ROBUST RECURSIVE ALGORITHM
FOR NONLINEAR STATE ESTIMATION

ALEXEI R. PANKOV
Department of Applied Mathematics
Moscow Aviation Institute
Moscow,127080, Russia

ALEXEI V. BOSOV
Department of Applied Mathematics
Moscow Aviation Institute
Moscow,127080, Russia

ANDREI V. BORISOV
Department of Industrial & Operations Engineering
University of Michigan
Ann Arbor, MI 48109-2117

Technical Report 92-27
April, 1992.



ROBUST RECURSIVE ALGORITHM FOR NONLINEAR STATE
ESTIMATION

ALEXEI R. PANKOV, ! ALEXEI V. BOSOV,? ANDREI V. BORISOV?

Abstract. The nonlinear recursive filtering algorithm for the discrete-time stochas-
tic systems with observation outliers is considered. The results of numerical tests are
given.

Key Words. Conditionally-minimax nonlinear filter, robust nonlinear recursive fil-
ter, optimal robust filtering.

1 Introduction.

It is well-known that the Kalman filter (KF) gives the optimal in a mean-square
sense estimate of the linear system state only if the system and observation noises
and the initial conditions are gaussian (Liptser, and Shiryayev, 1977). If for example
the observation errors contain outliers, the KF may work very poor, i.e., the estimate
accuracy is low. Many papers are devoted to the problem of robustifying the KF
(Masreliez, and Martin, 1977), (Ershov 1978), (Subba Rao, and Yar, 1984), (Barton,
and Poor, 1990). This fact shows the practical importance of the problem.

The problem of optimal robust filtering is a nonlinear filtering problem (Liptser, and
Shiryayev, 1977), the solution of which leads to very complicated numerical algo-
rithms. In this paper we shall construct the robust nonlinear recursive filter (RNRF)
based on the conditionally-minimax nonlinear filter (CMNF') (Pankov, 1990). The
last method makes it possible to solve the general nonlinear filtering problem It is
based on the idea of conditionally-optimal nonlinear filter (Pugachev, 1979), (Pu-
gachev, and Sinitsyn, 1990), (Raol, and Sinha, 1987). By taking into account the
specific character of the robust filtering problem and using the CMNF method we
obtain a rather effective RNRF algorithm, which is not a robust KF modification. In
this paper we consider the RNRF structure for a linear difference stochastic observa-
tion system, the corresponding estimate, statistical properties and numerical results,
which allow us to compare the accuracy of the RNRF and the robust KF (Ershov
1978). We also briefly consider the RNRF for nonlinear difference stochastic systems.
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2 Problem formulation.

We shall use the following notations: ||z|| = (zTWz)"/? for some known weight ma-
trix W : W = WT, W > 0; p(z|m,S) - the multidimensional gaussian probability
density with the mean m and covariance matrix S ; P(m,S) - the set of all random
vectors z with E{z} = m and cov(z,z) = S.

Let us consider the following stochastic observation model:

{ Yo = Qoo F0n, n=L2 0= ()
Zn = CplYn + Un,

where y, € RP is a state vector, n € RP is a vector of initial conditions with the

density p(z|m,, Ry) ; 2z, € R? is an observation vector; a, , ¢, are known (p * p) and
(q * p) matrices respectively; {w,} and {v,} are independent random white noises

with the one-dimensional densities f,,(z,n) and f,(z,n) of the following form:

fu(z,n) = p(z|m., Ry), (2)
fv(xvn) = (1 - 5)p($|mval) + 6p(x|m2, Q2)’ (3)
where my, , Ry, , m; , @; > 0 (1 = 1,2) are known multidimetsional parame-

ters; § € [0,1] is a probability of outliers in observation ( the density of outliers
18 p(m|m2, Q?))

From (1),(2) it follows that {y,} is the gaussian process. Equations (2),(4) define
the standard observation model with outliers (Kassam, and Poor,1985). It should be
mentioned that in (2),(3) all distribution parameters depend on n , but we shall omit
this for simplicity.

Consider the problem of a robust recursive process {y,} estimation given the vector
of observations Z™ = col(z, ..., z1) in the context of conditionally-minimax filtering
theory (Pankov,1990).

