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From the initial time dependence of the dynamic structure factor S{k,t), we obtain a general form, valid 
through second order in the concentration, for the mutual diffusion coefficient J) m' All effects of direct and 
hydrodynamic interactions (other than dynamic friction) are taken into account, including the three-point 
"Oseen" hydrodynamic tensor Tij" whose analytic form is obtained here for the first time. The concept of the 
reference frame correct jon is re-examined. The usual factor (1 - ~) for transition from the fundamental 
hydrodynamic frame to the volume-fixed frame is argued to be a low-concentration approximation. The 
general form for J) .. is evaluated for a model system of hard spheres. With the use of the auxiliary assumption 
(relaxed herein) that all hydrodynamic interaction tensors satisfy '\1' t = 0, use of our new general method [J. 
Stat. Phys. 28, 673 (1982)] for reducing N-particle cluster integrals to (N - l)-dimensional integrals shows 
J)", =J)o{I-0.875~ -19.53~2). 

I. INTRODUCTION 

Extensive calculations have been made of the spectrum 
S(k, t) of light scattered quasieiastically by a solution of 
interacting Brownian macroparticles. I - 6 With few ex­
ceptions, these calculations have only been used to ob­
tain corrections of order cA to the free diffusion form for 
S(k,O. Recently, physical tests of these calculations 
have been reported.? These are extremely difficult ex­
periments; at low macroparticle concentration co, the 
effect of concentration on the normalized initial slope Kl 
of S(k, t) is small. By carrying out such studies at high­
er macroparticle concentrations, the concentration de­
pendence of Kl ought to be more readily apparent. How­
ever, significant obstacles lurk at larger co: (1) multi­
ple scattering may distort the observed spectrum So(k, t); 
(ii) as the magnitude of the second order correction to 
Kl is unknown, it is not clear how large Co may be made 
without taking c~ (Le., three..particle) terms into account. 

Two rigorous methods of removing the first of these 
obstacles exist. First, if solvent and solute are suffi­
ciently similar in index of refraction, 7 only single scat­
tering will occur. Second, it has recently been demon­
strated8 that by using a two-beam, two-detector light 
scattering spectrometer, multiple scattering effects may 
be removed from the spectrum. 

This paper deals with the second obstacle. The con­
ventional effects of direct and hydrodynamic interactions 
on Klt including all terms of second order in the concen­
tration, are here calculated. Formal expressions are 
given for Kt in terms of the hydrodynamic interaction 
tensors and the two- and three-particle radial distribu­
tion functions; these expressions are evaluated for the 
traditional model suspension of hard spheres. 

Section II presents our general method of calculation, 
which is based on the Langevin equation. Comparison 
is made with other,9 nearly equivalent, methods for 
making the needed time series expansion. Section m of 
this paper obtained the form of the three..point hydro-
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dynamiC interaction, using methods similar to those of 
Felderhof. 10 Section IV of this paper applies these re­
sults to determine the initial slope of S(k, 0, including 
both general expreSSions in terms of equilibrium dis­
tribution functions and specifiC results for the hard­
sphere suspension. The calculation is discussed in Sec. 
V. The Appendices present our method of introducing 
the reference frame correctionsll and exhibit the mathe­
matical methods used to treat our three-point integrals. 
These methods, which are based closely on a procedure 
demonstrated in many-electron quantum theory by Sil­
verstone and Moats, 12 allow one to reduce N-point clus­
ter integrals to (N -l)-dimensional integrals over pow­
er series. 13 

II. A TIME SERIES EXPANSION FOR S(k,t) 

In the absence of multiple scattering, the quasi­
elastic light scattering spectrum is directly sensitive to 
the intermediate scattering function (dynamic structure 
factor) 

S(k,t)=\~ It.l exp{ik.(r/O)-rl(t)]}), (2.1) 

where k is the scattering vector, rl(t) denotes the posi­
tion of the ith of the N particles in the scattering volume, 
and the brackets "( )" denote a time or ensemble aver­
age. The particle displacements are trivially related to 
the velocities 

rl(t) -rl(O) = f dsvl(s) • (2.2) 

Substitution of Eq. (2.2) into Eq. (2.1) and expansion of 
the exponential into a power ser~es gives 

(2.3) 

To proceed further, the physical situation needs to be 
conSidered in detail. First, S(k, t) is generally mea­
sured by digital autocorrelation, with a highest time 
resolution of 50-100 ns. Processes which occur on time 
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scales much shorter than 50 ns are Seen experimentally 
only in some average way. Equivalently, in obtaining the 
"initial" slope 

K = lim [alnS(k, t)] 
1 t.o at ' (2.4) 

the limit t-O will actually not be sensitive to the be­
havior of as(k, t)/at for t"; tens of nanoseconds. 

