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The light beam induced curre(itBIC) technique was used to characterize the interface formed by
the wet oxidation of AlAs and AlGa, _,As (x=0.98 and 0.95 LBIC scans were used to calculate

the diffusion lengths of minority carriers both in the bulk and near these interfaces; and the
corresponding interface recombination velocities were estimated. The interface recombination
velocity at the oxide/semiconductor interface is 3<t®° cm/s for AlAs, and 1.98 10* cm/s for

Alg odGay o AS. It is found that the addition of gallium in the AlAs can significantly improve this
property. © 1997 American Institute of Physid$S0003-695(97)02452-2

The thermal oxidation of high Al content AIGaAs layers heterointerface$1n the technique, scanning the vicinity of a
in water vapor at elevated temperatures forms a stable oxideverse-biaseg-n junction or Schottky junction with a laser
suitable for use in optoelectronic and electronic devicds.  beam spot and relating the photocurrent response to the dis-
advantage of this wet-oxidation process is that the AlGaAsance between the excitation point and the junction will yield
layer may be selectively oxidized, especially compared tahe minority carrier diffusion lengths both in the bulk and at
GaAs, making it possible to “bury” the oxidized layers us- the interface.
ing lateral diffusion in multilayer structures. This process has  To perform this study, we have grown three layer struc-
been effectively used in vertical-cavity surface-emitting la-tures as shown in Figs(d)—1(c) by molecular beam epitaxy
sers(VCSEL) using lattice-matched AlGaAs and GaAs lay- (MBE). Structure A consists of a lum n-GaAs (5
ers, for enhanced electrical and optical confinemiénh ad- < 10'° cm™3) layer, followed by a 500 A AlAs and a &m
dition, this oxide has been used in various other electroniq-GaAs, grown om+ GaAs substrate. Structures B and C
devices including, as a gate-insulator in AIGaAs—GaAs fieldconsist of 1um n-GaAs, followed by a 500 A AlGa, _As
effect transistorSFETS* and as a buffer insulator in the (x=0.98 and 0.9band a 2um n-GaAs layer. Note that the
current GaAs on insulatdiGOI) technology? thickness of the oxide is kept low in order to avoid delami-

The electrical properties of these devices are affected biation of the diodes during lapping and polishing. The grown
generation and recombination at the oxide/semiconductor inayers were mesa etched prior to the partial lateral oxidation
terface. In VCSELSs, it is imperative to understand how carof the AlGaAs layer. The samples were then placed in a
rier injection into the active region is altered by recombina-furnace tube at 450 °C. Water vapor was supplied to the tube
tion centers at the oxide aperture. Much study has been dong flowing nitrogen at 75 sccm through water heated at
on the structural and mechanical stability of devices utilizinggo °C. The lateral oxidation depths were determined by scan-
this oxide® and it has been determined that VCSELs with ning electron microscopéSEM) images. The kinetics of the
current apertures formed by the partial lateral oxidation ofthermal oxidation of AlGaAs have been studied and
AlGaAs are far more robust and reliable than those by AlAs.

The electronic and structural properties of the selectively

oxidized AlAs/GaAs interface have also been examined in
detail using time-resolved photoluminescence measurements
on multilayer structures and transmission electron micros-
copy (TEM) diffraction pattern micrographsTo date, no
direct comparison of the oxidized AIAs/GaAs and
Al,Ga, _,As/GaAs(for x<1) interface recombination prop-
erties has been made. We are presenting a quantitative ap-
proach to this study by measuring the lifetime of minority
carriers in the vicinity of the oxide/semiconductor interface
and by estimating the surface recombination velocities near
the GaAs/AlGa _,As interface forx=1, 0.98, and 0.96,
using the light beam induced curreiBIC) techniqué® =3

LBIC is an established method for characterizing
minority-carrier diffusion lengths and recombination veloci-
ties both in the bulk, at discontinuities such as those encoun-
tered in grain boundaries, at regrown interfat&s, and
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FIG. 1. Schematic cross sections of the grown struct(@estructure A,(b)
structure B, andc) structure C.
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FIG. 2. Schematic showing device geometry.
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To perform the measurement, light from a helium—neon @
laser \ =6328 A) is chopped and focused by ax&0nicro- 10 -

