIH(k)ll')oo L J(Rz_z.+Rn)eikRn (9) 
Rn=nlal+nZIl,2 

There is no simple solution for the eigenvalue problem 
of H(k) since no cyclic boundary condition was imposed 
in the So:! direction. However, we shall define a pertur­
bation matrix V(k), and an unperturbed matrix Ho(k) so 
that 

V(k) = H(k) - Ho(k) . (10) 

--..)------r------.,...--N - 2 
3 

---------'----2 

FIG. 1. Surface perturbation scheme: Crystal planes are des­
ignated by solid lines, surface planes are emphasized as heavy 
solid lines. The missing interactions between top and bottom 
crystal planes, required to establish the cyclic boundary condi­
tion for the a3 direction, are denoted by wavy lines. 

Ho(k) will be constructed in a form for which the cyclic 
boundary condition is satisfied in the So:! direction, and 
thus can be easily diagonalized. The Ho(k) will have this 
form if the (N 3 - 1 )th plane is adj acent to the first plane 
([3 = 0). In this case all the diagonal elements of Ho(k) 
will be equal, while off-diagonal elements of Ho(k) are 
translationally equivalent in the So:! direction. At this 
point we shall make an assumption which is necessary 
to simplify calculations. We shall assume that the 
planewise summation in Eq. (9) over the J terms and 
over the D terms in Eq. (7) is small and can be set to 
zero for sufficiently large but finite separations between 
land l' planes. We really need not worry about the D 
terms because due to their nature they correspond to 
short range interactions (comparable to van der Waals 
type interactions). Hence we may take into account 
interactions between nearest neighbors only. However, 
the J terms may correspond to long range transition­
dipole-transition-dipole interactions for strong optical 
transitions. It is well known that dipole-dipole interac­
tions do not converge for all values of k, when a summa­
tion is carried over a sphere. 9 However, it has been 
shown by Wette and Schacher, 10 and recently by Phil­
pottll that the planewise summation of the dipole-dipole 
interactions converges rapidly with the increase of dis­
tance between a molecule and a plane containing the mol­
ecules interacting with that molecule. To sum up, our 
assumption is generally justified, and we can assume 
zero interactions between a molecule and a plane that is 
r crystal planes away from that molecule. The value of 
r depends on the crystal and the crystal plane in ques­
tion.ll 

We shall illustrate the formation of a V(k) matrix by 
inspecting the diagram in Fig.1. The wavy lines in Fig. 
1 denote the interactions that are to be added to H(k) in 
order that cyclic boundary conditions are to be fulfilled 
for Ho(k). In addition to the off -diagonal interactions, 
there are contributions to the diagonal elements of Ho(k) 
arising from the difference between the bulk D terms and 
the corresponding surface D terms. Under those condi-
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tions the V(k) matrix will have the following form: 

V(k) = (W~~)t W~:) :). (11) 

\ 0 0 0 

W(k) is a matrix of dimension r whose elements are 
given by 

wherel~i~r, O~j~r-l, andi+j~r. The matrix 
W (k) is a triangular matrix. The diagonal elements of the 
diagonal matrices .0. + and .0. ... are given by 

.o.+ j •J = -t DJ• (N3-1) 

T-j 

.0. ... (N3-n. (N1-J) = - L D(N
3
-J).1 

1=0 

(13) 

(14) 

The indices of W(k) and .0. matrices denote crystal planes 
rather than a position in the matrix array. 

Once the form of Eq. (11) is established, the Koster­
Slaterl2 Green's function formalism can be utilized. The 
eigenvalues of the problem can be determined from the 
2rx 2r determinantal equation. 

(15) 

where Vaa (k) is a 2 r x 2 r sub matrix of V(k) represented 
in the form: 

Vaa(k) = (.0.... W(k)) 
W(k) t .0.+ 

(16) 

and Gaa(E) is the corresponding Green's function subma­
trix. Utilizing the Dyson identity: 

(17) 

the following equation can be derived for the perturbed 
Green's functionl3 : 

(18) 

This expression is especially useful for the extended 
states of the perturbed system. 

