MONOTONICITY IN
MATHEMATICAL PROGRAMMING

by

Panos Papalambros
Department of Mechanical Engineering
and Applied Mechanics
The University of Michigan

M. B. Suryanarayana
Department of Matheématics
Eastern Michigan University

Ann Arbor
June 1981



ABSTRACT

Coordinatewise monotonicity of the oebjective and
constraint functions with respect to the decision variables
in mathematical programs may be used to identify active and
inactive constraints. When applicable, this may lead te the
global optimum directly or at least provide significant
simplifications. Monotonicity in multidimensional spaces is
studied for systems of inequalities and two necessary
conditions of optimality are derived. Several examples
demonstrate how to use monotonicity analysis. The ideas

discussed originated from engineering design applicaticns.



1. Introduction. Mathematical programming models of

engineering design problems generally result in
nonlinearities, nonconvexity, discrete variables and
multiple optima., Identification of the global optimum for
problems involving more than just few variables can be very
difficult, Experience has shown, however, that these
problems often have many inequality constraints which are
active, i.e., satisfied as strict equalities at the optimum,.
Moreover due to modeling practices, it is not unusual to

have a constraint-bound optimum, i,e. the number of active

constraints to equal the number of design variables [1]. A
reason for this widespread constraint activity is an
observed frequent property of engineering design problems,
namely to have the objective and constraint functions
monotonic with respect to some or all the design variables.

This observation led to the development of monotcnicity

analysis, a methodology for constraint activity
identification which has been used to study and solve
several desigh problems [1-9].

Although the motivation comes from engineering design,
monotonicity arguments may apply to mathematical
programming problems in general., Linear programs, for
example, have always constraint bound soluticens due to
monotonicity. Ncnlinear programs may be reduced
significantly using monotonicity arguments and thus making
subsequent numerical treatment easier and more reliable,
particularly when a global optimum is sought.

The present paper provides a mathematical background

for monotonicity properties that were used rather



informally in the previous engineering publications [1-9],
A particular type of monotonicity is defined in
multidimensional space, a theory on monotone inequalities
that can be used for model ménipulations is described and
two necessary conditions for optimality are presented. A
general application procedure with some examples is
included to demonstrate how the theory can be used. The
references cited above can provide further insight for

applications.

2. Monotonicity in Multidimensional Spaces., The classical

notion of monotonicity for a real-valued function f(x) of a
real variable x lends itself to a variety of
generalizations when we consider real-valued functions of
several variables. 1In this section we examine some of
these and indicate the one used in later sections.,

Given a function f: A ~ R, where A is a subset of the

real line R, we say that f is monotone nondecreasing, if

for all Xq1 X5 in A,

x, < x implies  f(x,) < f(x,) (1)

1 2
or equivalently

(xy=x,) (f(x,) - £(x5)) > 0. (2)

1

We say that f is strictly nondecreasing or increasing, if f

is monotone nondecreasing and in addition f is one to one.
Consequently, for increasing functions conditions (1) and
(2) should be modified to have strict inequalities.

To generalize the above concepts to functions of
several variables, we introduce some notation: Let EP

denote the n-dimensional Euclidean space and E+n the



positive orthant of En, that is En+ = { x=(x1,...,xn) € En,

Xy >0, i=1,2,...,n }. Clearly E+n is a clesed convex cone

in En and gives rise to a partial ordering £ defined on R
by x < y if and only if, X; < Vi i=1,...,n; that is, x
y if and only if (y-x) € En+. In general, if C is a closed
convex cone in En, then C induces a partial ordering ¢ c
defined by x { y if and only if (y-x) e C.

Given a real valued function f on E” and a closed

convex cone C in En, we can define f to be C-monotone if

f(x1) £ f(x2) whenever (xz-x1) e C. Also, f is said to be

strictly C-monotone if f is C-menotone and one to one, that

is, (x2-x1) e C and x.'#x2 imply f(x1) < f(x2). It is to be
observed that we did not use the phrase "nondecreasing"
because the cone C might define an ordering which could
lead either to "nondecreasing" or "nonincreasing". For
example if n=1 and C = {x/x < 0} then (x,-x,) € C implies
X, < x, and if in this case f(x1) < f(xz), then we are led
to "nonincreasing" function concept. Another point of
interest is that, given any real-valued one to one function
f on E", we can define a partial order Lp inm E" as follows:
X, £¢ X, if and only if f(x1) < (xz). However, this
partial order need not be generated by a cone in the above
sense,

For a different notion of monotonicity we refer to
Minty [12] and Rockafellar [13].