Let §,_1 be the CMNF estimate of y,_; given Z"~!. The estimate g, of y, takes the
form

{ gn = angn—l + My, (4)
Yn = Yn + ¢:1(Cn(gm zn))v
where (,(7n, 2,) is some known basic correction function (BCF) ( the choice of BCF

is considered in section 3 ); ¢, is a prediction of y, given Z,_; which is based on the
equation (1); @%(.) is the vector-function obtained from the optimality condition

. n) = - E n_~n_ n\Yn 27 5
$n(va) = argmin max E{[lyn - §n = dn(va)l["} (5)

where @ is the set of all measurable square integrable functions; z = col(Agn,vs) €
P(m, S) with known m, S ; Ay, = yn — ¥n is a prediction error.



The equation (5) shows that the CMNF belongs to the class of algorithms with a
"predictor-corrector” structure, and ¢%(.) provides the mean-square optimal correc-
tion of gy, under the additional condition that the correcting term is an arbitrary
function of the BCF v,. The probability distribution of the random vector z is un-
known, but the moments of the first and second order m, S are known ( or can be
calculated in some way). Hence, ¢Z(.) is a conditionally-minimax correction on the
set of distributions P(m,S). If the distribution of z is known, we can obtain the
optimal correction ¢°(v,) = E{Agn|vn} , but numerical evaluation of it has the same
level of complexity as the original nonlinear filtering problem.

If the solution of (5) exists, the equation (4) defines the recursive CMNF. To obtain
the robust modification of CMNF we need to choose the appropriate (,(y,z) and
determine the function ¢%(.) from (5). The corresponding results are given in the
next section.

3 RNRF for the linear model.

In order to choose v, = ((in, 2») We consider the additional problem of the random
vector X estimation given the observation vector Y = CX 4 V, where X has the
density p(z|m,, R;) (i.e. X is gaussian) ; V is a vector of observation error which is
gaussian with outliers:

fy(zln) = (1 - O)p(zlms, Q1) + 6plalma, Q).
Let us obtain the mean-square optimal estimate X of X given Y:
X =v*(Y), where

7'(Y) = arg min E{||X - 4(Y)]I*}

LEMMA 1. Let X and V be independent, then

{ 7(Y) = (L= x(VDX(Y) +x(V)X(Y), g
x(Y) = 8L = O (Y) + £V

£i(y) = pylCms +m, CRCT = Q) i=1%
Xi(Y) = my + R.CT(CR,CT + Qi)*(y = Cmy — my).
Proof of Lemma: see Appendix A.

Denote m, = E{A§n} , R: = cov(Ajn, Ajn) and C = c,. Let us take the BCF
Cn('gn’ zn) as fO].lOWS

Cn(gn, zn) = 7;(271 - Cngn)a (8)
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where 77(.) is defined in (6),(7). Taking into account z, — cnfin = cnA¥n + v, we
obtain from Lemma 1 that the BCF (8) provides the optimal correction g, under
the condition of gaussianity of Ag,. Hence, (4(¥r,2n) as in (8) provides the robust
property of the estimation algorithm. The real distribution law of A, slightly differs
from gaussian, hence the filter accuracy may be raised by the nonparametric filter
optimization in conformity with (5).

First we state a preliminary result concerning the minimax problem (5). Let z =
col(z,y) € P(m,S). Denote m, = E{z} , my = E{y} , S; = cov(z,z), §, =
cov(y,y), Sy = cov(z,y) = SyzT.

LEMMA 2. Let J(¢,F) = E{||z — 8(y)||*}. If z has the distribution F € P(m,S)
then

J(6, F) < J(6", F) < J(6, F")

whered*(y) = Sey Sy + (Mg — SpyS}my), and F* is the gaussian distribution with
the expectation m and covariance S.

Proof of Lemma 2: see (Pankov, Bosov, and Borisov, 1992).

THEOREM 1. Let yo = E{n} , vn = (a(Un, 2) satisfy (7)-(9), then
i) the solution of (5) ezists for alln > 1 and

¢:L(V") = HnVn + hna
H, = cov(Afn, vn)covt (vn,vn);  (9)
hn = —H — nE{vy;

11)7, is an unbiased estimate of y, with the covariance matriz K, of the estimate
error Afn = Yn — Yn, where

K, = anIA{n_laZ + Ry, — Hucov(vy, AYn), n2>1; Ko = R,. (10)
Proof of Theorem 1: see Appendiz B.