III. APPLICATION TO THE (001) PLANE OF A 
SIMPLE CUBIC CRYSTAL WITH NEAREST NEIGHBOR 
INTERACTIONS 

The Hamiltonian matrix elements Eqs. (5) to (7) for 
a simple cubic crystal with an inversion center contain­
ing one molecule per unit cell and nearest neighbor in­
teractions only, for l("* 0) "* N 3 - 1, are given by 

H(k)Il=(ZIH(k)IZ)=Ef+6D+2J(cosk. al+cosk.~), (19) 

where D and J are the environmental shift, and the ex­
citon transfer interaction between two adjacent mole­
cules, respectively. The diagonal elements of H(k) for 
Z = ° =N3 - 1 are 

H(k)11 = Ef + 5D + 2J(cosk. al + cosk. ~) (20) 

The off-diagonal elements are 

H(k)I.I±1 =J . (21) 

All other off-diagonal elements are zero. The perturba­
tion matrix Vaa(k) [see Eq. (16)) is given in the form: 

(
-D -J) 

Vaa(k) = . 
-J -D 

(22) 

The secular determinant Eq. (15) can be recast in the 
form: 

1

1 +go(E)D+gI(E)J go(E)J+gI(E)D I 
D(E) = . 

go(E)J+gI(E)D l+go(E)D+gI (E)J 
(23) 

go(E) and gl (E) are the diagonal, and off-diagonal (cor­
responding to adjacent planes) matrix elements of the 
unperturbed Green's function Go(E), where the energy 
E is given relative to 

Ef + 6D + 2J(cosk. al + cosk. ~) 

and go(E) and gl (E) are given by 

go(E) =Jv.} L [E - 2Jcos(k3 a3)j"1 
k3 

gl(E) = lv./ I::eik3a3/rE-2Jcos(k3a3)] , 
k3 

where k3 = 2rrP/ N3 ; P= 0, 1, ... , (N3 -1). 

(24) 

(25) 

Without loss of generality we shall set J = -!' in order 
to simplify formulas. In the limit N3 - 00, go(E), and 
gl (E) can be further Simplified to the following expres­
sions (replacing summations by integrations over k 3 ): 

for E < -1 

go(E)=-lNE2-1 

gl (E) = - (E +,; E2 - 1) N E2 - 1 

for E> 1 

go(E)=1NE2_1 

gl (E) = (E -,; E2 -ON E2 -1 

and for -1 < E < 1 a complex solution is obtained: 

(26) 

(27) 

(28) 

(29) 

go(E)=iN1-E2 (30) 

gl(E) = (iE/h _E2) -1. (31) 

The eigenvector C"(k) of the Hamiltonian for the localized 
surface states I/l(k) can be determined from the non­
homogeneous equation: 

(
l+g0 (E)D+-!,gl(E) gl(E)D+-!'go(E) )(ct3-I(k)1=(0) 
gl(E)D+-!'go(E) 1+go(E)D+-!'gl(E) q(k) ) ° . 

(32) 
The determinantal Eq. (23) can be reduced to two equa-
tions in E: 

Utilizing Eqs. (32) and (33) we obtain 

q(k) = Gt -I) (k) . 
3 

(33) 

(34) 

(35a) 

While employing Eqs. (32) and (34) the following rela­
tionship is given for the coefficients: 

J. Chem. Phys., Vol. 61, No.1, 1 July 1974 



J. Hoshen and R. Kopelman: Exciton surface states in molecular crystals 333 

(35b) 

The normalization of the coefficients for Eq. (35a) is 
givenS by 

(36) 

where 

(36a) 

and 

(36b) 

The normalization of the coefficients of Eq. (35b) is 
given by 

(37) 

It is very easy to give a simple expression for the 
localized states for N3 - 00. Utilizing Eqs. (26) and (27) 
[or Eqs. (28) and (29)] and Eqs. (33) and (34) twofold 
degenerate solutions are obtained, one for each of the 
equations (33) and (34). The two degenerate localized 
states, formed for ID I > t and for -1> E > 1, are given 
by: 