Let us now define another concept of monotonicity that
we will use in the present discussion. Let X be an

arbitrary (finite or infinite) subset of E? and let Xi -

ixi/ there exist XqyeeesXi_ 11X, q9ee-X, With (x1,...,xn)e



X} that is, xi is the projection of X in the ith

coordinate. 1In most applications, X C En+. Given a real
valued function f on X, a point x € X and an integer i with

1 1< n, we shall say that f is increasing at x with
th

respect to the i coordinate, if for all y,z real with

(YH""’Y1-1’Y’Y1+1"“’Yn) e X and

(X1,...,xi_1,z,Yi+1,...,Yn) e X, y < z implies f(y) < f(z).
For convenience of noetation we shall write

(xi,z) E (x1,100,xi-1,z’ i+1700.’xn (]
Thus, f is increasing with respect to the ith coordinate

in X means that at each point x eX, if we fix all

th th

cocrdinates except the i one, then in the remaining i

variable, f is mcnotene increasing. We define f to be

th

decreasing with respect to the i~" coordinate if (-f) is

increasing in the ith coordinate., In summary,

DEFINITION 2.1. A function f is coordinatewise monotcne on

th

X with respect to (wrt) the i coordinate, if and only if

f is either increasing or decreasing wrt the ith

coordinate, -

Note that the above definition corresponds to strict
monotonicity.

If the projection Xi of X is open in E1, if f is
continuously differentiable on Xi and if f is increasing

wrt the ith

coordinate, then the partial derivative fi =
%f/axi is nonnegative at each point X ¢X, since the
partial derivative is defined in terms of the difference
quotients, each of which is positive. Conversely, if the
partial derivative ¥f/¥x; is positive at X e X (strictly

greater than zero), then f is increasing wrt the ith



coordinate at the point X.
Since the monetonicity of f may be in different

directions wrt different coordinates, we shall use the

th

superseript +(-) on the i coordinate to mean increasing

(decreasing). Thus, the notation f(x1+,x2',x30,xu) would
mean that f is increasing wrt the 1st coordinate,
decreasing wrt to the 2d, independent wrt the 3d and
undetermined wrt the 4th coordinate,

Note that the concept of coordinatewise monotonicity
is used also in the theory of generalized convexity of
composite functions (as in Mangasarian [10] and Avriel
(110).

Two functions, one increasing and the other decreasing
wrt a particular variable, are said to have opposite

monotonicity or to be monotonic in the opposite sense. Two

or more functions, all either increasing or decreasing, are

said to have the same monotonicity or to be monotcnic in

the same sense,

For a function of a single variable, strict
monctonicity means that the function is one to one and
hence invertible, It is of interest to note that the
corresponding inverse function (which obviously exists) is
also monotonic and in the same sense. We may view this as
an implicit function result. For example, givern an (one to
one) increasing function f(x), let F(x,y) denote f(x)-y so
that F(x,y)=0 is the same as f(x)=y. Then for each x there
is at most one y (which we shall denote by ¢0(x) such that
F(x,¢9(x))=0; in fact, %(x) = f(x) and clearly 9; and f

are monotonic in the same sense., Also, since f is one to



one, for each y in the range of f, there is at most one x
(which we shall denote by wo(y)) such that F(Wb(y),y)=0; in
fact Wo(y) = f'1(y) and clearly V¥, £=1 and f are all
menotonic in the same sense, It is to be noted that if we
have f(x*), then f(x)-y £ F(x",y”) and in this case both
¢éx) and Wo(y) are increasing functions. On the other
hand, if we have f(x™), then F(x™,y”) and in this case both
¢0(x) and wo(y) are decreasing functions,

We shall now state and prove a theorem which shows
that the above comments are true in a more general setting.
THEOREM 2.1. Let R be the set of real numbers and let X,
Y, S denote (finite or infinite) subsets of R. Let
F: XxY*S be a real-valued function (coordinatewise)
monotone on XxY. Then, for each s € S, there exists
monotone functions ¢§(x) and w§<y) (alternatively written
as ¢(s;x) and ¥(s;y) such that F(x,0(s;x)) = F(V(s;y),y) =
5, with the understanding that these equalities hold for
all x in the domain of ¢§(.)={x/ there is_a y with
F(x,y)=s} and for all y in the domain of W;(.).
Furthermore, if F(x,y) is mcnotonic in the same (opposite)
sense wrt x and y then the functions ¢(s;x) and V(s;y) are
both decreasing (increasing).

PROOF. For convenience of notation and without loss of
generality, let 5=0 € S. For a fixed x € X, the function
F(x,y) is monotonic wrt y (and one to one) and thus there

is at most one value of y, denoted by 9o(x) such that

F(Y,¢b(x)) = 0, Thus-¢0(x) is a function of x with domain
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{x € X / there is a y such that F(x,y)=0}. Reversing the
roles of x and y we obtain a function wo(y) such that
F(wo(y),y)zo with domain {ye Y / there is an x such that
F(x,y)=0}

For the second part of the theorem, we assume F(x+,y+)
and take Xq1%5 to be any two elements from the domain of ¢0
with x, < x.. Let X, :db(x1) and Y, =db(y2) so that

1 2

F(x,,y,)=0 and F(x )20. We wish to show that y, > y,,

2'92
i.e. ¢0 is decreasing wrt x. Assuming Yq £ Yo and since F
is increasing wrt y (for fixed x), we get F(xz,y1) <
F(x2,y2) = F(x1,y1). But since F is increasing wrt x (for
fixed y) and since X, < x5, we get F(x1,y1) < F(xz,y1), a

contradiction, Hence we must have Y4 > You i.e. X, < Xy

implies ¢O(x1) >db(x2), or ¢,is increasing wrt x.