Second, to evaluate Eqs. (2.3) and (2.4), a physical 
model for the particle motions is required. This paper 
uses a generalized Langevin equation 

(2.5) 

Here, m and fo are the mass and drag coefficients of 
particle i, W N is the total potential energy for interac­
tions between the N Brownian macroparticles, and FBI 
is the random force of the solvent on the ith macro­
particle. This paper will only be concerned with rela­
tively long times, so that mVI =0 and 

(2.6) 

VBI is the Brownian velocity of the particle: the compo­
nent of the particle velocity not accounted for by the in­
teractive velocity - fi/vi WN =v1/' In the simple Lange­
vin model, 

(2.7) 

[Real velocity autocorrelation functions do not decay in 
zero time, so the delta function of Eq. (2.7) is actually 
a very short-lived time kernel. Correspondingly, the 
fluctuation-dissipation equation indicates thatfo has a 
high frequency response, rather than being a simple 
constant; e. g., Eq. (2.5) should properly contain a 
memory integral f dTj(t -T)VI(T). It is here assumed 
that all of these high-frequency effects, to the extent they 
are significant, are in the kernel which properly re­
places B(t). While this approximation is imperfect, the 
use of Eqs. (2.6) and (2.7) (or the related N-particle 
Smoluchowski equation) is almost universal. ] 

Taking these two considerations into account, substi­
tution of Eq. (2.3) into Eq. (2.4) gives 

N 

Kl = + N~JS(k, 0)]-1 ! ((;1 exp[ik' rjl(O)] 

x [-ik'VI(t) - f k'VI(S)k'VI(t)dS"'])' (2.8) 

The particle velocities vl(t) are actually well-behaved 
continuous functions of time. If the true limit t - 0 were 
to be taken, by the usual rules of the calculus the dis­
played integral in Eq. (2.8) would vanish. However, the 
limit "t- 0" only takes one to times far longer than the 
very small time TB over which B(t) of Eq. (2.7) is non­
zero. At times t»TB , the integral in Eq. (2.8) includes 
the entire range of the delta function of Eq. (2.7). The 
integral over ds and the delta function effectively cancel 
each other, so in the limit t - 0 the nonvanishing terms 
of Eq. (2.8) are 

N 

K1 = + }:_~.rS(k, Orr1 ~(t1.1 exp[ik. r j/(O)][-ik' v 1/(t) 

t 

-ik'vBI(t)] _k2
: fa ds[vBI (S)vBI (t) +VBI(S)vI/(t) 

+v 1/(s )VBI(t) +v II(S)V II(t)]) • (2.9) 

The actual evaluation of Eq. (2.9) appears in Sec. IV. 

Langevin-type approaches have been used to derive a 
variety of equations9 similar but not equivalent to Eq. 
(2.9). In most of these treatments, the integral in Eq. 
(2.8) is impliCitly assumed to vanish, integrals similar 
to those of Eq. (2.9) being obtained by various indirect 
means, such as integration of d 2Sldt 2

• Since the mea­
surable time derivative of S(k, t) is 

(2.10) 

where T is much greater than relaxation time TB of the 
Brownian velocity; it is here presumed that Eq. (2.8) is 
correct, and that use of the form 

lim dSd~,t) = ! ( t exp(ik.rjl)(-ik.VI)) (2.11) 
t-O l,j=1 

in place of Eq. (2.8) may lead to unreliable results in 
some circumstances. 

III. THE THREE-POINT HYDRODYNAMIC 
INTERACTION 

The exact form for the hydrodynamic interaction be­
tween slowly moving spheres in a fluid has been exten­
sively studied by Felderhof1o and Batchelor, 14 who have 
obtained extensive power series for the diffusion tensors 
in terms of the center-to-center distance r and the 
sphere radius a. For a pair of spheres, the self- and 
cross-diffusion tensors are found to be 

D//=Do [1_1: (~r rr+o(~y]. (3.1a) 

TI/fo=[i ~(I +rf)+~(~y (1-3H)+O(~y]/6lT17a, 
(3.1b) 

where Do=kB TI6lTTJfl is the free-particle diffusion con­
stant and I is the identity tensor, the carat r denoting 
the unit vector along the line of centers of the particles. 
Surprisingly, in Eq. (3.1b) the O[(alr)S] term vanishes. 

As this paper is concerned with the c~ corrections to 
the diffusion coefficient, it is necessary to deal with the 
effects of hydrodynamic interactions between triplets as 
well as pairs of spheres. Three-point hydrodynamic 
interactions do not appear to have been treated previous­
ly, but the methods of Felderhof permit their straight­
forward calculation, at least for low order in air. Here, 
we first sketch the two -point treatment and then modify 
it to examine three-point interactions. Following Fel­
derhof, the starting point is the Stokes form 

[
3 a ~ ~ 1 (a)3 ~ AJ) I () vAo(r) = '4;::(1 +rr) + :4\:;: (1-3rr~rFA 6lTTJfl 3.2 

