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The compressible flow of a viscous, heat-conducting gas around a corner is considered; in particular,
the viscous corrections in the expansion region are caleulated. The solutions are written in terms of
asymptotic expansions, valid in the region far, compared to a viscous length, from the corner, so
that the zeroth-order solutions are the classical Prandtl-Meyer solutions. The method of inner and
outer expansions is used where the inner region encloses the first Mach line emanating from the
corner. It is shown that the first effect of the transport properties in the expansion region is to generate
terms either of order Re™! (inverse Reynolds number) or of order Re™? log Re, depending on the

dependent, variable considered.

1. INTRODUCTION

HE Prandtl-Meyer solution’ for the steady

supersonic flow of a compressible inviscid gas
around a corner is well known, and has been used
extensively. In this solution, viscous and heat-
transfer effects are ignored; since there is then no
physical characteristic length associated with the
problem, the flow variables are independent of the
radial distance from the corner, depending only on
the angle of turning. Although it is clear that such
assumptions are justified for a large class of prob-
lems, the extent of the approximation involved by
the use of the inviscid equations is not known, More
precisely, in terms of an approximate solution the
zeroth-order term of which is the Prandtl-Meyer
solution, the magnitude and functional form of the
terms due to the inclusion of transport effects are
unknown,

The general problem of the supersonic flow of a
compressible viscous heat-conducting gas around a
corner must include the effects of the wall before,
at, and beyond the corner, unless the wall ends at
the corner, in which case a mixing region exists
downstream of the wall (nozzle problem). While g
complete solution of the boundary layer flow around
a corner has not been found, Lighthill’> has shown
that the boundary layer becomes thinner upstream
of the corner. When the external flow is supersonic
and the turning angle is small, the dimensionless
extent of this thinning region, A in Fig. 1, is shown
to be of order Re™®, where Re is the Reynolds
number based on external flow conditions and a
characteristic length in the flow direction, L, and
A is dimensionless with respect to L. Also shown
in Fig. 1 is a viscous region which includes the

1'W. G. Bickley, in Modern Developments in Fluid Dy-
namics, High Speed Flow, L, Howarth, Ed. (Clarendon Press,
Oxford, England, 1953), Vol. I, pp. 164-173.

2 M. J. Lighthill, Proc. Roy. Soc. (London) A217, 478
(1953).

first Mach line. The expansion wave has discon-
tinuities in the normal derivatives at the point where
the uniform and Prandtl-Meyer flow solutions join,
so the first effects of viscosity are felt in smoothing
this discontinuity in derivatives. It is easily seen
from the Prandtl-Meyer solutions that when the
uniform flow upsteam of the expansion is supersonie
the discontinuities appear in the first derivatives and
when the upsteam flow is sonic, the discontinuities
appear in the second derivatives. As a result, it is
shown later that 8, the dimensionless order of the
thickness of this viscous region, has a different mag-
nitude for each of these cases. In addition, the order
of the viscous corrections in this region depends on
the case being considered. In the remainder of the
expansion fan, viscous terms are simply corrections
to the Prandtl-Meyer solutions and are less pro-
nounced.

Upon consideration of the flow picture as sketched
in Fig. 1, it seems clear that the relative importance
of viscous terms due to the influence of the boundary
layer as compared to those due to the viscous region
at the beginning of the expansion can be charae-
terized by a comparison of § and A.* That is if,
in the limit as Re — o, § becomes large compared
to A, then the viscous correction terms found from
the inclusion of transport properties in the expansion
wave solution are more important than those due
to the thinning of the boundary layer. On the other
hand, if in this limit § is small compared to A, then
the opposite effect occurs, and the flow picture must
be changed to that where the expansion takes place
around a curved wall, to first order, and the expan-
sion wave is not really a centered wave. In the latter
case, which is shown to be valid when the initial
flow is supersonic, the viscous effects found from
the expansion wave solution would be expected to

® The author is indebted to Dr. Toshi Kubota, California
Institute of Technology, for clarification of this point.
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Fi6. 1. Sketch of viscous regions formed as flow turns corner.

be of higher order than the boundary layer effects.

In this paper, § is found for both the sonic and
supersonic cases, and the first viscous and heat-
conduction corrections to the Prandtl-Meyer solu-
tion are calculated. The problem is obviously a
singular perturbation problem; the technique em-
ployed here is the so-called method of matched
asymptotic expansions, developed by Xaplun,
Lagerstrom, and Cole*™® and described in detail
by Van Dyke.” The expansion wave is pictured as
consisting of two parts; the first, hereafter referred
to as the inner region, consists of the region described
above, where the effects of viscosity are to smooth
the discontinuities in derivatives, while the second,
hereafter referred to as the outer region, contains
the remainder of the expansion wave.