Reversing the roles of x and y we obtain that wo(y) is
decreasing wrt y. Next let us assume F(x ,y’). As before,
let Xy < X, and yq = ¢0(x1), y, = ¢O(x2). We observe again

that assuming y, > y, leads to F(x,,y,) > F(x ) and

1192
since F(x1,y1)‘= F(xz,y2) this implies F(xz,yz) > F(x1,y2)

) < F(x ) obtained from x, < x

2:¥2 11Y2 15 %2
and F decreasing wrt x. Thus, when F is monotonic in the

which contradicts F(x

opposite sense wrt x and y, x,<x, implies y4<y, and ¢0(x)
is inereasing wrt x. Similarly wo(y) is increasing wrt y.
This completes the proof,

REMARK 2.1. The main property of order in R that we needed
in the abcve proof is that the set R is totally ordered
under <, Thus, for Y, 4 Yy, wWe have either Y, < Y, Or ¥, <

Yqe The above theorem is valid for any totally ordered set
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Theorem 2.1 can be generalized easily to functions of
several variables to get the following
PROPOSITION 2.1. Let )(i C R, i=1,...,n be n subsets
(finite or infinite) of R and let Xz{x/xz(x1,...,xn), X; €
X5 i=1,...,n}. Let F: X > R be (coordinatewise) monotone
on X. Then, for each s in the range of F and for each
i=1,...,n there exists a function ¢(i,§;xi') of the
'

1

)

variable xi'z(x1,...,xi_1,xi+1,..},xn) such that ¢(i,s;x
is (coordinatewise) monotone wrt xi'. Furthermore, for 1
j < nand i¥j, if F is monotone in the same (opposite)
sense wrt X4 and xj, then ¢(i,s;xi') is decreasing
(increasing) wrt xj.
REMARK 2.2. 1In all the above considerations, nc assumption
is made of continuity, nor differentiablity and in fact the

domains of the functions need not be infinite so that the

above results can be stated in terms of sequences,

3. Monotone Inequalities. In this section we consider

inequalities involving monotone functions. For a
discussion of linear iﬁequalities in the context of
optimization we refer to Mickle and Sze [14] and Shefi
[15]. Here we consider real-valued functions f(x) which are

@ the set X

(coordinatewise) monotone on some subset X c¢f E+
being finite or infinite. Following a design practice
stemming from geometric programming we shall consider

inequalities written in the normalized form f(x) < 1.

An inequality is said to be tight at a point x if the



1

inequality is satisfied as an equality at x. Thus an
inequality f(x) < 1 is tight at x if f(x)=1. If f is
coordinatewise monotone, then by definition f is one to one
and thus there can be at most one solution for the equation
f(x)=1 and so there can be at most one peint x X where
f(x) < 1 is tight. An inequality is said te be redﬁndant
if it is not tight at any point. Thus f(x) £ 1is
redundant if the equation f(x)=1 has no real solutions.

An inequality of the form t L aort> a, where a is a

fixed real number, is called a simple bound on the (real)

variable t. When a simple bound is written in normalized

1

form t'1a £ 1or ta' <1 it is referred to as a simple

inequality.

In the following we shall consider mainly normalized

inequalities of the form f(x) < 1. A normalized inequality

is called monotone wrt a coordinate x; if the function f(x)
is (coordinatewise) monotone wrt X;. Without loss of
generality, in the statements involving a monotone function
f we can assume that f is monotone increasing wrt any

particular Xie In fact, if f is not increasing wrt X

then f must be decreasing wrt Xiy SO that if we rewrite f

1

using Lhe reciprocal xif instead of %;, We can obiain a

)
function f which is increasing wrt the new variable
! -1
Xg =X5 .
The following theorem shows that a monotone
inequality, however complicated its algebraic form is
equivalent to a simple inequality.

THEOREM 3.1. Every nonredundant increasing inequality in
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one variable can be reduced to a simple inequality
providing a simple upper bound on the variable.
PROOF. According to the above assumptions the inequality
is of the form f(x*) < 1. Since the inequality is not
redundant, there exists a (single) point x such that f(x)=1
and f(x) < f(X). But then x < X, since otherwise x > x and
£(x*) would imply f(x) > f(X)=1, a contradiction. Thus x <
X, or xx | < 1.
REMARK 3.1. Clearly f(x*) < 1 implies an upper bound on x,
while f(x™) < 1 implies a lower bound on x.
REMARK 3.2. THe above theorem relies on the fact that < is
a total order on the real line so that if x £ x, then x >

0

X Since coordinatewise ordering in the n-dimensional

0°
Euclidean space is only a partial order, the above theorem
does not hold for inequalities with several variables,
However we can use the argument above to conclude the
following:

PROPOSITION 3.1, If f(x) < 1 for all x in X, the domain of
f, with f increasing wrt each coordinate,.and f(x)=1 for
some X ¢ X, then x is a maximal element in X wrt the
coordinatewise ordering; that is, for each x € X, if X4 2
x; for each i, then X=X,

REMARK 3.3. By suitably modifying the definition of
partial order on Rn, the above proposition on the existence
of maximal element X can be proved for functions which are
coordinatewise monotone, even if monotonicity may not be in

the same sense wrt all the coordinates.