J. Chern. Phys., Vol. 77, No.5, 1 September 1982 



George D. J. Phillies: Diffusion of Brownian macroparticles 2625 

for the flow v AO(r) set up at r by a force FA acting on a 
sphere A located at the origin. Note that Eqs. (3.2) 
and (3.1b) are not the same. The flow causes other 
neighboring spheres to move; if a neighboring sphere B 
located at r B is subject to no other forces, it moves 
with velocity 

(3.3) 

Substitution of Eq. (3.2) into Eq. (3.3) yields Eq. (3.1b) 
All further terms arise because spheres B and A find 
themselves in the nonuniform flow field set up by each 
other. A freely moving sphere B, in a nonuniform flow 
pattern, acts to perturb the flow at points distant from 
B, including the point r A at which sphere A is located. 
This perturbation ovB(r) creates a force on A; as linear 
hydrodynamics are assumed, the change in VA is given 
by a formula analogous to Eq. (3.3) but with the indices 
A and B interchanged. 

To obtain the perturbation oVB1(r) due to B in the fluid 
velocity v AO(r) created by A, v AO(r) is subject to a Taylor 
series expansion at r B: 

v AO(r) =v AO(rB) + (r - r B) • VV AO(rB) 

(3.4) 

As shown by Felderhof, OVB1 is the sum of the perturba­
tions arising from the field gradient (r - r B)' Vao(rB) 
and each of the higher derivatives of vaO(r). However, 
the flow pattern around a sphere in a linear velocity 
gradient is unique, so if one has for the total flow 

(3.5) 

for a system with a sphere at r B and a linear flow gra­
dient (where ~vB(r)-O as r- 00), ~vB(r) is equal to the 
portion of ov B1 (r) arising from the linear gradient term 
of Eq. (3.4). Equation (3.5) has 10 the solution 

VBll (r) = <p(r) r· Vv AO(rB) - t r-1 <p'(r) rx[rx(r • V)v AO(r B») , 
(3.6a) 

5 (a)3 3 (a)5 
<p(r) = 1 - 2" r + 2" r (3.6b) 

where to simplify notation the origin in Eq. (3.6) is 
rB=O. By combining Eqs. (3.2)-(3.6), one obtains the 
change in the velocity of A, when a force is applied to A, 
due to the presence of B, namely, 

15(a)4~~ I (/)6 o U A = -"4 r r r . FA 67T17l1 + 0 a r , (3.7) 

Here, WN is the N-macroparticle potential, fo = 67T17l1, F 
is the force on particle i, the normalization on the en­
semble average is 

(4.3) 

as also seen in Eq. (3.la). Further manipulations give 
the flow perturbations resulting from the application of 
bilinear or higher gradients to B; these perturbations 
are of higher order than (alr)4. 

The above reasoning, originally due to Felderhof, is 
now used for the three-body problem. In the lowest­
order three-point interaction, a force applied to A es­
tablishes a flow at B. The disturbance of the flow by B 
then alters the motion Uc of a third sphere C. The low­
est -order modification ov B11 (r c) to the fluid motion 
at rc may be obtained from Eq. (3.6) if vAO(r B) is in­
terpreted as before, while r is reinterpreted to mean 
r=re -rB' The change in Ue caused by OVBtt (re ) is 
found from Eq. (3.3), though to lowest order in (air) 
the V2 term is not significant. The final result is 

If C and A are the same particle, Eq. (3.8) reduces to 
the aforementioned two-particle form. On inspection, 
all other three -point interactions, such as the 
A- B- C- A or A- B- C- B couplings, will be of high­
er order in alrli' because they require additional gra­
dient operators at C and further factors of <p(r). 

IV. THE INITIAL SLOPE OF S(k,t) 

This section applies the results in Sec. III to eval­
uate Eq. (2.9). As in our previous paper, 6 

(exp[ik 'r/O»)ik 'VBI(O» is presumed to vanish. The 
terms of Eq. (2.9) in f dtvBlvl/ correspond to the dy­
namic friction contribution to the mutual diffusion coef­
ficient. The existence of a dynamic frictional modifica­
tion to Dm , at low wave vector in the t- 0 limit, is in 
dispute. These terms are treated elsewhere. 15-18 In 
the t - 0 limit (f ds v I/(s) v l/(t» vanishes because VII is 
smooth and well behaved at small t. Using the substi­
tutions 

VIi = (kB T)"l D/i' FI + LTI/ . F,lfo + LT Iml' F,lfo , 
1#1 1m 

(4.1a) 

(4.1b) 

Eq. (2.9) becomes 

and 

b& _ 15 (a )4 ~ ~ 1/--4 r;;- r/lrf/ (4.4) 

is the self-component of the hydrodynamic interaction 
tensor of i in the presence of l. In Eq. (4.2), the first 
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term in square brackets represents the free drift ve­
locity of each particle i due to the intermacromolecular 
force on i. The second term in square brackets repre­
sents the retardation of the drift velocity by the hydro­
dynamic interaction of i with its neighbors. The third 
term represents the motion of i due to i's hydrodynamic 
interaction (via Til) with some neighboring particle 1 to 
which a force has been applied, The fourth term repre­
sents the modification of Til, as used in the third term, 
due to the mediation of some third particle m. The final 
term in square brackets describes the Brownian motion 
of particle i due to the random stress fluctuations of the 
solvent as modified by the presence of other particles. 