2. FORMULATION OF THE PROBLEM
A. General Conditions

In the following, attention is directed mainly to
the expansion fan. However, it is necessary to discuss
certain general aspects of a boundary-layer solution,
as becomes apparent when the boundary and match-
ing conditions are considered.

Insofar as the expansion problem is concerned,
the characteristic length introduced by the inclusion
of transport effect is the viscous length, 7,/3,. Here,
v and ¢ are the kinematic viscosity and velocity,
respectively, the bar indicates a dimensional quan-
tity, and the subscript one refers to quantities in
the undisturbed stream. Since it is desired to find
a solution outside the boundary layer, then certainly
T > 7,/q,, where r is the radial distance form the
corner. However, it is convenient to introduce the
characteristic length L as an extraneous length which
scales the independent variables such that r = #/L

(1945 ?) Kaplun and P. A. Lagerstrom, J. Math. Mech. 6, 585

5 8. Kaplun, J. Math. Mech. 6, 595 (1957).

8 P. A. Lagerstrom and J. D. Cole, J. Ratl. Mech. Anal. 4,
817 (1955).

7 M. Van Dyke, Perturbation Methods in Fluid Mechanics
(Academic Press Inc., New York, 1964).
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is of order unity, and
L/(ﬁl/gl) = Re >> ]..

All flow variables are made dimensionless with re-
spect to their values in the original undisturbed flow,
with the exception of the total enthalpy; thus,

P = P/P,, T = T/T,,
h, = ht/q?r X = X/L,

p = B/B,
qQ=4a,
where the symbols refer to pressure, density, tem-
perature, total enthalpy, velocity vector, and posi-
tion vector. Figure 2 is a sketch of the coordinate
systems employed. Note that both a Cartesian and
a polar coordinate system are indicated, with veloeity
components U, V and wu, v, respectively. The equa-
tions relating the velocity components of each coor-
dinate system are simply

u=Usne+Veose, v=Uvcoseg~—Vsne. (1)

In general, it is assumed that the specific heats
are constant, bulk viscosity is negligible, and the
coefficients of viscosity and thermal conductivity
are related to the temperature by a simple power
law. Finally, the gas is assumed to follow the per-
fect gas law.

B. Dimensionless Equations

The dimensionless equations expressing the con-
servation of mass, momentum, and energy are
written below in vector form. In the inner region
of the expansion, Cartesian coordinates are em-
ployed, whereas in the outer region, polar coordinates
are more convenient. The set of governing equations
is completed with the addition of the equation of
state and the relation defining the total enthalpy.

(@) div (pg) = 0,

() pq-grad ¢ + (sin® 7:/7) grad P = (1/Re)R,,
(¢) »pq-grad b, = (1/Re)R,, )
d P =T,

(& ke = (in® 72)BT + 3¢’

where

R, = div (udef q) — grad (3u div q), @

R, = div {(8sin® g,/P)A grad T
+ wldef ¢ — 3(div @)llq},

and where | is the unit tensor. In the above, u and
A are the dimensionless coefficients of viscosity and
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thermal conductivity, @ is the Mach angle, Pr =
¢,/ is the Prandtl number, 8 = (y — 1)7', where
¥ = ¢,/c, is the ratio of specific heats, and def q
is the deformation tensor (e.g., Ref. 8).

C. Magnitude of the Inner Region

The inner region, defined as that region where
the effects of viscosity are to smooth discontinuities
in the derivatives, contains the first Mach line, and
its thickness is small compared to the scale length,
L. Tt is desired to calculate 8, the order of this
thickness, both for comparison with A, and for use
as a stretching factor making the inner dependent
variable measuring the thickness, of order unity.
In the present problem, it is possible to infer the
proper form for this stretching factor from the
equations and the zeroth-order matching condition.

First, the momentum equation {Eq. (2b)] in the
z direction may be written in Cartesian form as
follows:

(% + pUZ) — UGU). + oV,

= & (WGU. = 3VIL + WU, + VL), @

where subscripts # and y indicate partial differentia-~
tion, and where the left-hand side of the equation
has been slightly rearranged. It is clear that the
solutions in the inner region must join the values
of the flow variables in the uniform steam to their
corresponding outer values found from the Prandtl-
Meyer solution for ¢ << 1. Now, the terms in Eq. (4)
may be ordered by considering the total change in
the functions across the inner region, so that the
equation is used effectively as a jump condition
across the inner region. Then, any excess momentum
flux or pressure forces (higher-order terms from
Prandtl-Meyer solution) must be balanced by vis-
cous forees.

The Prandtl-Meyer solutions, for any uniform
stream Mach number, are as follows:

uo = (M/T) sin [N + 8)], Po = T5°,

o = I cos [T(p + 6,)], po = T%, (5)
T, = vs/sin® &, hio = 9M*/2T7,
where

M= [14TM; -~ DI/M;, T’=@F—-1/+1),

and where 6, is the Prandtl-Meyer turning angle
associated with M,.
8 P. A. Lagerstrom, in Theory of Laminar Flows, F. K.