Es =-D-1/(4D) (38) 

The expansion coefficients Co for the surface planes are 

(39) 

The other coefficients of the surface states wavefunctions 
N3- 1 

Ijf(k) = L ~(k) Ik, l) (40) 
1=0 

can be determined from the matrix equations: 

(41) 

(42) 

and 

(43) 

Since Vaa(k) is independent of k [see Eq. (22)], we shall 
omit k from subsequent calculations. The following re­
lations are obtained for the expansion coefficients: 

C~ = - {rgn+l (E) D + tgn(E)] CSN3 - 1 + [tgn+1 (E) +gn(E) D] cg} , 
(44a) 

CSN3 - 1 = - {[go (E)D + tg1 (E)] ct3-1 + [tgo(E) +gl (E) D] Co} , 

(44b) 
Gg= - {rgl(E)D+ tgo(E)] ct -1 +fhl(E) +go(E)D] Gg} • 

3 
(44c) 

These expressions yield a simple solution for N3 - 00. 

For the symmetric wavefunction f solution of Eq. (33)] 
we get from Eq. (38) and the above equations: 

(45) 

and for the antisymmetric wave function r solution of Eq. 
(34)] 

(46) 

The transition dipole matrix element for the surface 
states is [from Eq. (40)]: 

N3-1 

Jls=~~(i)iol~lk=O,l), (47) 

where i)io is the ground state wavefunction. Inserting 
the coefficients derived by Eq. (44) in Eq. (47) we ob­
tain for the symmetric wavefunction: 

(48) 

where E(O) is the eigenvalue for the 'unperturbed' sys­
tem for K = 0 and Jlo is the transition dipole for a single 
molecule from the ground state to state J. The transi­
tion dipole for the antisymmetric wavefunction is zero. 
This is anticipated since our system has an inversion 
symmetry. At this point it is worth mentioning the fact 
that the twofold degeneracy is accidental, since the two 
surface wavefunctions belong to two different group rep­
resentations, i. e., symmetric and antisymmetric rep­
resentations . 

The optical absorption per molecule is directly pro­
portional to the dipole strength per unit energy per mol­
ecule d(e), where d(E) is given for the localized surface 
states by 

(49) 

Substituting the transition dipole matrix element from 
Eq. (48) for the symmetric wavefunction a Simple ex­
pression is obtained for d(E), with the help of Eq. (36): 

(50) 

This expression yields a simple result for N3 - 00: 

2Jl2 2D 1 
d(E)=:::: 2D:1 6fE+D+1/(4D)] (51) 

All the complications encountered in the calculation of 
the expansion coefficients can be avoided, if the Green's 
function is calculated, rather than the wavefunctions. 
In addition extended states are handled in a natural way 
by the Green's function method, on the same footing as 
the discrete states. The dipole strength per unit of en­
ergy per molecule is given in the Green's function rep­
resentation by13: 

d(E) = (l/1TN) 1m (i)io I ~G(E) ~ I i)io) . (52) 

Utilizing Eqs. (18) and (52) the following expression is 
derived for d(E) for a finite N3 (see Appendix): 

- 2Jl~ o(E - Es) 
=~ [E - E(O)n.!?"~(Es) +g;(Es)] 

(53) 

This expression is identical to Eq. (50) as expected. 
When N3 - 00, the eigenvalues of Ho(k) do not form a dis-
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5.0 

D=-Q.75 

D=-I.OO \ 2.5 
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D· 0 

-25 l- I 

D- 0.25 

-5.0 1 I 

-1.6 -0.8 o 0.8 1.6 
E 

FIG. 2. A graphical solution of Eq. (33). The horizontal lines 
denote y~-1/(D+l/2). 

crete set on the real axis. The discrete eigenvalues of 
Go(E) form isolated poles on the real axis, but when 
N3 - 00, Go(E) is characterized by a branch cut on the real 
axis for the eigenvalues of Ho(k). Hence the dipole 
strength per unit of energy per molecule can be recast 
in the form: 

d(E) - r ~_ 2(D d) fJ.~ 
- - N~~ rrN3 [E - E(O)]2 {I + 1i~(E) +g;(E)] (D + t)} 

+fJ.~o[E-E(O)]. (54) 