Corollary. Let E { — y, — E{y.}||?} <L <00, n >0, then RNRF (4) is
nondivergent, i.e. E{||A7.||*} < L < 0.

Proof of the statement follows from (10).
Let W =1 and Kn_l < L. Then

E{[|Aga|?} = tr{Ka} < tr{e.Kao1a7} <
tr{ancov(yn-1, Yn-1)ag + Ru} = tr{cov(yn, yn)} = E{llya — E{va}[I"} < L.

Hence, the estimate error variance of the arbitrary component of y, is less or equal
to the variance of this component for any n > 0. From Theorem 1 it follows that
7n is also an unbiased estimate of y, as Af, = anAfs—1 and E{Ag,_1} = 0. The
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accuracy of §n is determined by its error covariance matrix K,,.
Consider the final system of equations, which defines the RNRF for system (1)-(3):
Un = Anln-1+ My, n>1 go=my; (11)

{ gnzgn'*‘HnVn’*:hm X
Vo = (1= x(€x))X}(€n) + X(€a) X3 (€n); €n = 20 — Can;

{ X:z(en) = f{nncz:(cnf{ncf + Qi)—l(en - mi); f{n = anf{n—laz + Ry;

(12)

X(€n) = 6 f3(€n)[(1 = 6) fr(€n) + 817 (€n)] 7T (13)
f;m(fn) = P(€n|miaCnKnC£ + Qi); 1 =1,2;

{ H, = cov(Afn, vn)cov (vn,vn);  hn = —H,E{vn};

K, = a, K, — Hycov(vy,,Af,), n2>1; Koy=R,. (14)

Formula (11) defines the prediction, (12) defines the correction procedure, equations
(13) define the robust BCF, and (14) allows one to calculate the optimal filter coeffi-
cients H, , h, and its error covariance Kn.

It should be mentioned that in the case of gaussian observation errors without any
outliers (i.e. § = 0) algorithm (1)-(14) coincides with the KF algorithm, i.e.

Qn = gn + Kncz(cnf(ncz + Qi)-lgm

where {€,} = €, — m; is the innovation sequence.

There is another interesting case, which leads to the minimax interpretation of the KF
algorithm. From Lemma 2 it follows that if we use the linear KF equations (Sage,and
Melsa, 1972) together with the model (1)-(3), but considering the observation error
{v,} as a gaussian white noise with the expectation (1—8)m;+6m; and the covariance
matrix (1 — 6§)Q; + 8Q,, we obtain the estimate §f, which possesses the minimax
property, and the §* accuracy is guaranteed for given values of § , m; , my , @1 and

Q2.

4 RNRF for the nonlinear system.

Consider the following nonlinear observation model:

Yn = an(yn-l) + bn(yn—l)wm n>1; yo=m (15)
Zn = Gn(Yn) + Vn, (16)

where a,(y) , bn(y) , gn(y) are known nonlinear vector-functions. All properties of 7,
{wn}, {vs} considered in section 2 hold.

To derive the robust CMNF let us introduce the second structural function é,(y) - the
basic prediction function (BPF). Denote ¢, = &,(jin—1) and consider the conditionally



minimax prediction , of the following type

gn = ¥5(60), (17)
where ¥7(.) is defined by the condition
x(F N\ _ . _ ¢ 2
¥al6n) = argmin max E{ljyn — v (&I}, (18)

where mo = E{zo} ; So = cov(zo,z0) and zo = col(yo,fn).A
From (17),(18) it follows that §y, is a function of BPF ¢, and provides the mean
square optimal prediction of y, for the most unfavourable joint distribution of y, and

¢, from the set P(my, So). Consider the sufficient conditions for the RNRF for (15)
to exist and the structure of the corresponding filtering algorithm.