Moore, Ed. (Princeton University Press, Princeton, New
Jersey, 1964), p. 24.
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If u, and v, are substituted in Eqgs. (1), U and V
may be found in terms of ¢, and the resulting equa-~
tions, as well as those for P, and po, may be expanded
for small 2/y, since for ¢ < 1, ¢ =< z/y. Finally,
if 2 is ordered by a function of the Reynolds number,
8(Re), and y is of order unity,

z/y = 0(3),

and across the inner region it can be shown, for
example, that if M = 1, such that cos g, < 8,
then AU = 0[#], U, = 0(5). It should be noted
that only the two limiting cases, M, > 1 such that
cos i; > 8, and M, = 1 so that cos g, = 0, are
considered in this analysis. They are denoted by
M, > 1, and M, = 1, respectively.

If, in the case M, = 1, each term of Eq. (4) is
ordered as indicated above, then if the largest
viscous term is to balance the largest excess mo-
mentum flux terms

5 = Ret. ©6)

The combination of terms shown on the left-hand
side of Eq. (4) results in a change of smallest mag-
nitude; hence it is clear that the proper value for
d is that given in Eq. (6).

If the above computations are repeated for the
case M, > 1, the result is

8 = Re™t. )

The thickness of a weak discontinuity is generally
considered to be of order Re™? (e.g., Ref. 9) as found
for the M; > 1 case. The fact that 8 = Re™? for
the first case considered is due to the fact that the
flow entering the discontinuity is sonic. This is
evidenced by the fact that the relative orders of

°L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Pergamon Press, Inc., London, 1959), p. 345.
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AU, AV, Az, etc., are consistent with those found
in investigations of transonic similarity.'

Using the values for § given above, then, the
stretehed inner variables are defined as follows:

g =1y, (8)

so that in terms of the stretched coordinates, both
£ and § are of order unity in the inner region. § is
given by Eqs. (6) or (7) depending on whether
M, = lor M, > 1. Finally, the governing equations
may be written in terms of the stretched variables,
in Cartesian form

@) (pU): + 8(eV); = 0,

(b) pUUg + 6,0VU§ + (Sin2 gl/Y)Pf == (5/Re)RU,

(¢) pUV:+ 8oVV; + 8(sin® 5, /v)P; = (3/Re)Ry,
©)

T = z/8,

) pURD: + 8oV (hi); = (8/Re)Ra,
(e) P =T,
@ h = in’ @)8T + $U° + §V7,
where for example,
By = (1/0){nl(4/38)U: — 3Vil}s
+ {ulU; + (1/8)Vd}s.

Ry and Ry may be found from Eqgs. (3) by expanding
the vector forms in Cartesian coordinates and trans-
forming to stretched coordinates (e.g., Ref. 11).

In order to simplify later calculations, it is neces-
sary, at this point, to introduce an equation formed
from the governing equations. Solution to Egs. (9)
are found by expanding the six unknown functions
in appropriate forms for Re >> 1, substituting these
expansions into the governing equations, and thus
obtaining sets of equations for the zeroth-, first-, ete.,
order approximations. Now, when the first-order
equations are solved, it is found that, although there
are six equations, one of them is redundant. Hence,
it is mecessary to go to the second-order equations,
rearrange them, and find, finally, a relation between
first-order functions only. This equation completes
the set of first-order equations, but then the third-
order equations must be considered to find the
missing second-order equation, ete. Such an occur-
rence is not uncommon; it is found in the weak-shock
structure problem,” for example. However, it can
be shown that, in this problem at least, an eguation
can be derived from the general conservation equa-~
tions such that when the expansion procedure is

T, von Kdrmdn, J. Math. & Phys, 26, 182 (1947).

1T, C. Adamson, Jr., University of Michigan, Institute of

Science and Technologﬁ‘r, Report Bamirac 4613-120-T (1966).
2 M. Sichel, Phys. Fluids 6, 653 (1963).
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used the ‘“missing” equation for each order of ap-
proximation results. In effect, the rearranging is
accomplished before the expansions are inserted
into the equations. The following equation is formed
by taking the Eulerian derivative of the equation
of state and using the continuity, momentum, and
energy equations to remove the resulting derivatives
of pressure, temperature, and density. It is written
in terms of the stretched inner coordinates:

8

= (URU + VR, — -—1-3,,)

By

Haf(F e 5 -4

1y 4 1) _{{f _ }_?3]
+ 5PV,;[(—‘“*“2 )V + % g

+ pUV(sU; + Vz)}. (10)

D. Boundary and Matching Conditions

A sketch of the various regions of flow has been
given in Fig. 1. The so-called inner region of the
expansion wave is contained within the dashed line,
while the outer region consists of the part of the
expansion downstream of the inner region. Evidently,
another “inner” region would exist about a final
Mach line, bringing the flow to the final desired
condition. This region is not considered in this paper,
the emphasis being on the relationship between the
indicated flow regions at the beginning of the ex-
pansion wave.