Oxidized
Ox/RTA
------ As grown

scope objective to a spot, approximately.t in diameter, [
onto the surface of the diode. The beam spot is approxi-
mately of the same magnitude as the diffusion length ex-
pected inn-GaAs and a factor of 10 dimensional advantage
is obtained by using a beveled device structure. Therefore,
for a bevel angle of 5°, as in these cases, the thickfess

tical) of the layer changes only one-tenth of the distance
(horizonta) through which the scanning spot moves. The
diodes were reverse biased and mounted on a three-axis mi-
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cromanipulator. The photocurrent response generated was 0 2 3 4
amplified using a lock-in amplifier. Current readings were Depth (um)
taken at intervals of Jum along the beveled surface. The (b)

device geometry is illustrated in Fig. 2.

For an estimation of the recombination velocity near the
semiconductor/oxide interface, the models of Watanabe
et al'' and Huet al."* were used. The total number of excess
holesVp in a semiconductor is given by, assuming a steady-
state point excitation

Current (a.u)

Vp=Gr 1—iexp(—é) , (1)
1+S Ly
whereG is the excitation{ is the excitation depth, andis 0o 1o 20 30 40
the bulk lifetime. S is the reduced surface recombination Depth (um)
velocity given by ©
_ ST 2) FIG. 3. Typical LBIC scans fofa) structure A,(b) structure B, andc)

S= L_b’ structure C. The vertical dashed lines mark the region near the interface.

wheres is the surface recombination velocity ahg is the
diffusion length of the excess holes in the bulk. It is apparent i Gef _S 5)
that most of the excess carriers are within the distdnge gg efMe=0Tp
from the excitation point and thus, for excitation depths in
the order ofL,,, one can assume that the change in the numwhereD is the diffusion coefficient of the excess holes. The
ber of excess carriers generated is due only to surface recoraxcess carriers excited by the light beam diffuse to the
bination on the surfaceGy; incorporates this additional re- Schottky junction where the electron and holes are separated
combination rate introduced by recombination at the surfacend a current is generated. The light beam induced cutrent
and is as follows: a function of bothé andz , is proportional to the excitation

S £ strength and decays exponentially with distance from the
1=17s ex”( Lb) '

Ge=G (3)  junction
The change irG . with respect to excitation deptfor shal-

S —& Z
low excitation is given by 1(£,2)=G|1- 75 ex;{ I—_b) ex;{ - L_b) (6)
J G S 3 . , . :
7€ Geff:L_ 1rs exp — A (4 where z; is defined as the perpendicular distance from the
b b junction. Note that the current change can therefore also be
Therefore, for surface excitation, it can be shown that taken as
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TABLE |. Calculated minority carrier diffusion lengths and interface re- speculate that the interface trap density, possibly resulting
combination velocities. from the porosity and/or the strain fields, is reduced with the
Lou Lo S addition of g_allium, resulting in a smaller interface recombi-
Structure  (um) (um) (cm/s nation velocity.
In conclusion, the diffusion lengths of minority carriers
and recombination velocities for the oxide/semiconductor in-

Before After Before After
oxidation  oxidation oxidation  oxidation

A 0.36 0.16 138106 3.13+1CF terface were obtained using a relatively simple technique. It

B 3.2 2.28 1.49 13210 1.90+10* is found that the addition of gallium can substantially im-
2.24(RTA) prove the recombination characteristics of the interface. The

c 4.2 3.8 263RTA)  2.19:10° 336£10' (a9 correlate with previously presented work on the inter-

face properties of the wet-oxidized AIAS.In addition to
their structural and mechanical stability, multilayer structures
d with laterally oxidized Al-rich AJGa _,As exhibit improved
& I(§,z-)|§:0=5. () recombination characteristics. This result is especially im-
i .. portant when studying small aperture selectively oxidized
The exact current equation for the geometry of the device iN,cgg| 5 \where leakage currents due to nonradiative recom-

F'g_‘ 2, although _complex, has been solved and Shown @i ation in and around the active region can be a limiting
satisfy Eq.(7). It is clear from the above equations that ¢actor in device performance
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