We shall now use the above observations on the
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existence of maximal elements to derive some important
results for simplification of systems of inequalities,
THEOREM 3.2. Let f1,...,fn be n given increasing functions
with a common domain DC R. Let F, = {x/f,(x) < 15 11K
n} and let there exist an ;i €F; such that fi(;i) = 1, Let
F:Q F; be nonemply., If ;1""’;n are all distinct, then
the following twe statements are equivalent:

(a) For some i, with 1 < i, < n, x, is the lowest value

cf the numbers XqseoesXpo
(b) For some iy with 1 < i, < n, x;, € F and for each xe¢
0

F, f. (x) <1 and f,(x) < 1 for each i ¥ 1i,.

10 - 1 0
PROOF., (a) implies (b): Since each fi(x) is increasing
wrt x, we have from theorem 3.1 that Yi is the maximum of
F, so that, since F C F; we have x ¢ ii for each x € F and

each i. But since Yi are all distinect and ;i is the
0
locwest of them, we obtain that Yi is the lowest upper

0
X,

bound of F, i.e. x < X; and x < x, for ifi,. But then,

0
since fi is increasing (and one to one) we get for all x¢

F, £,(x) < fi(xi) or fi(x) < 1 for i¥i

o While £y (x) <1,

Also, X, € F because for each i, x, < x, and as such,
iy ig i

(b) implies (a): For all x€F let fi(x) < 1 for i£10 and
£, (x) < 1. Also, for the same index i

0
for some i;!iO we have Xy < x

o’

let x. € F. If
. _ L) _
, then fi(xi) < fi(xio) or 1

io
< £y (X; ) which contradicts the assumption that x; € FCF,
0

=z {x/fi(i) < 1}. This completes the proof.
REMARK 3.4, 1In design optimization it is important to

identify the design requirements which are critical at the
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optimum, A critical requirement corresponds te an
inequality constraint which is active, i.e., one whose
presence defines the location of the optimal point. Usually
an active inequality constraint is tight at the optimum,
The above theorem 3.2 states that in a set of increasing
inequalities, the active ene has the smallest root for the
corresponding (tight) equation. From a practical standpoint
this is useful in eliminating several inactive constraints
in a problem with monotone inequality constraints. One
should notice the distinction between redundant and
inactive: redundant inequalities are never tight, while
inactive inequalities are not tight at the optimal point
though they may be tight at some other points.

Inactive constraints can be ignored in locating an
optimal point. This leads naturally to the concept of
dominance similar to that studied by Wilde [2].

DEFINITION 3.1. An inequality f(x) < 1, xe R" is dominant
over the inequality g(x) < 1, if and only if f(x) < 1
implies g(x) < 1 for all x. -

LEMMA 3.1. Let f(x) < 1 be dominant over g(x) < 1 and let
f and g be both increasing wrt xeR. Let f(xf) = 1 and g(xg)

= 1 for x., x,ER. Then x. < x

g g’

PROOF. This follows immediately from Theorem 3.1 which
shows that X is an upper bound for G = {x/g(x) < 1} and Xgp €
G because f(x) = 1 implies g(x) < 1 by dominance.

REMARK 3.5. In an optimization problem we can omit all
nondominant constraints from consideration,

We shall now return to inequalities with several



15
variables, In Proposition 3.1 we obtained the existence of
maximal elements for such inequalities., We shall now
consider bounds in a different sense.
DEFINITION 3.2. An inequality f(x) < 1 is said to be
partially simple wrt X;, if and only if f(x1,...,xn) can be
written as xig(x1,...,xi_1,xi+1,...,xn).

The following theorem shows how to simplify the
constraint set using the fact that a tight multivariable
inequality represents a hypersurface and thus there are
infinite solutiens for the corresponding equation. For

brevity, we shall consider a function of two variables

f(x,y).

THEOREM 3.3. Let £(x*,y*) and f(x ,y,) = 1. Then, for any
(x,y) such that f(x,y) < 1, we have x > X, implies y <
Yo and y 2y, implies x < x,.

PROOF. Let (x,y) be such that f(x,y) < 1 and let x > Xy
If possible let y > Yoo Then, since f is ipcreasing wrt
both x and y, we have f(x,y) > f(xO,y) > f(xo,yo) =1, a

contradiction., Thus, y < Yo+ Similar arguments show that

y 2 Yo implies x £ Xy

REMARK 3.6. Using the above theorem, a simple inequality
of the form x < Xy can be combined with another monctonic
inequality of the form f(x™,y") < 1 to yield another

simple inequality. More precisely, let f(x,y) be monotone
decreasing wrt x and y and let f(x,y) < 1 for all x > 0,

y > 0, Let there exist some x, > 0, Yo > 0 such that

0
f(xy,¥q) = 1. Then, the pair of inequalities x ¢ x, and
f(x,y) < 1 is equivalent to the pair mco'1 < 1 and yoy-1 <
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1. Similarly, if f(x",y") £ 1 and x < x, with f(xo,yo) =

0
1, then y < y,. In fact, if y > y, then f(x,y) > £(xy,y)>
f(xo,yo) = 1, a contradiction. These observations may help
significantly the simplification of a system of nonlinear
monctone inequalities [5].