In the inner region, the Navier-Stokes equations
are to be satisfied. In general, because the unknown
functions appear in the second-order derivatives
which occur in the viscous terms, two boundary or
matching conditions are required. As # — « for
all § = O(1), a matching condition between the
inner and outer solutions must be met. As # — —
for all § = O(1), another matching condition must
be met between the inner solutions and the incoming
flow solutions which consist of the zeroth-order uni-
form flow plus higher-order terms introduced by
the existence of the boundary layer. Since the
boundary-layer solution for the flow around a corner
is not known, neither the order of the higher-order
terms, nor their functional dependence is known.
However, a gross condition is known, in that as
£ — — o, for § fixed, any corrections to the uniform
flow must be bounded and in fact tend toward zero.
Hence, any solutions found in the inner region must
meet this general condition.

In the outer region, because the solution is a
perturbation from the inviscid solutions, the viscous
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terms are calculated from known functions. Hence,
only first-order differential equations must be solved
for the unknown functions, and one boundary or
matching condition suffices. As it turns out, the
first-order effects of viscosity are given by terms of
order In Re/Re and Re™' for both the M, ~ 1
and M, > 1 eases. If, for a given dependent variable,
the first-order correction is of order In Re/Re, then
the next term, of order Re™’, cannot be found with-
out further information. On the other hand, if there
is no term of order In Re/Re, so that the first
perturbation is of order Re™’, this solution can be
found, so the first-order effect can be found for
each variable. In the former case, which occurs for
v, P, p, and 7, the solution for terms of order Re™
may be found only up to one unknown function
of ¢. Since terms of this order should result from
a boundary-layer solution, it seems plausible that
this missing information should be supplied by
matching with a boundary-layer solution.

It should be emphasized that the main point of
this calculation is to find the first effects of viscosity
and thermal conduction generated in the expansion
region. These terms can be found, and matching
and boundary conditions met. In doing this, it is
not necessary that every possible term due to effects
other than those being studied (e.g., boundary-
layer effects) be carried along in the general expan-
sion. For example, if the first-order effects due to
the boundary layer are of different order than those
generated in the expansion, there is no interaction
between the terms, and one should be able to find
all constants in the expansion solution, exactly. If,
on the other hand, first-order terms from each effect
are of the same order, then it should be that un-
determined constants exist in the expansion solu-
tions, so that matching with the boundary-layer
solution may be accomplished. Of course, the above
argument holds only for lower-order terms since it
is pogsible for different multiples of various-order
terms to result in terms of the same higher order.
In any event, insofar as the general expansions for
the flow variables are concerned, some terms are
generated by the boundary layer and some by the
viscous expansion region. If they are not the same
order, then for a complete solution in each viscous
region, terms of order of those unique to the expan-
sion process have to be added to the boundary-layer
solution, whereas terms like those unique to the
boundary layer have to be added to the expansion
region solution. This must be done essentially in
the same spirit in which In Re terms are added
to expansions as a result of matching difficulties in
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other inner and outer expansion problems. Again,
as long as the orders are different, no change in
original first-order solutions results from the addition
of terms; when orders are the same, of course, no
addition need be made.

3. SOLUTIONS

In the following, detailed calculations are given
only for the algebraically simpler case, M, = 1,
but results for both 3/, = 1 and M, > 1 are given.
Details for the latter calculation may be found in
Ref. 11.

The outer solution is desired in the form which
indicates the first-order effects of transport prop-
erties for the condition Re >> 1. Thus, we wish to
write the flow variables in the form of asymptotic
expansions valid in the limit as Re — «. For ex-
ample, the expansion for the radial flow variable,
u, is of the form

U~ ; Gn(Re)un(T; ‘P); (11)

where ¢, = 1, uo = u”(¢) = Prandtl-Meyer solu-
tion, and

lim (Gnu/fn) = 0.

Re—w

The superseript notation for the outer flow variables
(e.g., v, u'”) indicates that they are functions
of ¢ alone.

In view of the faet that the zeroth-order outer
solution is already known, the next step is to find
the zeroth- and first-order inner expansions, where
the inner expansions are defined in the same general
form as above. For example, the x component of
the velocity is expanded as follows:

U~ Z“: &(Re) 0.2, 9),

where & = 1, U, = sin 7, and &,,, = 0(¢,). Note
that in the inner expansion, the zeroth-order solution
corresponds to the zeroth order oncoming flow.