The contributions to Kl of these five terms in square 

brackets will be denoted Sh S2' 83, 84, and 55' respective­
ly. On integration by parts on F, = - V, W N and F I 
= -VI WN , resolution of the sums on i,j, I, and minto 
self and distinct parts, and use of the definitions 

V-SgS(rjJJr il )= V-N J d{N-ijl}exp[-,B(WN-A)] , 

(4.5b) 

in which r/J =rl -rJ and d{N - ij} denotes the integral 
over all particle coordinates other than i and j, Eq. 
(4.2) gives 

-ikV: [b 6 (r)](e-lt ' r + 1)1- Co 2Do f dr ds ikV: b6(r) e-1t •s gs(r, S)}, 
Ss = +[S(k)]-l Dok2 {cj>H(k) - Co f drk ·T(r). k[g(r) -1] exp(-ik. r) } 

(4.6a) 

+[S(k)jl v-N Do f drN exp[ - ,B(WN - A)1
1
t.l {(1 +exp(z"lt· rJj)]ikv, : (Til] + t exp(ik 'ril)ikV, :[Tlll}, 

Je1 
i, i,' dlstiact i~' 

(4.6b) 

N 

L [1 +exp(ik· r mi ) +exp(ik· ru)) z"ltV, : [T 1m,] • (4.6c) 
i,I,m=l 

I,',m dlstlact 

Details of the passage from Eq. (4.2) to Eq. (4.6) are 
found in Appendix A. In Eq. (4. 6a), the integrals in b 
arise from the terms in 

withi;tj=l, i=j;tl, andi;tj;tl;ti, respectively. In 
Eq. (4.6b), cj> is the solute volume fraction and H(k) is 
the spatial Fourier transform of the particle shape. The 
arguments of Ref. 6 for adding reference frame correc­
tions were used to introduce the cj>H(k) term and to re­
place g(r) by g(r) -1 and gs(r1Z , r S2 ) by g3(r12 , r sz ) -1, as 
is further treated in Appendix A and the discussion. 

The second lines of Eqs. (4.6a)-(4.6b) depend on 
V'b, V,·T iI , andV,·T lm" respectively. Manyprevious 
workers have assumed that the incompressibility of the 
fluid implies V, . b = V,· T 1/ = V, 'T Iml =0, as may be con­
firmed for T 1/ and Tim, by expliCit calculation, at least 
for the terms in (air), (alr)S, and (a4/~~). However, 
Felderhof1o has shown analytically that V, • Til does not 
vanish exactly in its short-range (a' Ir') terms. This 
effect may be interpreted as ariSing from the difference 
between fluid and rigid body motion: a sphere is limited 
to rigid translation and rotation, so in a nonuniform flow 
field the velocities of different points of a freely moving 
sphere need not equal the unperturbed velocities which 

the fluid would have, at the same points, if the sphere 
were absent. Components of b and T, which describe 
the motion of the sphere with respect to the solvent, 
need not satisfy V· b = 0 = V • T, which is a requirement 
for solvent flow. For T, this effect is only important 
in the (air)' part of the expansion, which is not being 
used here. For b, the integrals on ikV : b are nonvan­
ishing even when b is taken from Eq. (3.1a). These 
terms, which are not small, appear to have been omitted 
from previous calculations of Kh including ours. 6 

The sum of Eqs. (4.6a)-(4.6c) gives the mutual dif­
fusion coefficient (the initial slope of - S(k, t)lkZ

) through 
second order in the concentration, for an arbitrary dif­
ferentiable interparticle potential WN • If WN were not 
differentiable, the interparticle force FI would be un­
defined. The applicability of the above approach to a 
true hard-sphere suspension is therefore not absolutely 
clear. However, Eqs. (4.6) are correct for a differen­
tiable potential UN which is arbitrarily similar to a 
hard-sphere potential. The radial distribution func­
tions corresponding to such a UN would be very close to 
those of the corresponding hard-sphere functions. As 
long as integrals rather than derivatives of g(r) are re­
quired, it does not appear that any fundamental error 
will be introduced by using hard-sphere distribution 
functions to obtain approximate solutions to Eqs. (4.6). 
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To the extent that differentiability of W N is significant, 
one notes that real potentials are differentiable, so that 
results obtained from Eqs. (4.6) are to be preferred to 
results which depend on the nondifferentiability of the 
hard-sphere potential. 