REMARK 3.7. If a nonredundant inequality is written in two
different equivalent ways, such as f(x) < 1 and g(x) < 1
with f and g both monotone (and dominant over each other),
then f and g must have the same monotonicity. In fact, if

X g and xg are such that f(xf) = 1, g(xg) = 1 and f(x+),
then f(x) < 1 is equivalent to x X e while if g is
decreasing wrt x, then g(x) < 1 is equivalent to x > Xg e
Since x £ X e and x > xg cannot be equivalent, we conclude
that g must be increasing, if f is increasing. Similarly
for f,g decreasing.

REMARK 3.8. Monotonicity of normalized inequalities is
affected by the algebraic manipulations that convert the
original inequality to a normalized one. Given two
nonredundant equivalent inequalities f(x) < 1 and g(x) < 1,
the fact that f is mcnotone does not imply that g has to be
monotone. However, if both are monctone, then by remark 3.7
they must be meocnotonic in the same sense, This observation
has direct implication on the modeling of constraints that
arise from physical considerations in design optimization
problems. Careless algebraic manipulations may lead to
models with lack of monotonicity or even with nonsimply

connected feasible domains, while the original physics of

the prcblem indicate otherwise,
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The next theorem is useful when an active inequality
constraint that cannot be solved explicitly for a
particular variable is to be used for eliminating this
variable from the problem while retaining existing
monotonicities.
THEOREM 3.4, Every monotone nonredundant inequality can be
transformed into a partially simple one wrt each monoctonic
variable with the original monotonicities preserved.
PROOF. For convenience of notation, let us consider an
inequality with only two variables such as f(x*,y") £ 1. We
need to show that f(x+,y+) £ 1 is equivalent to xg(y") < 1.
We assume as usual that the domain of f is {(x,y)/x>0,
y>0}. Since f(x,y) < 1 is assumed to be nonredundant, there
exist x

> 0, y5 > 0 such that f(x ) = 1. Then by

0 050
Theorem 2.1, there exists a function Y(y~) such that

xo(lp(yo))"1 = 1. Since x, > 0, obviously w(yo) > 0. Let us
now consider x > 0, y > 0 and the prcduct x(w(y))-1. Since

f is increasing wrt x and y and f(x ) = 1 while f(x,y) <

0'Y0
1 for all x > 0, y > 0, we must have x < X and y £ Yoo
Since y(y™), we get y(y) > ¥(y,) > 0 and (p(y))] <
(307", so that x(u(y)™1 < x, (wy N7 = 1. Tt suffices
to take g(y) = (',ll(y))-1 to have g(y") and complete the

proof,

i, Necessary Conditions at Optimality. In the present

section we shall obtain two necessary conditions for
mathematical programs that possess certain menotonicity

properties, Principles exploiting systematically monctone
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properties of functions in the present context were first
developed by Wilde [2,3]. The major thrust here is that we
do not assume continuity or differentiability of the
constraint functions and thus the results are valid for
descrete problems as well, where the independent variables
may take descrete values, a situation very common in
engineering design,

Let us pose the following nonlinear monotone
programming problem in normalized form

Problem P1

minimize folx) , xeX _C_'R+n

subject to fi(x) <1, i=1,...,m

where fo,f ,...,fm are all coordinatewise monotone and

1
where R+n denotes the strict positive orthant of the

n-dimensional Euclidean space, so that for xeX, we have x =
(x1,...,xn) and X; >0 for 1 < i { n. In the theorems below
we assume that Problem P1 is feasible and it has an optimal
solution.

THEOREM 4,1, Let all the constraints in Problem P1 be
nonredundant. If in Problem P1 the objective function fO is
monotone wrt X then there exists at least one active
constraint with cppesite monotonicity to fo wrt Xy
PROCF. For convenience of notation, let i = 1 and assume
that fo is decreasing wrt Xy Then the value of fO can be

indefinitely decreased by increasing values of x unless

19
X, is bounded above and this upper bound can be found only

if there is an index j with fj increasing wrt x so that

1?

fj(x) < 1 would lead to an upper bound on X, of the form X,
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< x1J (see Remark 3.1). If on the other hand fo is
increasing wrt Xq9 then there is some j, 1 < j £ m such

that fj is decreasing wrt x,. Otherwise all fj are

1
increasing wrt X, and thus fj(x) £ 1 leads tec an upper
bound on L) for each j, so that we obtain zero to be the
only lower bound for X, and fo can be lowered indefinitely

by getting x, closer and closer to zero. Since nc vector

1
with a zero compenent can be a valid optimal solution, we
get a contradiction to the existence of optimal solution.
We conclude that there is at least one fj which is
decreasing wrt Xqe
REMARK 4.1. The above theorem can be applied to any
program that has an objective monotonic wrt one or more
variables in order to test whether a bounded (optimal)
solution exists. The presence cf a nonmonotonic constraint
would generally satisfy boundedness.

COROLLARY 4.1, 1If the objective fo is monotone wrt X
then the dominant inequality of the set of constraints with
opposite monotonicities is active.

PROOF. The dominant constraint provides the glb or 1lub on
xi (depending on whether the constraint is decreasing or
increasing).