The first term in Eq. (54) is due to surface perturbation 
and is zero in the limit N3 - 00. The second term in Eq. 
(54) denotes bulk absorption. Combining Eqs. (54), 
(30), and (31), we obtain for - 1 < E < 1: 

_.1& [ 4(D2-i-) 
d(E) - rrN3 1m (1 _ E)(4DE + 4D2 + 1) 

i4(L2 + W v'(I+ET7tf=EJ] 
+ (1 - E)(4DE + 4D2 + 1) 

4fJ.~ (D + Wv' (1 +E)/(l- E) 
rrN3(I -E) (4DE +4D2 + 1) 

(55) 

As evident from Eq. (55), there are no virtual states l3 

in the region for which - 1 < E < 1. The expression de­
rived for d(E) in the region - 1> E > 1 is given by 

d(E) 2fJ.~(2D-l)oIE+D+~\. 
N 3 (2D + 1) \ 4Dj (56) 

This expression is identical with Eq. (51), as expected. 

The energy dispersion curves for the surface states 
are of the form: 

ES(k) ~ Es + Ef + 6D + cos(k. a l ) + cos(k. a2 ) • (57) 

Here the reference energy is again the crystal ground 
state. utilizing Eq. (38) the following expression is ob­
tained in the limit N3 - 00: 

These energy dispersion relations correspond to a two 
dimensional density of states function with typical loga­
rithmic singularities. For finite N3 , one can calculate 
numerically Es , and therefore ES(k). 

IV. NUMERICAL RESULTS 

The expression derived in Sec. III are simple, and 
manageable to numerical calculations. A graphical so­
lution of Eq. (33), applied to a finite N3 , is displayed 
in Fig. 2; the intersection of the horizontal lines, cor­
responding to various D values, with the gl (E) +g2(E) 
curves, yields the roots of Eq. (33). However, the nu­
merical solutions of Eq. (33) and (34) are determined by 
Newton's method. The dependence of the energy levels 
of the localized states on the environmental shift term 
D, is displayed in Fig. 3. The center curve of Fig. 3 
denotes a solution for an infinitely thick crystal [see Eq. 
(38)], corresponding to two degenerate states. When N3 
is finite, the two localized states corresponding to Eq. 
(33) and (34), are nearly degenerate. The curves above 
the center curve, and below the center curve, corre­
spond to the symmetric, and antisymmetric localized 
states wavefunctions, respectively. Either by increas­
ing N3 or I D I, the solutions for the finite crystal ap­
proach rapidly the solutions of the infinite crystal. Hence, 
surface states of thin crystals can be approximated in 
most cases by considering the solutions for which 
N3 - 00. The optical absorption, corresponding to the 
localized states of thin crystals, can be easily evaluated 
by inspecting the results given for the infinite crystal, 
as demonstrated in Fig. 4. 

The extent of surface localization is illustrated in Fig. 
5. The exciton is almost entirely localized on the two 
surfaces of the crystal for a large environmental shift 

-2.0..--------------------, 

-1.8 

E 

0.50. 175 
D 

FIG. 3. Energy levels of localized states versus the environ­
mental shift term. The center curve denotes an infinitely thick 
crystal for which N3 - 00. Curves above, and below the center 
curve correspond to solutions of Eq. (33), and (34), respective­
ly. 
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1.40 r----------------.., 

1.05 

C'l 
2 

~ 0]0 
-0 

o~----~~----~~----~~----~ 0.5 2.5 

FIG. 4. Dipole strength per unit of energy per molecule d(E), 
weighed by N3• Bottom line denotes the limiting case for 
which N3 -"'. 

term, whereas partial localization is determined for 
intermediate D terms for planes adjacent to the surface 
planes. This partial localization decreases rapidly as 
D is increased. 