In order to find &, one must examine the zeroth-
order outer solution in light of the matching condi-
tion whieh must be met. For example, for M, = 1,
if the Prandtl-Meyer solutions for U and V are
expanded for ¢ << 1 and written in terms of the
inner variables, £ and §, then

U~1+ 31~ I)/ReD@/) + -+,

V ~ =31 — T)Q/Re)@/5)’ + -+,
and it can easily be shown that the remaining de-
pendent variables have the same form as U. Equa-
tions (12) are the solutions which must be matched,

term by term, by the inner solutions. Their form
suggests that ¢, = Re™! and the corresponding small

(12)
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parameter in the 1 expansion is Re™'. Then, the
expansions are

U~1+ 1/ReDHT, + ---
=1+ @/ReHYT" /A -,
V~1/Re)V, + -
= (/R)VV/) + -+,
where the principle of eliminability'® has been em-
ployed to infer the 4 dependence of the above terms.
That is, since L is an extraneous parameter, Re
and § must appear in a form such that L may be
eliminated from each term. By the same token, then,

the various order functions must be independent
of L. Hence, for example,
ﬁ(n) — U(")(t),
where ¢t = (2, §) is a similarity variable independent
of L. The superscript notation, then, indicates a
function of ¢ alone.
Since ¢ is independent of L and is a function of

& and §, it must be of the form &7~ ™. Now,

" = Relay™ « LI,
Hence m = % and t « 277 . It is shown that with
the above constructions, the governing partial dif-
ferential equations are reduced to ordinary dif-
ferential equations, so ¢ is a similarity variable and
the above arguments are consistent.

If Eqgs. (13), and expansions similar to U for the
remaining dependent variables, are substituted into
Egs. (9) and (10), a set of equations for the first-
order functions results. Three of these equations
may be integrated by inspection, and if the boundary
condition that these first-order terms tend to zero
as £ — — = is invoked, the resulting equations are
@) 5= pl/’Y = g7, = "‘(71;

(b) hy =0,
(© (V):— (U); =0,
@) %[ﬁo(ﬁl)i]z - (I/Pr)[XO(TI)i]:Z
= [(’Y + 1)(71 - (7&,1/6)]((71),- - (171),;.
In view of the assumed power law dependence,
Xo = Ji, = L
Equation (14c¢) is an irrotationality condition.

Hence a velocity potential function, ®,, may be
defined such that

1= %(1 - Pz)(él)iy
1 = b%(l - I‘Z)(‘I’l)ﬂy
b = 3v{l ~ (I/¥AI — (3/4 Pr)]},

1 1. -D. Chang, J. Math. Mech. 10, 811 (1961).

(13)

(14)

<t <

(15)
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and Eq. (14¢) is satisfied identically. If Eqgs. (15)
and (14a) are substituted into Eq. (14d), an equation
for &, results. This equation may be simplified by
the transformation
X =7,
to the following:
(‘ﬁl)xxx = _(‘1’1)1/? + ((bl)X((bl)XX' (16)

Fquation (16) is the so-called viscous transonic
equation. It has been studied recently by Sichel**
in connection with his work on shock-wave structure
and nozzle flow, and by Szaniawski'® with reference,
again, to nozzle flow,

If a new dimensionless potential function, F,(%),
is defined as follows:

(X, Y) = F\(1),
and if the substitution
g:(t) = Fi(?)

is made, Eq. (16) may be written in terms of ¢, as
follows:

Y =73,

t = X/Y%, amn

9" — gugi -+ %01 + Htg, = 0. (18)
This is the equation studied by Sichel.’* However,
he was interested in solutions which are bounded
as ¢t = =, In the present problem, we are in-
terested in solutions which are bounded, and in fact
tend to zero as t — — », As ¢ — o, the solutions
must match with the outer solution. If U, and ¥,
are written in terms of ¢, and the resulting equations
are compared with Eqs. (12), it can be seen that
as t — o, the matching condition implies that

a/yt = X}/ Y = ¢/7

Hence, the first term in the asymptotic expansion
for g, must be £. It can be seen from Eq. (18) that
g, = * is an exact solution to the inviscid equation,
ie, Eq. (18) with ¢/ = 0. Standard techniques
may be used to show that the asymptotic form
of the solution which approaches ¢* as { — o is

s~ 483 ) B
5
f exp[ﬁta]dtﬂ— N ¢ 1)}

where A, and B, are undetermined constants. Thus,
the solution for the present problem would be that
for which B, = 0.

As ¢ — — o, under the condition that g, — 0,

4 M. Sichel, Princeton University, Department of Aero-
space Engineering, Report 541 (1961).
15 A. Szaniawski, Arch. Mech. Stosowanej. 16, 643 (1964).
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it can be shown'* that the asymptotic solution is

A -5/2 _1_(_)_5_ ANt 3 Y2 .