Equations (4.6) are now solved for the model system. 
For hard spheres of diameter G,19 

(4.7a) 

g2(r)=1+co1Tif[~- ~+;2 (~JJ. Gs lrl<2G, 

(4.7b) 

(4.7c) 

To second order in concentration, the Kirkwood super­
position approximation for g3 is exact, and 

g3(rh r2, r 3) == g3(r12, r23) = 1 for 

andlrl-r31~G 

g3(rt. r2, r 3) = 0, elsewhere. 

I rl - r21 ~ G, I r2 - r3j ~ G, 

(4.8a) 

(4.8b) 

The two-particle integrals in Eqs. (4.6) may be per­
formed by elementary means. The c~ (three-particle) 
corrections are given by six-dimensional integrals over 
the interparticle vectors r and s. As examined in Ap­
pendix B, it is possible to reduce an N-particle (3N­
dimensional) cluster integral to an N -l-dimensional in­
tegral while performing only trivial integrations; the 
nontrivial integrations are found in Appendix B. One has 
for Eq. (4. 6a): 

• • • Dok 2 
[15 Z 

S1 +,5z +Ss = S(k) (-1) +(8 cp + 1.1083cp ) 

+(!tcp +2.2l7cp2) -(11.0l27cp2)], (4.9) 

the parentheses separating contributions from the parts 
of Eq. (4.6a) which are proportional to -Dok2 /s(k), 
f g2 k • b • k, fgz V· b, and f g3 V· b, respectively. For 
Eqs. (4.6b) and (4.6c), one has 

• Do~ [ () 2] SS= S(k) cpHk +6cp-13.20cp , (4. lOa) 

(4. lOb) 

or, in total, 

r (8.875) (21.47) ~ 
S=Dok

2
(1+8cp+30cp2\-1+ 12.625 cp- 19.26 cp2J, 

(4.11) 

where, in the coefficients of cp and cp2, the upper coeffi­
cient is correct if V . b = 0, while the lower coefficient 
is valid if one computes V • b directly. From this, one 
obtains 

[ (
0.875) (19.53) ] 

Dm=-8Ik
2

=Do 1- 4.625 cp- 51.74 cp2 .(4.12) 

V. DISCUSSION 

In the above, the second order (three-particle) correc­
tions to the mutual diffusion of a suspension of Brown­
ian macroparticles have been calculated, obtaining the 
general form given by Eqs. (4. 6a)-(4. 6c). These gen-

eral forms were then evaluated for the special case of 
the hard-sphere suspension, using exact forms for the 
radial distribution functions of hard spheres. Hydro­
dynamic interactions between the diffusing particles 
were included through order (alr)\ using the elegant 
arguments of Felderhof to calculate the hydrodynamic 
interaction tensor T iii' Ignoring terms of higher order 
in k, Dm was found to be given by Eq. (4.12). 

As there appear to be no previous attempts to find the 
q} modification of Dm, it is not possible to compare the 
major new results presented here with any in the liter­
ature. We therefore reiterate pOints at which the above 
work is particularly novel rather than simply tedious. 
Besides the use of nonadditive terms in the three-point 
hydrodynamics, the application to nonequilibrium 
statistical mechanics of Silverstone and Moat's spher­
ical harmonic expansion method12 seems likely to have 
applications other than the one seen here. The three­
point correlation functions often correspond to three-di­
mensional integrals in which careful work is needed to 
identify the overlaps of even, e. g., a trio of spheres. 
As shown in detail in Appendix B, a straightforward pro­
cedure has here been demonstrated for simplifying such 
three -dimensional integrals to two -dimensional integrals 
with relatively simple (e. g., linear polynomial) bounds. 

Our calculation of the cpt correction to Dm is in partial 
agreement with prior estimates. The values for S3 
and for the "reference frame correction" agree with the 
literature. Our expression for the cp1 part of 51 +82 +55 

differs from that previously presented for three rea­
sons. First, hydrodynamic interactions have here been 
included through (alr)\ while some previous calcula­
tions have included corrections through other orders in 
(air). Second, in Eqs. (4.6b) and (4.6c) the hydrody­
namic interaction tensors T were systematically aver­
aged over g(r) -1 rather than g(r). In some prior cal­
culations, the (alr)l part of T was averaged over g(r) -1, 
but the (alr)S part of T was averaged over g(r) itself. 
These are numerically inequivalent; Appendix A dis­
cusses justifications for our choice. Third, other cal­
culations, including one of ours, have either overlooked 
the ikV: b terms or assumed that such terms vanish. 
The kV: b terms actually make a substantial contribu­
tion to S. When due allowance is made for these differ­
ences, the cpt term of Eq. (4.12) agrees with one in the 
literature. 5,10 

Historically, 11 the reference frame correction was set 
up to correct for the relative motion of the solvent and 
sample cell, it being assumed that hydrodynamic results 
for isolated pairs of objects in an infinitely large volume 
of stationary (at r - 00) solvent are essentially the same 
as the results for a pair of particles in a closed volume 
in the solvent-fixed frame. The arguments presented 
in Appendix B raise questions as to the interpretation of 
this assumption. Except at very short distances, for 
which (alr)7 ~O, the velocity of the solute particles is 
the same as that which the solvent would have had, if 
the solute had been absent. Within our apprOXimations, 
in a closed system the solvent and solution-fixed refer­
ence frames are the same. The displacement of solu­
tion by a moving particle is seen to modify the diffusion 

J. Chem. Phys., Vol. 77, No.5, 1 September 1982 



2628 George D. J. Phillies: Diffusion of Brownian macroparticles 

rate, but only as a q} correction. 