Now we pose the following Mayer type problem in

normalized form

Problem P2

C e n
minimize fo(x) , xeX <R,
subject to fi(x,u) <1, 1=1,...,p

-

where x = (X1,---,Xn); X; >0 for 1 i< nand u-=
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(uyyeee,up), uj > 0 for 1 < j< m.
THEOREM 4.2, Let there be some j, 1 < j < m, such that
fi(x,u) is monotone wrt uj for all i, Let us assume that
Problem P2 has a solution (x,u). Then there exists an
optimal solution (x*,u*) of Problem P2 such that the
following holds: Either all the constraints fi(;)G3 <1
are inactive, or there is a pair of constraints with
opposite monotonicities, both of which are active at
(x ,u ).
PROOF. (i) Let us assume that fi(uj+) for all i, (The
argument is the same for fi(uj_) for all i). Suppose (x,u)
is an optimal solution for which fi £ 1 is active, so that

0

- - *
f. (x,u) = 1, for some i,. Then, we choose u such that 0 <

,* - ‘*.,-- . . . R :
uy < us and u; = u; for i # j. Since fi(uj ) for all i,

- % - -
we get f.(x,u) < f.(x,u) <1 for all i and the value of

the objective fo(x), being independent of u, is same for

- - - %
(x,u) and (x,u ). Thus, all constraints are inactive for

(x,u*), which is also optimal,

(ii) By renumbering if necessary, let us assume that
, are decreasing wrt U and fk+1""’fp are
increasing wrt uy for 1 < k < p. Let £i(x,u) <1 be

f1’...,f

equivalent to Uy 2 913 for 1 <1 < k and to U < ¢ij for

k#+1 < i < p. In fact, Eij = ¢i(Y,u1,...,uj_1,uj+1,...,um).

Let us alsc assume without loss of generality that'$ij >

$ijfor 1 <i< kand ¢ 9., for kel < i < p. Then the

. <
Pl — 1]
above inequalities imply

d.. < u. < ,
913 $uy L0y

Let us now consider two cases. Case (a): ¢

15 & ¢pj' Then
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* — * — *
there is some “j such that ¢1j < “j < ¢pj' We choose u

T - %
so that upo= oy for i £ j. Then (x,u ) is optimal and at

15 * ¢pj' In

this case the constraints f, £ 1 and fp £ 1 are both active

this point all fi are inactive. Case (b): ¢

at (x,u) and they have opposite monotonicities wrt uj .
REMARK 4.2. 1In theorem 4,2 no assumption of
differentiability was made. If the functions fi, 0 i«
p,are differentiable and Xuhn-Tucker conditions are
applicable, then we can say that for every optimal solution
(x*,u*) the conclusion of the theorem holds. Related
results can be found in Wilde [2,3] for single-term
continuous, differentiable functions and in Papalambros [7]
fer posynomials.

REMARK 4.3. In view of theorem 4.2 we can simplify the
process of locating optimal solutions--if any one solution
would be acceptable. For example, in the case where there
exists a control variable (that is a variable wrt which the
objective is independent) such that all constraints
involving this variable are of the same monotonicity wrt

it, all these constraints can be ignored.

5. Suggested Procedure. There are certain steps suggested

by the discussion in the previous sections which can be
taken in the study of programs in general. They are
particularly important for problems arising from physical
applications where the adequacy and completeness of the

optimization model are not known with certainty. Here we
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give some suggestions that have been found very useful in
practical applications,

1. Since a given inequality may be equivalent to several
normalized forms, we choose, when possible, that form where
the corresponding function is monotone. Thus, for example,
if £,(x) <1 and f,(x) < 1 are equivalent (dominant over
each other) and if f1(x) is monotone wrt more coordinates
than f,(x), then we prefer the representation £f,(x) <1,

2. We look for simple inequalities of the form x;a; <1
kand use these to simplify, when possible, other monotone
inequalities, in a manner described in section 3. Thus, for
example, if xa < 1 and f,(x7,y") < 1, then we can replace
f1(x,y) £ 1 by a simple inequality of the form yb < 1,

3. Negative variables should be replaced by new variables
with opposite sign. In a problem where variables may take
both positive and negative values we may transform them
into strictly positive ones by a change of datum, When this
is not possible, we can consider several subproblems in
each of which, the variables all keep the same sign. The
globally optimal solution can be then found by comparing

the solutions of the subproblems. This case decomposition

can be applied also to problems with nonmonotonic functions
by examining subproblems defined over regions of the

feasible space, where monotonicities may be determined [6].

6. Examples, In this section we apply the ideas of
monotonicity analysis to some simple examples of the type

used to test numerical algorithms. Applications to
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engineering design problems can be found in the references
given in the introduction.