+ Bo(__t)l/z exp [% (_t)s:] 4 ... , (2())

where 4, and B, are undetermined constants. Thus,
B, = 0 satisfies the condition that tg, (from V)
tends to zero as t — — o,

Finally, the question arises as to whether the solu-
tion which is asymptotic to Eq. (19) as { —» o« is
the same as that which is asymptotic to Eq. (20)
as t — — o, Figure 3 shows the results of numerical
computations made on an IBM 7090 to resolve this
point. Solutions were started at ¢ = —10, running
forward, and at ¢ = +10, running backward. At
t = —10, Eq. (20) was used to calculate g, and ¢}
for various values of 4,, while at t = 10, Eq. (19)
was used and the same procedure followed. In
Fig. 3, four solutions are presented, two started at

t = —10[g,(—10) = 0.38639 X 107
and 0.38640 X 107

and two starting at ¢ = +10 [¢,(10) = 100.499
and 100.500]. The arrows on the curves indicate the
direction of integration of Eq. (18). It can be seen
that there is a common region of solution, roughly
between { = —2 and ¢ = -+3. Outside this region,
the solutions diverge from the desired solution, one
in a positive direction and one in a negative direc-
tion, with only a very small change in initial condi-
tions. This is a result of the fact that it is impossible,
in the machine solution, to set B, and B, equal
to zero. A slight deviation from the exact solution,
as |¢| increases, allows the exponential part of the
solutions to overcome the other terms, and diver-
gence results. However, that fact that there is a
common region of solution, where all four solutions
are very nearly identical, regardless of the direction
of integration, indicates that a solution which joins
the given asymptotic forms, does exist.

With g, known, U, and V, are known, and P,,
p1, T, and F,, may be calculated from Egs. (14).
Hence, all first-order inner terms are known and
the next step is to find the first-order outer solutions.
In order to find ¢, and the corresponding gauge
functions for the remaining variables, it is necessary
to write the known inner solutions for large ¢, in
terms of the outer variables. Using the velocity
components again as examples, for large ¢, one finds
that ¢, = Re™'. However, when expansions with
this form for ¢ are substituted in the governing
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Fre. 3. Numerical solutions to Eq. (18), started with
agymptotic solutions given in Eqgs. (19) and (20). Arrowheads
indicate direction of integration.

equations [Egs. (2) and (3) written in polar coor-
dinates], it is found that solutions exist only when
the form of u,, for example, is

u = (Inr/Mfi(e) + A/Nf:le).

Again, employing the principle of eliminability, this
means that a Re™ In Re term must be added,
so that the proper form of the expansion is

u ~u, + (In Re/Re)u(r, ¢)

+ (1/Re)us(r, o) + -+

= % + (In Re/Re)w' /r)
+ (1/Re)[(Inr/ru™ + @ /)] + - .

Similar expansions hold for the remaining outer
dependent variables,

When expansions of the form shown in Eq. (21)
are substituted in the governing equations, the re-
sulting zeroth-order equations are those satisfied
by the Prandtl-Meyer solutions. The first-order
equations may be integrated to give the following
results (details of the calculation may be found in
Ref. 11):

(21)

(a) p(l) — _(p(O)v(l)/v(O)) + (11(1)/0(0)),
7" = const,

B) u? = —pPy® /@
]
(c) P(l) = _7[1’(0)”(1) + 7]“)0(0)], (22)
d) rV=H,/y H, = const,
@ 1% = —IH,

@ T = —"/8)
+ Hy/Bn ) + (Pu'” /B0 ),
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where 5 = pv so that 4> = p @@, ™" = P +
pm?}{m ete.

Thus, again, a redundancy exists in that Eq. (22e)
gives only a relationship between two constants
which already appear in other equations. As a re-
sult, only 2’ and A{" are known, with P, o,
and 7" being given in terms of v, To find »"”
it is necessary to go to the equations involving terms
of order Re™'. It is not possible to remove this
redundaney, in general, as was done for the inner
equations. In an effort to investigate the extent
of this redundancy, several higher-order sets of equa-
tions were derived; beyond the terms of order Re™",
no other redundant equations were found at least
up to terms of order Re™>,

In order to complete the solution, then, two more
solutions are necessary. First, the inner terms cor-
responding to the outer terms of order Re™' In Re
must be found and matched, Finally, the necessary
outer terms of order Re™ must be found and
matched.

The gauge functions for the inner expansions may
be inferred as follows. From the form of the govern-
ing differential equations, it is clear that, in the
expansion for U, for example, there must be terms
of order Re™*, the product of terms of order Re™*"*
Furthermore, since a term involving In Re has been
found in the outer expansion, one must occur in
the inner expansion, and is presumably of the order
Re™? In Re. Similar arguments may be made for V,
s0 that the final expansions for U and V are

1 U(l) lnR U(:!)
U~1 + Rez/:s ~373 + R e4/3 ~4/73

1 1 {3}
+ 5o (“’ o + %7) +
y 23)
V(l)
Re 3}

1
+ Res/s ( ?5/?{ Ve +

In Re 7®

R eﬁ/ 3 3?5/ 3

‘V

“(3))
~5/3 + T
¥

where the remaining dependent variables are ex-
panded in the same form as U. While it may be
argued that there might be other terms intermediate
to those found by the above considerations, this
question ean be answered by demonstrating that
mateching does occur between inner and outer sohu-
tions with the above forms.