While the above calculation is in some respects more 
detailed than previous studies of this same problem, 
there are still several in which the treatment in this 
paper may be incomplete. The role of dynamic fric­
tion-the modification of fo by direct interactions in the 
absence of hydrodynamics-has not been included, 
though it has previously been shown that dynamic fric­
tion has a substantial effect on the drag coefficient. 18 

Furthermore, it is clearly only approximately correct 
to use continuum hydrodynamics to treat interactions be­
tween macromolecules. When r/j -2a is less than the 
diameter of a solvent mOlecule, the continuum form for 
T lJ must be incorrect. By not including the (a/r)8.7 •••. 
corrections to T, this question has in part been avoided. 
Finally, only the initial slope of S(k, t) has been obtained. 
The zero-frequency mutual diffusion coefficient deter­
mines the complete relaxation of a concentration gra­
dient, i. e., it includes the long-term nonexponential be­
havior of S(k, t) in nonideal solutions. If S(k, t) is per­
turbed by mode-coupling effects, but is dominantly ex­
ponential in relaxation, at long times a power law decay 
of S(k,t) would be expected. The details of this long-time 
behavior, and the extent to which it would perturb the 
apparent initial slope Kb have not been examined here. 

APPENDIX A: REFERENCE FRAME CORRECTIONS 
AND THE INTEGRATION BY PARTS OF Ea. (4.2) 

In a previous paper [Ref. 6, Eq. (Al)], it was shown 
that the true hydrodynamic interaction b~J of two macro­
particles i and j satisfies 

f drl[kobl, · kexp(ik· rlJ) +cfJl H(k)1 =0, (AI) 

H(k) being the spatial Fourier transform of the hydro­
dynamic shape of either particle, and particle l being 
taken to drive the flow. Equation (A 1) presumes that the 
particle velocities are equal to the velocities whiCh the 
flUid would have, at the same locations, if the particles 
were absent. With the approximations used in Sec. Ill, 
this presumption is still satisfied by T II and T iii [Eqs. 
(3.1b) and (3.8)) as used in this paper, so in Eq. (Al) 
it is proper to replace 

N 

L T~JI , (A2) 
i.J.1 distinct 

Til and TIJI including the modifications of TiJ and TIJI 
by the walls of the container. Because the particles 
simply move with the fluid, the mediating particles of j 
of TIJ/ make no modification to Eq. (Al); only the volume 
fraction cfJ of the particle which initially drives the flow 
appears in Eq. (Al). Alternatively, unless the particles 
move Significantly with respect to the solvent, bll may 
indifferently be said to describe either the response of 
the solvent to the motions of 1 or the response of the so­
lution (solvent + solute) to l. 

We first show how Eq. (Al) is used in the transition 
from Eq. (4.2) to Eq. (4.6) and then show why TIJ and 
T lJI are suitable short-range approximations to Tlj and 
T Iii, respectively. Consider the integration by parts 
which takes one from Eq. (4.2) to Eqs. (4.6b) and (4.6c). 
By applying to the third and fourth terms of Eq. (4.2) the 
SUbstitution exp[ - /3(W. - A)1FI = - VI { -KBT 
x exp( - j3{ W N - A) n and performing the integration, one 
has 

= [NS(k)J-l Do VoN f drN{ exp[ - /3(WN - A) 1- CnL.t=1 ikV1 : (exp(ik' rjl)T 11]+ ~ ikVI : [exp(z'k' r jl )Tlm, ]} 

+ [ dS I ' d {N -I} {exp[ - /3(WN - A)] - C} t.t=l exp(ik' r JI) [ik 0 TIl + ~ ik 0 T~ml]} , (A3) 

where the final integral represents the surface terms in 
the integration by parts, d {N -I} representing the inte­
gral Over the coordinates of all particles other than 1. 
To obtain Eqs. (4.6), the surface terms were presumed 
to vanish, and the first integral was reorganized. 

