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where the double prime indicates that the terms in 
the sum over k with k := a or k := {3 should be 
omitted. 

It is straightforward and easy to check that for 
2 x 2 and 3 x 3 matrices conditions (28) coincide 
with (6) and (18), respectively. It is also straight
forward but less than easy to check that (28), and 
also (25), are also necessary and sufficient condi
tions for the existence of a solution of the system 
(3) for 4 X 4 matrices. (Because it involves ex
tremely tedious calculations, the case of 4 x 4 
matrices is not discussed here.) We are aware 

1 R. G. Newton, J. Math. Phys. 9, 2050 (1968) ; A. Martin, Nuovo 
Cimento 59A, 131 (1969). 
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though that there is no substitute for rigorous 
proof and that we failed to produce such a proof 
for n > 4. But even if (25) and (28) were not neces
sary conditions for the existence of a solution of 
(3), they clearly are sufficient and significantly 
less restrictive than the Martin-Newton condition. 
Because of this, and particularly in view of the 
fact that it has been pointed out2 that the Martin
Newton condition is not fulfilled in a number of 
physical cases, it would be interesting to extend 
the results given in this paper to infinite matrices 
in general and specifically to the non-linear 
integral equation of Ref. 1. 

2 1. A. Sakmar, Lett. Nuovo Cimento 2,256 (1969) ; H. Goldberg, 
Phys.Rev.D 1,1242 (1970). 
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For the model theory, N + AJ: (/14: dx in a box, a convergent expansion of the resolvent is exhibited. This 
also provides another proof of boundedness below for the model. 

We consider the field theory model with Hamiltonian 
N + J: cp4: dx in a box of length 1. We obtain a con
vergent expansion for the resolvent of this model 
and at the same time another proof of boundedness 
below of the Hamiltonian. The main idea is to con
sider the 'subblocks' of the Hamiltonian obtained 
by restricting to states with particle number spec
trum lying between Nand 2N. The resolvent of a 
subblock is shown to have very small matrix ele
ments connecting states with a large difference in 
particle number. The extension of the present re
sults to the more general model NT + A J : cp 2 S : dx 
has not yet been achieved. 

We begin with the basic theorem to be used. 

Theorem: Let A be a positive self-adjoint oper
ator of norm ~ lvI, and 10') and 1f3) be two vectors 
of unit length. Suppose (QI IA k 1(3) == 0, ° ~ k ~ N. 
Then, for any A> 0, a real number, 

/ 1 ) 4/M ( 1 ) N I\QlI,\ +A 1{3 1 ~ A-v2A· 1 +.../2iJM 

'" exp(- .../2A/M N), 

where in (2) it is assumed M and N are large. 

(1) 

(2) 

Proof: (X + A)-l and (A + A)-l - PN(A) have 
the same matrix elements between 1 a) and 1/3), 
where PN(x) is any polynomial of degree N. This 
implies the matrix element is smaller than the 
supremum of I (It + x)-l - p,ix) I for values of x 
in the spectrum of A. We make a linear change of 

variables moving the spectrum from [0, M] to 
[-1,1]. Now one has the function [A + (x + lHMr1 
on the interval l- 1, 1 J. There is a basic theorem 1 

in the theory of polynomial approximation stating 
that if f is analytic in an ellipse with foci at - 1 
and 1 and major and minor radii a and b, then it 
may be approximated on [- 1, 1] by a polynomial 
of degree N within 

( )

N 
2/ max 1 

(a + b - 1) a + b 
(3) 

in the uniform norm. Here / max is the supremurr 
of the absolute value of f in the ellipse. The theo
rem is obtained applying this result to the ellipse 
with a = 1 + AIM andf == [A + (x + 1HMr1. 
We now come to the Hamiltonian 

H = N + f01 : cp4 : dx = N + V. (4) 

We define Pi as the projection operator onto states 
with numbers of particles lying in the range 

2;~N<2;+2, i::=-l,O,"', 

and P and P
d 

as the projection operator onto 
state; with numbers of particles in the ranges 

and 

U (2 i - 4 ~ N ~ 2 i + 4) 
; eva> 

u (2i_4~N~2;+4), 
i odd 

respectively. We define 

(5) 

(6) 

(7) 
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(8) in the expansion of Vall of whose momenta are 
less than or equal k in absolute value 

H = 6 H,., e . 
, eva> 

Hd = 6 Hi' 
i oill 

H = He + Le = Hd + Ld• 

We note 

PdLdPd = LdPd = PdLd = Ld· 

The expansion of the resolvent we are after is 
the following: 

1 1 1 1 
E + H = E + He E + Hd LeE + He 

1 1 1 
+ E + H Ld E + H Le E + H 

e d e 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

This expansion converges for E large enough, as 
we will show; for E large enough (E + He)-l and 
(E + Hdtl exist and are bounded, I LdP deE + Hd)-l 
Pel < "2 and I LePe(E + He)-lPd 1< i, and (E + Hd)-l 
Le(E + He)-l and Ld(E + Hd)-lL e(E + He)-l are 
bounded. 

The following two estimates easily yield the re
quired relations above. 

Estimate 1: 

large 

Estimate 2: 

[Pe E :i H Pd [:;; c 1 exp (- c22i/2) , for some 

(15) 

(16) 

Proof of estimate 1: We write Vas the sum 
V k + R k' where as usual V k contains those terms 

• This work was supported in part by NSF Grant GP-17523. 
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2 E. Nelson, "A Quartic Interaction in Two Dimensions," in 

(17) 

We first note 

(18) 

As in Ref. 2, one has 

(19) 

Picking 

k; = exp [(l/vc) 2( j-1)/2], (20) 

we get 

P,VII p. ~ - 2;-lp .• 
t i 2. , 

(21) 

From 

(22) 

a standard NT estimate, see Ref. 3, we quickly get 

large. (23) 

And thus, using (23), (21), and (18), we obtain esti
mate 1 from (17). 

Proof (}f Estimate 2: Clearly 

IE + Hi I:;; e22i 

for some e (by an NT estimate again), and 

(24) 

(25) 

for E large enough. We apply the theorem with 
10') = PjPdla), 1/3) =PjPe Ib) (Ia).and 1M norma
lized vectors, A = 2,-1, M = e22" A = E + Hi -

2 i - 1 , and N < [(2 i+1 - 4) - (2i + 4)]/4. This ap
proach is easily generalized to NT + .r: cp 4 : dx. 

The subject of obtaining convergent expansions for 
the resolvents of other field theory models seems 
interesting, as is the question of whether this is 
a way of obtaining lower bound estimates for other 
models. 
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