The second-order inner equations are found by
substituting expansions of the form given in Egs. (23)
into Egs. (9). Just as in the first-order solutions,
several of the equations are easily integrated, and
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in fact, the first three of Eqs. (14) are reproduced
with subseript 2 replacing subscript 1. Again, a
velocity potential function may be defined. After
going through the same type of caleulation as per-
formed for the first-order inner solutions, it ean be
shown that a dimensionless potential function, F,(#),
exists, such that

O, =b7°Y™°F;, Vo= —3F,+FDY™". (24)
Further, the solution, which exhibits the highest-
order allowable terms (i.e., nonexponential) for
3> 1, s

Fy(t) = A9.(1),

where 4, is a constant. From Eq. (20), it is apparent
that the boundary conditions on U, and V, are
satisfied. With F, known, asymptotic forms for all
second-order inner terms may be found.

Referring to the expansion for U given in Eq.. (23),
it appears that there is a possibility that the term
U® could contribute to those terms which match
with the outer terms of order Re™'. However, a
simple caleulation shows that the only possible con-
tribution must be of lower order than the term given
by the first-order solution. Hence it is not necessary
to compute the third-order term except in the case
of k.. Since h,, and %,, are identically zero, the only
contribution is that given by A, so it must be
caleulated. The equation for %5 involves only known
first-order terms and is easily integrated. Thus,

hs = b7l — (1/POITPY Y.

(25)

(26)

In order to facilitate matching, the most important
inner solutions are summarized below. The remaining
functions may be construected easily from them. The
asymptotic forms for ¢ >> 1 have been employed,
with the resulting expressions then being written
in terms of the outer variables. Equation (1}, for
¢ <1, has been used to form the outer velocity
components

2, R
@ u~o-Tr W=Dy
-1 InRe24,¢
®) vl 2' + Re b
2
+i (el BA-TH,
¢ @7
@ h~get (- Da-mer ..

e << 1,r fixed, M, =
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The outer solutions must match the above expan-
sions term by term. It should be noted that no
Re™' In Re term has been written for u, since this
term was zero at least up to order ¢”; this is sufficient
information for matching,.

Before proceeding with the final outer calculations,
a simplification of the outer expansions may be
achieved by matching the two known first-order
outer solutions for 4+ and h{* with the correspond-
ing terms in Egs. (27). For matching to occur,

D= b = 0. (28)

The equations for the outer terms of order Re ™,
derived by substituting the outer expansions into
the governing equations, involve both first- and
second-order functions. They may be integrated*
to the following forms:

@ 07 = @) + (N/2),

B u = 66 + O — N)/pOu®,

@ B = /PN — T/
+ (Co/n'”),

29
(2) (0) 2y __ . 0),.(0)_ (2) (0)( )
@ @P%/y) + =G — pPuu” + 7,

(e) (0) (2) + p(2) {0) — N/U(O),

(f) p(O)T(2) + p(2)T(0) = P(2)’
where
f(O) = 4 (0)[(1)(0))/ + u(O)]’

N = (p(o) ) (0))%

(02 [ oumoy { [(G 4 Sbf“”)
0 — T2, (0) <)
)
(O)G
—_%W} d‘P);
S

— (0)[0 _I__ Bb(l -7 )(u(o) (0)

(30)

(O)f(O)

>d§0 + Clv(o)

0)?
v

- o),

for a linear viscosity-temperature relationship.
Again, the prime denotes differentiation with re-
spect to ¢, and C,, C,, and C, are constants of
integration.

It is seen that due to the redundancy, v, «®
and h{® may be found as functions of ¢, but P®,
p®, and T*® are known only in terms of »®. Thus,
although «” and A{" are zero, «*” and hA® may

(1)
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be calculated, so that for each dependent variable,
the first correction term may be found, with no
additional information necessary. In order to com-
plete the solution for the second-order terms, an
additional function of ¢ (e.g., »**’) is necessary. It
appears most likely that this unknown function must
be found from matching with a boundary-layer solu-
tion; since a term of order Re™" will certainly occur
in the boundary-layer solution, such a matching is
possible.

In order to evaluate the constants, C,, the match-
ing conditions may be employed. If Eqs. (29a),
(29b), (29¢) are written for ¢ < 1, and matched
with the corresponding terms of Fq. (27) the result
1s that

0 — 02 = 0. (31)

Likewise, if v is multiplied by (r Re)™" In Re and
matched, then

C,=0, A, = )6 — +B).