The bulk optical absorption is displayed in Fig. 6 for 
N= 150, and some values of D. These results are com­
pared to the absorption line shapes, given in Fig. 7, of 
an infinite crystal. The comparison between the thin 
crystal and the infinitely thick crystal is not as direct 
as was demonstrated for the localized states. Bulk 
states of infinitely thick crystals are extended along the 
energy axis, while bulk states of thin crystals are dis­
crete. Even so, in either case a sharp optical peak is 
formed at the top of the exciton band. 

V. DISCUSSION 

The pertinent results of this work are related to the 
possible generation of surface exciton states within the 
framework of the Frenkel-Davydov6,7 theory on molecu­
lar excitons. The formation of surface exciton states in 
molecular crystals depends on the magnitude ofthe environ­
mental shift terms, relative to the exciton transfer 
terms. These surface excitons are comparable to elec­
tron Tamm states, 1 in that surface excitons can be pre­
dicted for a single exciton band, and a simple crystal 
structure. The apparent difference between these sur­
face excitons and Tamm's surface electron states is that 
some kind of surface deformation is assumed for the 
Tamm electron states. This deformation results in a 
change of the surface potential parameters relative to 
the corresponding bulk parameters. The reason for this 
difference in the results for surface excitons in rela­
tion to the results for Tamm's electron states is asso­
ciated with the multielectron wavefunctions utilized for 
the molecular exciton, 'whereas only one-electron crys­
tal wavefunctions are involved in the formation of 
Tamm's states. Although the calculations presented 

herein are based on a simple model, some general con­
clusions may apply to more complex systems. These 
conclusions are: 

(a) Surface exciton states may exist if the environmen­
tal shift terms are of the order of magnitude or larger 
than the exciton transfer terms. 

(b) The degree of localization of surface states in­
creases with the increase of the environmental shift 
terms. 

(c) Surface states are not very sensitive to crystal 
thickness. This situation is more pronounced, when 
comparatively large environmental shift terms are en­
countered. 

(d) The bulk optical absorption of thick crystals is 
not effected by the surface, however thin crystals may 
show some dependence on the thickness of the crystal. 
On the other hand, a very interesting situation may 
arise, when the surface states lie below the bulk states. 
In this case, it may be possible to trap bulk excitons by 
the surface. This process may be followed by surface 
emission. While in most cases the surface states will 
be above the bulk states (D < 0), in accordance with the 
gas-to-crystal red shift, the opposite should be true for 
blue shifted cases (with short range exciton interac­
tions). Some triplet states in organic crystals are likely 
candidates.14 Actually evidence has been offered by Bro­
din et al. 15 for exciton surface states lying above the 
lowest singlet exciton bulk state in anthracene. This 
evidence is based on a combination of reflection and 
fluorescence low temperature spectra. Obviously, slow 
thermal equilibration, relative to the exciton lifetime, 
has to be involved. We point out that Brodin et al. 15 

base their interpretation on Sugakov's approach, 16 as 
they believe this anthracene exciton band to involve pri­
marily long-range (transition dipole-transition dipole) 

0.5r------------------. 

04 

D 

FIG. 5. Localization of excitons on various surface planes. 
Note that there are no localized states for I D I < t. 
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..--------------.0.10 

N3= 150 

0= 0 

0.05 

0 

0.10 

N3= 150 N3= 150 

0=-2.0 0=-0.4 

N3 =150 N3= 150 

0= 2.0 0=0.4 

E 

interactions. In spite of formal similarities we note 
that our theory is more general but our emphasis in ap­
plications has been on short-range dynamic (exciton) in­
teractions, as well as short-range static (site -shift) in­
te ractions. 

To end this discussion of surface excitons, we would 
like to offer some suggestions which we feel deserve 
further investigation. Although some of the following sug­
gestions may seem speculative in nature, nevertheless, we 
believe they pose interesting possibilities. They are: 

(a) A theoretical investigation of the effect of exciton 
surface states on the reflectivity of molecular crystals 
based on the model presented in this paper, may help 
to elucidate experimental results related to this model. 

