plasma densities. For the case of an anisotropic Maxwellian velocity distribution, (1) simply becomes

$$\omega_c^2 > \frac{1}{2} \frac{\alpha_z^2}{c^2} \omega_p^2, \tag{2}$$

where α_z is the thermal velocity along \mathbf{B}_0 .

Now, we consider an anisotropic Maxwellian velocity distribution with loss cones given by

$$f_0 = \frac{1}{N\pi^{\frac{3}{2}}\alpha_{\perp}^2\alpha_z} \exp\left[\left(\frac{v_{\perp}}{\alpha_{\perp}}\right)^2 + \left(\frac{v_z}{\alpha_z}\right)^2\right],$$

$$v_{\perp} > \frac{|v_z|}{(R-1)^{\frac{3}{2}}}$$

$$= 0, \qquad v_{\perp} < \frac{|v_z|}{(R-1)^{\frac{3}{2}}}, \qquad (3)$$

where α_{\perp} denotes the thermal velocity perpendicular to \mathbf{B}_0 , R is the mirror ratio, and $\int f_0 d\mathbf{v} = 1$ so that $N = [(R-1)\theta/(R-1)\theta + 1]^{\frac{1}{2}}$ where $\theta \equiv (\alpha_{\perp}/\alpha_z)^2$. We find that for this distribution the condition for stability of the electromagnetic wave propagating perpendicular to B_0 becomes

$$\omega_c^2 > \frac{1}{2} \frac{(R-1)\theta}{(R-1)\theta + 1} \frac{\alpha_z^2}{c^2} \omega_p^2.$$
 (4)

This differs from (2) by the factor $(R-1)\theta/(R-1)$ $\theta + 1$ which is less than one for all finite values of R and θ . For R=1, there is no instability since the dispersion relation is reduced to the cold plasma case where $\omega^2 = c^2 k^2 + \omega_x^2$ (R = 1 means that particles with any motion along Bo will escape from the mirror configuration and the results of Hamasaki show that the instability is due to thermal motion along B_0). For $R = \infty$, we simply regain (2) as this value of R means that all particles are confined in the mirror configuration.

Consequently, we have shown, from (4), that the loss cones of an anisotropic Maxwellian velocity distribution have a stabilizing influence on electromagnetic waves propagating perpendicular to an applied uniform magnetic field B_0 , when compared with an anisotropic Maxwellian without

This work was supported by the Lockheed Independent Research Program.

Comments

OMMENTS refer to papers published in The Physics of G Fluids and are subject to the same length limitation as Research Notes. The Board of Editors will not hold itself responsible for the opinions expressed in the Comments.

Comment on "Oblique Incidence of an Electromagnetic Wave on a Plasma Layer"

VAUGHAN H. WESTON Radiation Laboratory
Department of Electrical Engineering
The University of Michigan, Ann Arbor, Michigan
(Received 13 September 1968)

In the nonrelativistic analysis of a plane wave incident upon a warm plasma slab¹ and half-space,² a coupling term β defined as follows from Eq. (24)²:

$$\int \frac{f_0(\mathbf{v})v_i}{v_p - u} d\mathbf{v} = -i\pi\omega^2 \lambda_D^2 n\beta$$

occurs, which was nonzero for the Maxwellian distribution function. It can be shown that this expression can be written in the reduced form

$$\beta(\omega^2 \lambda_D^2 n) = -2 \int_{-\infty}^{\infty} dv_{\nu} \int_{c/\sin \alpha}^{\infty} v_{\rho} f_0(\mathbf{v}) \ dv_{\rho},$$

where

$$v_a^2 = v_x^2 + v_z^2$$

for an isotropic unperturbed distribution function. For a cutoff distribution function $f_0(\mathbf{v})$ which vanishes for $|\mathbf{v}| < v_0$, it follows that β vanishes if $v_0 > c/\sin^2 \alpha$. Since nonrelativistic theory was employed, 1,2 it is more appropriate to use the cutoff distribution function where $v_0 = c$. In this case, β will vanish for $|\sin \alpha| < 1$, and should be neglected in the final results.^{1,2} However, for the case $|\sin \alpha| > 1$, which would arise in the plane wave decomposition of the incident field produced by a source in the vicinity of the slab or interface, the term β may not necessarily vanish for the cutoff distribution function.

¹ R. N. Sudan, Phys. Fluids **6**, 57 (1963).

² J. E. Scharer and A. W. Trivelpiece, Phys. Fluids **10**, 591 (1967).

J. E. Scharer, Phys. Fluids 10, 652 (1967).
 S. Hamasaki, Phys. Fluids 11, 1173 (1968).

¹ J. J. Bowman and V. H. Weston, Phys. Fluids 11, 601 (1968).

² V. H. Weston, Phys. Fluids 10, 631 (1967).