Although matching has been demonstrated only for
the velocity components and total enthalpy, there
is no difficulty in demonstrating that matching does
occur for the remaining variables, with no new con-
stants arising. Hence, the inner expansions are of
the form shown in Eq. (23), and the outer expansions
are of the form shown in Eq. (21).

Although the above solutions have been carried
out for M; = 1, the supersonic case, M, > 1, is
similar in every respect. The results are summarized
below; details of the calculation may be found in
Ref. 11.

The inner expansions are of the form

—1p°°r*(1 — (32)

. 1 U(l) 1 R U(Z)
UNSIHIT1+R 172 ~1/2+ Ii{ee 7
1 (ng e 3’)
(Bl + T4, @9

but the outer expansions are the same form as those
found for M, = 1. When the matching procedure
is carried out, it is found that there are only two
equations for four constants. The extra unknown
constants, in this case, arise from the inner expan-
sions from terms of order Re™* and Re™ In Re.
Hence, it appears that terms of this order will appear
in the boundary-layer solution, and the constants
found from matching. It must be borne in mind
that the inner expansions are written in terms of
stretched coordinates; in physical variables, the
orders change, terms of order Re™! in the inner
velocity expansions becoming terms of order Re™*



962

in physical variables, for example. However, no
implausible orders are encountered.

4. DISCUSSION OF RESULTS

The outer solutions may be written for the veloc-
ity, pressure, temperature, density, and total
enthalpy by substituting the solutions found above
le.g., Egs. (22) and (29)] into the outer expansions
[Egs. (21)]. One of the more interesting aspects of
the solution is that the first-order corrections gen-
erated in the expansion region are proportional to
Re™' In Re for some variables (v, P, p, T) and to
Re™ for the remainder (u, h,). Hence, Re™ In Re
is an estimate of the error involved when viscous
terms are ignored.

The change in entropy due to the transport effects
may be calculated, since it involves only known
functions. Because the entropy of the zeroth-order
inviseid expansion is a constant, the change in
entropy can be written with respect to S°. Thus,

T -1 P
AS=S—-S‘°’=1n(§;<—o;>—(7,Y )111 '707)
1 (hﬁ”
~Rer

(0), (2) (2)
o~ %) o

where in the second equation, asymptotic expansions
have been employed and simple substitutions made
in order to include only known terms. The fact that
there is no entropy change of order Re™ In Re is
consistent with the fact that in the inner expansion,
up to terms of this order, the flow was irrotational.

The value of & was found to be of order Re™ for
M, > 1, as expected, and of order Re™"/* for M, ~ 1.
Since A = O(Re™?®) when M, > 1, it is clear that
in this case the thinning of the boundary layer will
have stronger effects on the flow than the viscous
effects in the expansion region. In the general solu-
tions, therefore, one would expect the thinning of

o (34
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Fia. 4. Sketch of variations from Prandtl-Meyer flow due to
effects of viscosity and thermal conductivity.
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the boundary layer to contribute first-order effects,
with the terms caleulated above being higher order.
As mentioned previously, this does not change the
form of the solution of these terms, only their posi-
tion in the expansions of the complete solution.

When M, ~ 1, the relative orders of the terms
due to boundary layer and expansion region cannot
be decided, because A is not known. If it remains of
order Re™®® as M, — 1, then it appears that the
expansion region effects are more important than
boundary-layer effects. However, there is no reason
to expect A to remain independent of M, as sonic
conditions are approached.

A physical picture of the changes in the expansion
flow caused by the inclusion of viscosity and thermal
conduction can be gained by a consideration of the
signs of the various corrections. These are indicated
for the velocities and total enthalpy for ¢ « 1,
for example, by the expansions given in Eq. (27).
Since 4, < 0, it is seen that the radial velocity
component, u, is increased, while the angular velocity
component v, is decreased. The magnitude of the
velocity is decreased, as expected. In Fig. 4, a
sketch of the differences in velocity and streamline
pattern between the viscous and inviscid flows is
shown. As indicated, the result of the given changes
in velocity is that at a given turning angle, ¢, and
radius, r, the viscous, heat-conducting flow has
turned less than the corresponding inviscid flow.

The total enthalpy corrections can be positive or
negative, depending on whether the Prandtl number
is less than or greater than three fourths. Since the
uniform flow and the expansive flow atr — o« are
at the same total enthalpy, the changes in total
enthalpy must be balanced by an energy exchange
with the boundary layer.

Examination of the first correction terms in the
expansions for the pressure, density, and tempera-
ture, indicates that they all increase over their
zeroth-order (Prandtl-Meyer) solutions. This means
that the effect of the transport properties is to de-
crease the pressure drop at a given point, for ex-
ample, so that for a given pressure drop, the flow
must turn through a greater angle.
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