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where the double prime indicates that the terms in 
the sum over k with k := a or k := {3 should be 
omitted. 

It is straightforward and easy to check that for 
2 x 2 and 3 x 3 matrices conditions (28) coincide 
with (6) and (18), respectively. It is also straight­
forward but less than easy to check that (28), and 
also (25), are also necessary and sufficient condi­
tions for the existence of a solution of the system 
(3) for 4 X 4 matrices. (Because it involves ex­
tremely tedious calculations, the case of 4 x 4 
matrices is not discussed here.) We are aware 

1 R. G. Newton, J. Math. Phys. 9, 2050 (1968) ; A. Martin, Nuovo 
Cimento 59A, 131 (1969). 
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though that there is no substitute for rigorous 
proof and that we failed to produce such a proof 
for n > 4. But even if (25) and (28) were not neces­
sary conditions for the existence of a solution of 
(3), they clearly are sufficient and significantly 
less restrictive than the Martin-Newton condition. 
Because of this, and particularly in view of the 
fact that it has been pointed out2 that the Martin­
Newton condition is not fulfilled in a number of 
physical cases, it would be interesting to extend 
the results given in this paper to infinite matrices 
in general and specifically to the non-linear 
integral equation of Ref. 1. 

2 1. A. Sakmar, Lett. Nuovo Cimento 2,256 (1969) ; H. Goldberg, 
Phys.Rev.D 1,1242 (1970). 
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For the model theory, N + AJ: (/14: dx in a box, a convergent expansion of the resolvent is exhibited. This 
also provides another proof of boundedness below for the model. 

We consider the field theory model with Hamiltonian 
N + J: cp4: dx in a box of length 1. We obtain a con­
vergent expansion for the resolvent of this model 
and at the same time another proof of boundedness 
below of the Hamiltonian. The main idea is to con­
sider the 'subblocks' of the Hamiltonian obtained 
by restricting to states with particle number spec­
trum lying between Nand 2N. The resolvent of a 
subblock is shown to have very small matrix ele­
ments connecting states with a large difference in 
particle number. The extension of the present re­
sults to the more general model NT + A J : cp 2 S : dx 
has not yet been achieved. 

We begin with the basic theorem to be used. 

Theorem: Let A be a positive self-adjoint oper­
ator of norm ~ lvI, and 10') and 1f3) be two vectors 
of unit length. Suppose (QI IA k 1(3) == 0, ° ~ k ~ N. 
Then, for any A> 0, a real number, 

/ 1 ) 4/M ( 1 ) N I\QlI,\ +A 1{3 1 ~ A-v2A· 1 +.../2iJM 

'" exp(- .../2A/M N), 

where in (2) it is assumed M and N are large. 

(1) 

(2) 

Proof: (X + A)-l and (A + A)-l - PN(A) have 
the same matrix elements between 1 a) and 1/3), 
where PN(x) is any polynomial of degree N. This 
implies the matrix element is smaller than the 
supremum of I (It + x)-l - p,ix) I for values of x 
in the spectrum of A. We make a linear change of 

variables moving the spectrum from [0, M] to 
[-1,1]. Now one has the function [A + (x + lHMr1 
on the interval l- 1, 1 J. There is a basic theorem 1 

in the theory of polynomial approximation stating 
that if f is analytic in an ellipse with foci at - 1 
and 1 and major and minor radii a and b, then it 
may be approximated on [- 1, 1] by a polynomial 
of degree N within 

( )

N 
2/ max 1 

(a + b - 1) a + b 
(3) 

in the uniform norm. Here / max is the supremurr 
of the absolute value of f in the ellipse. The theo­
rem is obtained applying this result to the ellipse 
with a = 1 + AIM andf == [A + (x + 1HMr1. 
We now come to the Hamiltonian 

H = N + f01 : cp4 : dx = N + V. (4) 

We define Pi as the projection operator onto states 
with numbers of particles lying in the range 

2;~N<2;+2, i::=-l,O,"', 

and P and P
d 

as the projection operator onto 
state; with numbers of particles in the ranges 

and 

U (2 i - 4 ~ N ~ 2 i + 4) 
; eva> 

u (2i_4~N~2;+4), 
i odd 

respectively. We define 

(5) 

(6) 

(7) 
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(8) in the expansion of Vall of whose momenta are 
less than or equal k in absolute value 

H = 6 H,., e . 
, eva> 

Hd = 6 Hi' 
i oill 

H = He + Le = Hd + Ld• 

We note 

PdLdPd = LdPd = PdLd = Ld· 

The expansion of the resolvent we are after is 
the following: 

1 1 1 1 
E + H = E + He E + Hd LeE + He 

1 1 1 
+ E + H Ld E + H Le E + H 

e d e 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

This expansion converges for E large enough, as 
we will show; for E large enough (E + He)-l and 
(E + Hdtl exist and are bounded, I LdP deE + Hd)-l 
Pel < "2 and I LePe(E + He)-lPd 1< i, and (E + Hd)-l 
Le(E + He)-l and Ld(E + Hd)-lL e(E + He)-l are 
bounded. 

The following two estimates easily yield the re­
quired relations above. 

Estimate 1: 

large 

Estimate 2: 

[Pe E :i H Pd [:;; c 1 exp (- c22i/2) , for some 

(15) 

(16) 

Proof of estimate 1: We write Vas the sum 
V k + R k' where as usual V k contains those terms 

• This work was supported in part by NSF Grant GP-17523. 
1 A. F. Timan, Theory of Approximation of Functions of a Real 

Variable (MacMillan, New York, 1963), p. 281. 
2 E. Nelson, "A Quartic Interaction in Two Dimensions," in 

(17) 

We first note 

(18) 

As in Ref. 2, one has 

(19) 

Picking 

k; = exp [(l/vc) 2( j-1)/2], (20) 

we get 

P,VII p. ~ - 2;-lp .• 
t i 2. , 

(21) 

From 

(22) 

a standard NT estimate, see Ref. 3, we quickly get 

large. (23) 

And thus, using (23), (21), and (18), we obtain esti­
mate 1 from (17). 

Proof (}f Estimate 2: Clearly 

IE + Hi I:;; e22i 

for some e (by an NT estimate again), and 

(24) 

(25) 

for E large enough. We apply the theorem with 
10') = PjPdla), 1/3) =PjPe Ib) (Ia).and 1M norma­
lized vectors, A = 2,-1, M = e22" A = E + Hi -

2 i - 1 , and N < [(2 i+1 - 4) - (2i + 4)]/4. This ap­
proach is easily generalized to NT + .r: cp 4 : dx. 

The subject of obtaining convergent expansions for 
the resolvents of other field theory models seems 
interesting, as is the question of whether this is 
a way of obtaining lower bound estimates for other 
models. 
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