(b) A comprehensive study of more complex models 
may furnish results on the availability of all values of the 
wavevector k in two dimensions for a set of surface 

0.05 Q 
FIG. 6. The dipole strength 

x per unit of energy per molecule 

W for the bulk states, for various 

'0 
values of D. 

0 

0.10 

0.05 

states. This may be pertinent to the study of optical and 
transport properties of surface excitons. 

(c) Since surface molecules comprise a small fraction 
of the entire crystal, it may be possible to pump surface 
excitons in a large concentration by exciting the mole­
cules in the bulk of the crystal, followed by surface 
trapping. Such a process would be of interest to the 
study of exciton-exciton interaction. 

Finally, it should not be forgotten that our entire dis­
cussion involved idealized, flat, surfaces. Real sur­
faces are extremely varied and sample dependent. What 
kind of real surfaces would be amenable to our formal­
ism will have to be discovered experimentally. 

Note added in proof: Two recently published papers 
on Green's function theory of surface electron states 
have just come to our attention [E. N. Foo and H. S. 
Wong, Phys. Rev. B 9, 1857 (1974); D. Kalkstein and 
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FIG. 7. Line shapes of dipole strength per unit of energy, for 
various values of D, where d*(E) = N 3d(E) , and N3 _00, 

P. Soven, Surface Science 26, 86 (1971)]. There are 
obvious similarities in the Green's function formalism 
between these works and ours, but we would point out 
that our more general formalism is for many electron 
functions, admits long range interactions, and does not 
depend on an ad hoc surface potential perturbation. In 
addition, we discuss optical properties. On the other 
hand, our treatment is addressed specifically to Frenkel 
excitons, including vibrational and vibronic ones. 

APPENDIX 

The transformation of Eq. (52) into Eq. (53) can be 
accomplished by applying the projection operators 

i = L IK)(KI 
K 

on Eq. (Al): 

T(E) ;: (<Po I Jj.CjJ.1 <Po) , (Al) 

where I K) are the eigenfunction of the unperturbed sys­
tem belonging to a three dimensional wavevector K. 
Thus 

T(E) = LL (<Pol [J.IK) (KIC(E) IK') (K'I ill <Po) 
K K' 

= (<Po I fL 10) (0 I G(E) 10) (0 I fL I <Po) 

=NJ-.L~ (0 I G(E) 10) . 

utilizing Eq. (18) we obtain for T(E) 

T(E) =NJ-.L~ [E - E(0)r 1 +NJ-.L~ S(E) , 

where S(E) is represented in the form 

S(E) = (0 ICo(E) V[1 - Co(E) if]"l Co(E) 10) 

(A2) 

(A3) 

(M) 

S(E) can be further reduced by utilizing the projection 
operators 

i = L I k, I) (k, [I 
t, I 

where Ik, I) is given by Eq. (1) and 

i = L IK) (K) : 
k 

K K' k 

0(k, II [1- Go(E)Vl1IK') (K/I Go(E) IK) 

(A5) 

= [E - E(O)]2L (0 I Vlk =0, I) (k=O, II [i - Go(E)vl-110), 
I 

Note that Go(E) is diagonal in IK). 

Expanding IK =0) in terms of I k = 0, I) : 

10) =N31/2 L:I 0,1) (A6) 

and inserting in (A5) we obtain 

S(E) =N31 [E - E(O)]"2 L (O,n I vi 0, I) 
n.l,m 

(A7) 

By dropping zero terms form (A7) the following expres­
sion is derived for 5 (E): 

S(E) =N31 [E - E(0)]"2 (VllRoo + VOoROl + VOIR 10 + Vo1R ll 

+ VIOROO + VlOROl + VllRlO + VllR ll ) , 

where 

Vjj = (0, i I VIO,j) 

and 

is given as 

(A8) 

Note that V connects only adjacent surface planes. The 
matrix elements R i } and Vi} of Eq, (A8) are given in the 
form: 

Voo = Vll =D , 

VOl = VIO =J . 

(A9) 

(A10) 

(All) 

(A12) 

Plugging Eqs. (A9), (AlO), (All), and (A12) into Eq. 
(A8) the following expression is derived for S(E): 
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