EXAMPLE 1 (F. J. Gould [18] in Lootsma [16]). The
objective function is nonconvex and the constraint region
is a narrow, half-moon shaped valley of the type described
in Fletcher and McCann [17]. The normalized problem is

minimize f(x1,x ) = (x1-10)3 + (x,-20)3

2 2
subject to

Ry(x,7) = 13x,70 <

Ry(xy,%,) = 1000(x,-5)% & (x,-5)217" ¢ 1

Ry(xy,xy) = (1/82.81)1(x,-6)° + (x,-5)%1 < 1
with X5 20

Tc determine a smaller feasible domain we observe that

(x7-6)% + (x,-5)% = (x,-5) + (x,-5)% & (11-2x,)
and from constraint R, and R3 we see that

100 < (x1-5)2 + (x2—5)2 £ 82.81 - (11-2x,)
cr

X, 2 14.095 (3)
Since any feasible solution must satisfy (3), constraint R1
is redundant. From constraint R3 we have

(x,-5)% < 82.81 - | x,-6]2 < 82.81 - | 14.095-5|2
since the right-hand side is strictly decreasing wrt X,
(this being true because of (3)). Therefore

0.8429 g-xz £ 9.1569 (4)
To determine the monctonicities we observe that a
difficulty arises because the square terms in parentheses
in the problem statemént can be either increasing or

decreasing depending on the sign of the quantity in
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parentheses. But since x, > 14,095 all terms containing x

1
are positive, This is not true for x

1

5 so we circumvent

this difficulty by decomposing the problem into Case A with

0.8429 < x, < 5 and Case B with 5 < x, < 9.1569.

2
Case A, We rewrite the problem as follows:

minimize f(x1+, x, %) = |x1-10!3-|20-x213

2
subject to
- + 2 24-1
Ry(x,7,x,") = 100[|x1-5' + [5-%,1%177 < 1
- 2
Ry(xy*%,7) = (1/B2.81)01%,-6% + [5-x,]%1 < 1

and allowable range

14.095 ¢ x, and  0.8429 < Xy

The objective is increasing wrt both x

<5 (5)

1 and x2. Constraint

R2 being the only one with opposite monotonicity wrt X,

, X -ty g . _ +
must be active. Then R2(x.| )X, ) = 1 implies x, = ¢2(x2 )

and thus elimination of X4 from the problem gives an

cbjective function increasing wrt x Then R, must be

2° 3
active (whether it is monotonic or not) if the problem has

a solution., Thus the optimum is given by the simultaneocus

activity of R2 and R3 and 1is

* * *
' = -6961.8, x, = 14.095, x,

We note that the allowable range (5) is equivalent to the

= 0.8429 (6)

two constraints R R, and for f(x1+,x2+) the minimum is at

2 73

the lower bounds for both x., and x,.

1 2
Case B. The problem is the same as in case A but with

5 < X5 € 9.1569. Again R, must be active, but R, cannot be

2 3
simultaneously active since solution (6) resulting from

R2=R3=1 gives x,<5, We observe that now R2(x1',x2’)=1

implies X,= ¢2(x1—) so the objective may become
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nonmenoetonic. This, however, is irrelevant since the
greatest lower bound on any soclution in case B is

£ p. = (14.095-10)3 4+ (5-20)3 = -3306.3 (7)
Clearly, since fl.b. > f* no better solution than (6) can
be obtained in case B and the global optimum is (6).
EXAMPLE 2. (Collatz and Wetterling, cited by Eckhardt [19]

in Lootsma [16]). The problem in normalized ferm is as

follows:
minimize f(x1',x2°) = -2x1(24-x1) - xz(uo-xz)
subject to
Ry (x, ", x,%) = 0,125 Xy + 0,125 x, < 1
Rz(x1+,x20) = 0.1667 x, < 1
Ry(xy",x,%) = 0.0556 x, + 0.1667 X, <1
and X, 2 0, X5 2 0.
We note that since f is decreasing wrt both x, and x the

1 2’
optimum would have X, > 0, X5 > 0 unless this is the only

feasible solution, which is clearly not true. Next we

observe that, because of the monotonicity-of f wrt x at

2!
least one of the constraints R1 and R3 must be active. To

obtain a deominance condition we observe that

R, = (0,125 x

3 = + 0.125 X2) + (0.0417 x., - 0.0694 x1)

1
+ (0.0417 x

2

1 5 R1 + d (8)

so that if d < 0, R1 is dominant and if d > 0, R

m

= R - 0.0694 X1)

3 is
dominant. This leads to two cases:

Case A. The condition d < 0 holds and it corresponds to an
added constraint R3', while R3 is redundant. Since R1 is
active, it can be used to eliminate x2 and the resulting

problem is
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minimize f = 3x12-24xl-256

subject to

R, = x,/6 <1

2
' -1

R3 = 3x1

1
which has an interior minimum with R2’ R3 inactive, i.e.

* *
= 4, x2 = 4 (9)

<1

*
f = -304, Xq

Case B, The condition d > 0 holds corresponding to an

added constraint R1'
1

' -
Ry + 1.667 Xe%X5 L1 (10)

while R1 is redundant and R3

activity of R3 and R2 leads to a violation of R1', while

is active, Simultaneous

simultaneous activity of R3 and R1' leads to Xy = 3 and

X, =5, giving f=-301. Thus the global optimum is given by

2

(9). The minimum reported in the original reference above is
f=-292, xl=6, x2=2. This is in fact a local (boundary) minimum

for case A above.