THEOREM 2. Let for a,(y) , ba(y) , gu(y) from (15,(16) and &,(y) there exist
Qn, Bn < 00 such that for all y € RP and n > 1 the following inequalities are correct:

llan(@)Il + [1Ba(W)1] + llgn ()l + [1Ea(B)I] < Ba(L + llyll*);

b) there exists
dn(y) = 09a(y)/y,
and
ldn()I] < Bal(L + |lylI*"
Then the RNRF ezists and is defined by the equations

gn =Fn£n+fn; n 2 17 gOme (19)

where F, = cov(yn,gn)cov+(én,én) , fo = E{y.} - FnE{én}, and formulae (12)-(14),
where €, = 2, — ¢(¥n) , ¢ = d(§n) and K, = coV(Yny Yn) — Fncov(én,yn). The esti-
mates §, and Y, are unbiased and obtain the error covariance matrices I~(n and IA(n
respectivly.

The proof of the Theorem 2 is based on the fact that under the conditions of
Theorem 2, y, and 7, have finite moments of arbitrary order for any n > 0. Conse-
quently, it looks like the proof of Theorem 1, hence we omit the details.

Consider some obvious types of BPF ¢,(y)
a) én(Yn-1) = Yn—1 -linear BPF;
b) n(Yn-1) = an(yn-1) +b(yn-1)my-the BPF based on the dynamic system equations
(15);



¢) &n(Gn-1) = col(e1(yn=1), ---s en(yn-1)), where {e;(yn-1)} is a system of linearly in-
dependent functions on R (the BPF of the general type).

5 Numerical examples.

From the equations (14) and (19) it follows thar RNRF parameters are independent
of particular measurement trajectory {z,} and depend only on the moment charac-
teristics of the vector = col(Agn, v,) and zo = col(yn,&,). Consequently they can be
calculated in advance and store in a computer memory. There are several methods for
determinating F, , f, , H, and h, (Raol and Sinha, 1987) , (Pugachev, and Sinitsin,
1990), developed for the conditionally-optimal filtering and based on the evaluation
of the joint characteristic function of y, and J,. These methods are very complicated
and require many a priori computations. We think that much more effictive method
is the method based on the joint computer recursive statistical modelling of y, and
y» and the statistical treatment of the simulations results. The details of this method
are given in previous papers (Pankov,1990). Using these methods we obtain several
estimation results which allow us to compare the RNRF method with others finite-
dimensional filtering algorithms with the optimal one.

Consider the following observation model:
Yn = O-gyn—l + Wn, Yo =11 (20)
Zn = 2Yn + V.

1. The distributions of w, , v, and n are given in section 2. We use the following
concrete distribution parameters:
Mmy=my,=my=my=00,R, =049 ,R,=10,0Q,=10,Q,=1000,6=02.
We simulated on a computer N = 5000 system (20) trajectories and obtain the fol-
lowing estimates.

70 - the mean-square optimal estimate, determined by the special numerical al-
gorithm of the spline-appriximation of the conditional density of the system state
(Pankov, Bosov, and Borisov, 1992);

j¥ - the minimax linear estimate; given by the KF algorithm (see section 2);

7% - the estimate of the robust KF (Ershov 1978),;

Un - the RNRF estimate.

The corresponding numerical results are given in Table 1.



Table 1.

B TE,

Tk k
EF | K

W 00 I O UL = W N B

—
o

0.592 | 0.618
0.490 | 0.539
0.444 | 0.500
0.449 | 0.481
0.429 | 0.460
0.385 | 0.473
0.392 | 0.478
0.392 | 0.471
0.420 | 0.441
0.409 | 0.441

0.712 | 1.040
0.605 | 1.061
0.600 | 1.071
0.638 | 1.077
0.632 | 1.079
0.618 | 1.081
0.650 | 1.081
0.665 | 1.082
0.669 | 1.082
0.655 | 1.082

We see that §j, is much more accurate than 77%, and §F is close to §°. The compu-
tation time of ¥, is practically the same as of §¥ and sufficiently smaller than of §?.

2. In order to check the importance of the normality condition for Ag, (see Lemma
1) we consider the system (20) with two types of nongaussian disturbances {w,} and
initial condition 7: the uniform distribution and the Laplace distribution. All param-
eters of these distributions were chosen as in (21). We calculate the RNRF-estimate

9» and the optimal one 3. the resuts are given in Table 2.