The choice of an appropriate value for the integrating 
constant C in Eq. (A3) and its counterparts has some­
times been treated impreCisely. It often has been as­
sumed that the correct choice is C = 1, which choice as­
sures convergence of integrals over the long-range part 
of the Oseen tensor T 1/' The choice C = 1 leads to a 
mathematical difficulty. For the integration by parts to 
be correct, the integrand must be nonsingular within its 

range. Til and T'nf are strongly divergent if riP rrp 
or r"" equal zero. This divergence is physically ir­
relevant, because Til or Tin then only diverge when 
particles are within their hard-core radii of each other. 
While T - 00 as r- 0, one has g(r) == 0 for r small, so 

lim T H(r) g(r) =0 , (A4) 
,...0 

and Similarly for TIJ/' By comparison of Eq. (A3) with 
Eq. (A4), one can see that for the integrand to be well 
behaved, one must choose C = O. In a closed system of 
arbitrarily large fixed size, the behavior of the true 
hydrodynamic interaction tensor T'(r) at large r insures 
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that the surface term of Eq. (A3) vanishes; namely, if 
the surface of integration S is on or outside of the walls 
of the container, T'(S) is zero. 

The use of T' rather than the Oseen type (i. e., open 
infinite volume forms) Til and Till is clearly incon­
venient, as T' depends in an unknown way on the posi­
tions of i and 1 with respect to the walls of the container. 
While Faxen20 has indicated how T' can be obtained, for 
our purposes a simpler approximation seems appro­
priate. The difference between T' and T may be ex­
pressed as a power series in R/L, R being the distance 
from the container wall to the particle and L being a 
dimension of the container. Over distances - a, T' - T is 
nearly a constant (except near the walls). Furthermore, 
T' - T largely reflects a cancellation of the very long­
range part of T, which at any point is small (though its 
effect on I drk . T· k is large), so T' - T must every­
where be similar in magnitude to T(L). If (ria) is 
small, T' -T:::: T(L) is« T(r), so for r «L one may 
approxilllate T' with the infinite -volume Oseen form T. 
This approximation is useless in Eq. (A3), which re­
quires T for large interparticle separations. However, 
by subtraction of Eq. (At) [after multiplication by suit­
able constants and insertion of dummy integrals I drJ V-l 

(j * i, l)), Eq. (A3) is found to be equivalent to Eqs. 
(4.6b) and (4.6c). Equations (4.6b) and (4.6c) only re­
quire T' for small values of r, so in Eqs. (4.6) the 
approximation T':::: T is useful. As noted in the dis­
cussion' the above argument leads to a T[g(r) -1] term 
similar to that obtained before in other ways, except 
from the above one concludes that [g(r) -1] is to mul­
tiply the whole of hydrodynamic interaction tensor Til, 
not just its long~range [(a/r)l] part, as is sometimes 
done. The terms of Til for which I[ g -1] would prove 
troublesome at small r are preCisely those for which 
Eq. (At) is inapplicable. At these higher orders in 
(a/r), the results of this Appendix are not sufficient. 

APPENDIX B: EVALUATION OF THREE-POINT 
CLUSTER INTEGRALS 

The method used here to compute three-point inte­
grals is based on results of Silverstone and Moats, 12 

who demonstrate that an arbitrary function F(r) = 
=!LM(r)Y LM(e, <p) can be expanded in terms of spherical 
harmonics centered on a displaced origin, namely, 

F(r-R)= L 
1=0 

I+L+'A..T8a 

/ 

I+L 

L vaL(r,R) 
>'=I/-LI 

X L CUMI ,. Yl.,M-,.(eR, <PR)Y,,,,(e r , <Pr) .(Bl) 
m=-l 

Here, R is the position of the origin in the initial coor­
dinate system, and 

(B2a) 

( )
1 L+,+>.I2 (£+1+).-24/2) ()2b-l-l 

21T - 1 '" '" r v,u(r,R) - R '-' L...J D aLab Ii 
4.0 boO 

f
r +
R (r' )24-L+l 

x dr' R !,m(r') , 
Ir-RI 

(B2b) 

Dj). Lab = 1/[ (2a)! !(2a - 2L -1)! ! (2b - 2l - 1)! I 

x (L + 1 + A - 2a - 2b)! ! (2b)! 1 (L + 1 - A - 2a - 2b -1) I I ], 
(B2c) 

(2N)l! =2N NI , 

(2N -1)! ! = (2N)I /(2N)!! , 

(-2N -1)1 ! = (_1)N /(2N -1)1! 

(B2d) 

(B2e) 

(B2f) 

To use this method to evaluate a multicenter integral, 
all functions in the integrand are expanded in terms of 
radial distances from a given center and spherical har­
monics fixed on that same center. The angular integrals 
all involve only products of spherical harmonics, which 
are trivial, so only the radial integrals require serious 
analytic effort. Here, we were concerned with hard 
spheres, for which 

!00(r)=-141T, jrj<o; !oo(r) =0, Irl2:CT, 

1I000(r,s) = r: (minfr~s)2} -min rr~s)2}) (-141T) , 

(B3a) 

1I110(r,s)=0 l>O, r+S<CTor Ir-sl5 CT, (B3b) 

r +s > CT, j r - s I :$ CT , (B3c) 

and 

(B3d) 