EXAMPLE 3 (Op. cit, [16,19]). The normalized problem is

minimize f(x,7) = -X,

subject to
R1(x1+,x2') = xe"1 exp(x,) < 1
R2(x2',x3') = x‘,)"1 exp(x,) <1
Ra(x™) = 001 x5 <1

and Xq9 X5y x3 >0

Again we observe that only strictly positive values of the
variables need be considered., Successive application of
the two theorems in section 4 shows that all constraints

must be active and the optimum is given by
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* 10

X3 =
* *

X, = 1n x3 = 1In 10 = 2,303 (11)
* *

x1 = 1n X, = lIn 2,303 = 0.834

The same problem is given also with the objective (min)

f = 0.2 x3- 0.8 X, and the same constraints. This is more

difficult. Constraints R1

objective becomes f = 0,2(x

and R3 are again active and the

3 - 4 1n(1ln x3)) which is

nonmonotonic with an interior minimum., 1In fact, for x_,=10

3

we get f =6,663 while for x,=2, f=3.466, so R, is

3

definitely inactive. The optimal value of x

3

3 can be found
by an one-dimensional search. Here monctonicity cannot
solve the entire problem but reduces it to a simpler one.
EXAMPLE 4 (Pierre [20]). Now we examine a problem where
the variables are unrestricted in sign., In such cases we
may divide the entire space into regions, apply the
theorems in each region and at the end compare the
different extrema obtained in each region. It may cccur,
as in the present example, that in a region, extremum may
not exist; in such a case, that particular region does not
contribute in locating the global cptimum.

The problem is to find the maximum of f cn a sphere,
subject to remaining on one side of a plane that passes

through the sphere:

maximize f = x

2
subject to
) 2 2 +
R1. Xyo ¥ Xo© #+ x3 = 1
R2 2x2 - X, <1
where Xx are coordinates with the origin coinciding
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with the center of the sphere. We note that in dealing

with equalities, such as R, above, there are two specific

1
considerations: (i) whether the constraint can be
automaticaly satisfied by a judicious choice of the value
of a free (control) variable, which is not constrained in
any other way; (ii) whether the equality can be replaced by
an inequality, with the understanding that the (new)
inequality will have to be active at the optimum, the
direction of the inequality being determined by

monotonicity rules.

To illustrate the above pcint in the present example

we observe that the cnly constraint on x3 is R1 and thus
for given Xq1 X, we can always satisfy R1 by choosing
X3 =+ (1-x.l2—x22)1/2 (clearly it is always x12+x22§1).

Thus the problem can be simplified by deleting R1 and

1

replacing it by R1 as follows:

maximize £ = x

2
subject to
! 2 2
R1 x1 + x2 <1
RZ: 2x2 - x1 <1

In this new problem at least one constraint must be active

because the objective is mcnotonic wrt x Moreover, since

20

the objective is independent of X, there must be two active

censtraints with oppcsite monotonicities wrt Xqe Thus,
1

both R, and R. are active. Simultaneous solution of

2

x12 + x22 = 1 and 2%, = X, = 1 gives (x1, x2) = (3/5,4/5)

or (-1,0). Obviously, (3/5, 4/5) yields a larger value for

the objective and the optimal sclution 1is then
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(x1,x2,x3) = (3/5,4/5,0). Note that we obtained the value

o 2 2\1/2
of x3 as (1-x1 -X, ) = 0,

The monotonicity rules have been applied above without

regard to the fact that x X, are unrestricted in sign

10 %20 X3
(while the theorems assumed nonnegativity of the

variables). However, if we consider the above problem
divided into several cases, then in each case--except
one--we would observe that there is no extremum, In fact,

= 0, (ii) x3
(iii) x3<0. In case (i) with x3=0 we have x1 + x22 = 1,

Thus, if x, > 0, then x, < (1+x1)/2 implies that for a

fixed X, the maximum of the objective f is X5
2 + x22 = 1 gives x12 + [(1+x1)/2]2 =1 or

- 3 =0 or,Xx

let us consider first three cases: (i) x > 0,

3

= (1+X1)/2 so

that x1

5x12 + 2X £ 3/5 or -1,

1 1

Since X, > 0, the optimal solution in the region X,

= 0 is (3/5, 4/5, 0). 1In the region X, <0, Xy = 0,

5 5 < 1/2, then X, can be made

arbitrarily close to 1/2 and the supremum, namely 1/2, is

>0,

X

3

since x, £ (1+x1)/2 implies x

never attained. Thus in case (i) the only optimal solution
is (3/5, /5, 0). Next we consider case (ii) with X3 > 0.
We can apply the theorems as stated. Since the objective

is independent of x3, we can always satisfy it; for

example, by choosing X3 = & (1—x12—x22)1/2. Thus, the
problem simplifies to maximizing X5 subject to 2x2 - X, <1
2 2

and the inactive x, + x,© < 1. We examine the subcase
where Xy 2 0, X5 > 0. Applying monotonicity arguments we
see that since f is independent of X, and the second

constraint is inactive, so should be the first constraint,
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i.e. 2x2 - x1 < 1. But a monotone objective with no active
constraints cannot have an optimum. So no extremum exists

in the subcase x3 > 0, X, 2
with X, < 0, X5 <0, X3 <{ 0 can be handled ir entirely the

20, x, > 0. All other cases
same manner yielding no optimal soclution., We conclude that
the glcbal optimum is the one found in case (i).
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