Table 2.
n | KO(uniform) | K,(uniform) | K°(Laplace) | K,(Laplace)
1 0.547 0.614 0.680 0.726
2 0.431 0.484 0.510 0.598
3 0.392 0.464 0.477 0.551
4 0.397 0.422 0.493 0.518
5 0.381 0.421 0.464 0.505
6 0.375 0.432 0.480 0.492
7 0.388 0.422 0.453 0.489
8 0.422 0.465 0.472 0.511
9 0.411 0.426 0.479 0.500
10 0.390 0.461 0.471 0.497

From the obtained results it follows that the influence of the deviations in the Ay,

distribution from the gaussian one is negligible.




6 Appendix A.

Proof of Lemma 1.

Define fx(z) = p(z|mz, R;) , fi(z) = p(z|mi, Qi) , i = 1,2 . Then the probability
density of V' is fv(z) = (1 — é) fi(z) + 6 f2(z). It could be easily checked that in this
case Y has the probability density

fr) =0 =8y +* (v), (21)

where fi(y) = p(y|Cmz + m;, CR,CT + Q) , i =1,2.
The conditional density f(z|y) of X given Y may be expressed in the form f(z|y) =
f(ylz) fx()[fr ()]~ , hence

1) = [ af(aly)de = [ zf(yle)fx()dalfr (1)

Obviously f(y|z) = (1= 6)fi(Y — Cz) +6f,(y — Cz) , then

flylz) fx(z) = (1 = 8)f(y) fulely) + 62(y) falzly),

where f;(z|y) is the conditional density of X given Y under the assumption that V
has the density fi(z),¢=1,2. Then

7T = W70 - 07') [ chlelyds+6£() [ ahlely)da] =

[Fr()] 71 = )7 (y) + 6% (v)],

where 47 is the optimal estimator of X given Y if V has the density fi(z),:=1,2.
From the normal correlation theorem (Liptser, and Shiryayev, 1977) it follows that if

Qi>0

v (y) = mg + R.CT(CR,CT + Qi)™ '(y = Cmy — my)), i=1,2. (22)
)

Denote x(y) = 8§f*(y)[fr(v)I™" , Xi(Y) = 47(Y) , then for the optimal estimate
X =~*(Y) from (21) , (22) we obtain

X = (1= x(V)X(Y) + x(v)Xa(Y)



7 Appendix B.

Proof of Theorem 1.

From the conditions of Theorem 1 it follows that E{||yo||*} = tr{W R, }+||m,]|* <
oo , then for alln > 1

E{|ly=1"} < 2(/lanlPE{|lya-11"} + E{[lwnll*) < o0,
Let for some n > 1 we have
E{||yn—1”2} <, E{yn—l - ?)n—l} =0.
For Ajn = Yo — jn we obtain E{||A7|} < 2B{llsl? + 17/17} < o0 .
Let us show that in this case
E{[1Cu (s 20)II7} = Bl (en) [} < o0
where €, = 2z, — Cpifn = CoAfn + vn . Obviously, E{||e,]|*} < oo since we have
E{[|Ag]?} < o0 and E{][un] 2} = tr{W[(1~6)@1+5Qa]} +[|(1—8)my + 6mal* < .
1(6n) = (1= x(en)) K en) + X(e) Kalen)
and besides x(€,) € [0,1] with probability 1. Hence, it is sufficient to show that
E{||Xi(e)]"} < 0, i =1,2.
Xi(en) = KncT (cnKnck + Qi) (en — mi) ,
hence there exists D} < oo , such that ||X;(e,)||> < Di(1 + ||y|]?).
So, E{||X:(ex)||?} < Di(1 + ||E{en||*}) < 0. Then for z = Afn , y = 7*(€x) the
random vector z = col(z,y) € P(m,S) where m = E{z} , S = cov(z,2) with
tr{WS} + ||m||* < oo . Then from Lemma 1 it follows that
o = G+ (ol 20)) = G + Hoy"(en) + b , where Hy = con(z,)cou*(y,7) |
h, = —H,E{y} .
It should be mentioned that in this special case m; = E{Ag,} = @, E{yn-1—Jn-1} =
0.
Let now n = 1 and gjo = m,. Hence E{||90|*} = ||my|> < o0 and E{yo — Jo} = 0.
Now the result follows from the mathematical induction principle.
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