Three~center integrals are needed for Eq. (4.6c) and 
the final term of Eq. (4.6a). Equation (4.6c) is the 
more challenging of these; the same line of attack is 
effective against Eq. (4.6a). It is most convenient to 
take particle two as the origin. On introducing the 
Mayer / function/Ii = g2(rfj) -1, the Kirkwood superpo­
sition principle gives 

g3(r12 , r 32 ) -1 = g2(r12 )g2(r32) /13 + g2(r12 )g2(r32 ) -1. (B4) 

The complex exponential exp[ik' (r12 -rsz)] may be ex­
panded in spherical waves by using 

c I 

exp(ik. r) =41T L: L i' j, (kr)Y'm(e~, <P~)Yim(er' <Pr), (B5) 
/=0 m'-I 

j,(kr) being a spherical Bessel function. 

By substitution, with r12 = r, r 32 =s, 

(B6) 
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Each sum with two indices is 

(B7) 

k =k/ Ik I, and in T CBA one has 8 = -rAB • The orientation of the coordinate frame is arbitrary _ It is convenient to 
choose coordinates such that 0,,= cp" =- 0, since Y,m(O, 0) =0 for m'" O. The angular dependence of T 11m, in terms of 
spherical harmonics, is 

(k' r) (k os) [1-3(r' 8)2] =7T [fyro Y~o -3{(5~ Yao+ ~ Yr~(~ ygo + ~ Yt~- ;5 (mYS1 +.ffYl~tJn Y:.- 1 + JfY1~~ 

- 2
15 ~k Y:1 + fg Y~1) ()hY a-1 +A n-1) + i[(5~ Y[o - ~ Yao) (5~ Yfo - 5~ Y:o)]+ :g5(Y32 Y:2 +Y3-2yg-~!], 

(B8) 
in which Y 32 =- YSZ(Ur ), etc. The angular integrals are given by21 

f y (U)y. (U)Y (U)dU=-[(21+1)(2n+l)(2r+l)]
1/2 f 1 n qt {l n qt 

1m np .1' 47T ) \. ( 
\0 0 O. m p r) 

(B9) 

The braces "{ }" denoting Wigner 3-j symbols, which vanish for 1 +n +q odd or m + p + r '" O. Combining Eqs. (A6)­
(A9), 

S4={_307T2~(Okk)2 cga4}1'" dr fO dsL L L L LfVaao(r,s)CaoOadc(krh.(kS){Y60(0)YJ)(0)} 
a a alt cd ef xy w. L 

2 1 {a c X} \ a c X} {a e z} {a e Z} J 
XKrll• w :: [(2c+l)(Zx+l)(2e+l)(2z+1)]1/2 0 0 0 Ib 0 y 0 0 0 b 0 -w (BI0) 

where Krll• w is the coefficient of the Y;lI Y!w term on the rhs of Eq. (B8). Since xy, wz are limited to the pairs 
(1,0), (1 ± 1), (3,0), (3, ± 1), and (3, ± 2) the sums on xy, zw include only a minimal number of terms; also, the 3-j 
symbols insure b =- w =- - y. 

As this paper is being held to the k-O, k(j-O limit, so that 5 is proportional to k2, most terms of Eq. (BI0) drop 
out. Indeed, only the c =e = 0, a =x =z =- (lor 3) terms are of importance. The a= 1 term is 

(Bll) 

where T = k(j, x = kr, and y = ks, and Ql and Q2 denote the coefficients of S4 delimited by braces. The integrals on 
y are in standard references. In the T- 0 limit, the first integral over x may be done by making power series ex­
pansions around x = 0, of jo(x), and of the sin(y), cos(y), sHy) terms resulting from J dy, and eliminating mono­
mials of excessive order in k. The second integral on x is 

7T fe ax " (x)[Sin(x-T) sin (x +1') COS(x-1') COS(x+T) S·(x ) .( )] (B12) 
?k Jo (x )2 - (x )2 + ( ) - (x ) + 1 - T - S1 X - l' ; 

2T - l' + l' X - l' + i 

by taking series expansions of the trigonometric functions about x [so, e. g., sin(x - 1') = sinx - i COSX + i-r2 ••• J it is 
found that this integral is 0(1'4), and thus does not contribute to Dm in the k - 0 limit. On integration, 

- _ Dok
2 

[ 2] 
S4A-S(k) 0.96cp • (B13) 

The other nonzero part of 54 in the k4_ 0 limit, here denoted 548, arises from the integral of Eq. (B10) with c =e =0 
and a =3. One has 

11330(r, s) = :41~~ [5r 8 _4';>8 2 _2r4 s4 -4-? S6 +5s8 +5dl-20S6~ _12-?s4~ _1·2r4s2~ _20r6~ +30S 4
(J"4 

(B14) 

and 

(B15) 

Arguments like those applied to Eq. (B12) demonstrate that for c, e > 0 the integrals of Eq. (10) vanish as k4 when 
k-O. 
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