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where the double prime indicates that the terms in
the sum over k2 with 2 = o or 2 = 3 should be
omitted.

It is straightforward and easy to check that for

2 x 2 and 3 x 3 matrices conditions (28) coincide
with (6) and (18), respectively. It is also straight-
forward but less than easy to check that (28), and
also (25), are also necessary and sufficient condi-
tions for the existence of a solution of the system
(3) for 4 X 4 matrices. (Because it involves ex-
tremely tedious calculations, the case of 4 X 4
matrices is not discussed here.) We are aware
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though that there is no substitute for rigorous
proof and that we failed to produce such a proof
for » > 4. But even if (25) and (28) were not neces-
sary conditions for the existence of a solution of
(3), they clearly are sufficient and significantly
less restrictive than the Martin—-Newton condition.
Because of this, and particularly in view of the
fact that it has been pointed out? that the Martin-
Newton condition is not fulfilled in a number of
physical cases, it would be interesting to extend
the results given in this paper to infinite matrices
in general and specifically to the non-linear
integral equation of Ref. 1.
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For the model theory, N + Af:w“’ :dx in a box, a convergent expansion of the resolvent is exhibited. This
also provides another proof of boundedness below for the model.

We consider the field theory model with Hamiltonian
N + f: @%: dx in a box of length1, We obtaina con-
vergent expansion for the resolvent of this model
and at the same time another proof of boundedness
below of the Hamiltonian. The main idea is to con-
sider the 'subblocks' of the Hamiltonian obtained
by restricting to states with particle number spec-
trum lying between N and 2N. The resolvent of a
subblock is shown to have very small matrix ele-
ments connecting states with a large difference in
particle number. The extension of the present re-
sults to the more general model N, + X [ 125 :dx
has not yet been achieved.

We begin with the basic theorem to be used.

Theorem: Let A be a positive self-adjoint oper-
ator of norm < M, and |a)and |B) be two vectors
of unit length. Suppose (a|A#|g) =0,0 < k<N,
Then, for any A > 0, a real number,

1 <&M 1 N
la'h+AlB>|\A~/ﬁ'<1 +J2_)7A71) @
~ exp(— V2A/M N), (2)

where in (2) it is assumed M and N are large.

Proof: (A + A)7L and (A + A)~1 — P, (A) have
the same matrix elements between |a) and |8),
where P, (x) is any polynomial of degree N. This
implies the matrix element is smaller than the
supremum of |(A + x)~1 — P, (x)| for values of x
in the spectrum of A. We make a linear change of

variables moving the spectrum from [0, M] to
[~1,1]. Now one has the function [A +(x + 1)3M]™*
on the interval |— 1,1|. There is a basic theorem?
in the theory of polynomial approximation stating
that if f is analytic in an ellipse with fociat— 1
and 1 and major and minor radii ¢ and b, then it
may be approximated on [— 1,1] by a polynomial
of degree N within

2f max ( 1 )”
(a+b—1) \a+bd

in the uniform norm. Here f max is the supremun
of the absolute value of f in the ellipse. The theo-
rem is obtained applying this result to the ellipse
witha=1+x/Mandf =[x + (x + 1)zM]"1,

We now come to the Hamiltonian

3

@)

We define P, as the projection operator onto states
with numbers of particles lying in the range

1
H=N+ [y tpt:de =N + V.

20 N 2¥2 i =-—1,0,""", (5)
and P, and F; as the projection operator onto
states with numbers of particles in the ranges

U (2i—4 sNs2t+4) (6)

1 even
and )

U (2i—4 sN<2+4)), (7)

i odd

respectively. We define
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H, = P,HP;, (8)
He = . E H;” (9)
7 even
H = 2 H, (10)
i odd
H=H +L =H +1L, (11)
We note
PLP =LP =PL =L, (12)
P,L,P,=LP,=P,L,=1L,. (13)
The expansion of the resolvent we are after is
the following:
1 1 1 I 1
E+H E+H, E+H, “¢E+H
1 1 1 .
*Eig LEvE REYE
1 1 1
“E+H E+H F.LF, E +H,
vt _prp -1 _prp L1 __ ..
E+H "¢ dE+H "¢ e E+H
(14)

This expansion converges for E large enough, as
we will show; for E large enough (E + H,)™1 and

(E + H‘{)_l exist and are bounded, | L P4(E + H;)™1
P,|<zand |L,P(E + H,)1P;|< 3,and (E + H,)™!
L_(E + H,)™' and L,(E + H) YL (E + H,)™! are
bounded.

The following two estimates easily yield the re-
quired relations above.

Estimate 1:
H > 2+1p;, i large (15)
Estimate 2:
i .
P,z + 1, P,|<c, exp (—c32¥2) for some
€1,€5 > 0. (16)

Proof of estimate 1: We write V as the sum
Vv, + R, where as usual V, contains those terms
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in the expansion of V all of whose momenta are
less than or equal % in absolute value

H,= P,NP, + P,V, P, + PR, P,. 17
We first note ‘

P,NP,> 2iP,. (18)
As in Ref. 2, one has

V, = — c(lnk)2. (19)
Picking

k, = exp [(1/Ve)2 2], (20)
we get

P; Vk,-Pi z—2+1p, (21)
From

IP,.R,”P,. | <d@2)21/Vk,, (22)

a standard N, estimate, see Ref. 3, we quickly get

|PiRkiPi|s2i’l, i large. (23)

And thus, using (23), (21), and (18), we obtain esti-
mate 1 from (17).

Proof of Estimate 2: Clearly

|E + H, | < e22¢ (24)
for some e (by an N, estimate again),and
E + H > 21 (25)

for E large enough. We apply the theorem with
la) = PP, |a), 18) = P,P,1b) (la) and |b) norma-
lized vectors, A = 21, M = 2%, A=FE + H, —
2¢1 and N < [(2#*1 —4) — (2! + 4)]/4. This ap-
proach is easily generalized to N_ + f:(p‘* vdx.

The subject of obtaining convergent expansions for
the resolvents of other field theory models seems
interesting, as is the question of whether this is

a way of obtaining lower bound estimates for other
models.
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