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An arbitrary function in the eigenfunction space of some quantum-mechanical Hamiltonian may be 
thought to represent the initial configuration ifi (q,O) of a nonstationary state. The system develops in time 
according to 

~ (-i/)k 
ifi(q,t) =exp( -itJC)ifi(q,O) = 2:--JCkifi(q,O). 

/:-0 k! 

Defining F(t)===(ifi(q,O) , ifi(q,t», and h~(ifi(q,O), JCkifi(q,O», and taking the Fourier transform 

G(w) = L:dt exp( -iwt)F(t), 

we obtain 

In terms of the formal expansion in the energy eingenfunctions 

the Fourier transform represents 
~ 

G(w) =2".2: 1 Cn 121l(w+wn) + 2".1 c( -W) 1
2, 

(a) 

(b) 

which exhibits, in principle, the entire eigenvalue spectrum. In this paper, a direct method of calculating 
eigenvalue spectra, based on the foregoing principle, is proposed. Two modifications are required for com­
putational practicability: (i) use of a finite representation for the delta function and truncation of the 
summation (a) j (ii) replacement of the integrals hk by hk (q')===JCkifi (q,O) J....'. The modified spectral func­
tion is taken to be 

N "k(q') 
GN(T,W,q') =2". 2: _-X.(k) (w), 

k-O k! 

with x.(w)=sinTw/".w. The sequence GN(T,W,q') is shown to converge as N->oo if in the Expansion (b) 
the coefficients en and c(w) decrease with w as exp( -w/>.) or faster. Assuming convergence, the spectral 
function represents a broadened eigenvalue spectrum. 

1. PRINCIPLE OF THE METHOD 

I N this paper a nonperturbative method is proposed 
for direct calculation of the discrete energy eigen­

values of quantum-mechanical systems. The stationary 
Schrodinger equation, 

obeys the analyticity, symmetry, and boundary condi­
tions imposed on the eigenfunctions in (1) may be 
regarded as the initial configuration 1/t(q, 0) of a non­
stationary state. The formal solution of (2) with this 
initial condition is given by 

(JC-Wn)cf>n(q) =0 

(JC-w)cf>(w, q) =0 

n=O 1 ... 00) " , 
w~O 

, (1) 

is unique among eigenvalue problems in that the Hamil­
tonian operator also governs the time development of 
a quantum-mechanical system through the second 
Schrodinger equation 

JC1/t(q, t) = ia1/t(q, t)/at. (2) 

co (-il)k 
1/t(q, t) = exp( -itJC)1/t(q, 0) = L--'JCk1/t(q, 0). (3) 

k-o k! 

This form of the evolution operator is valid for a time­
independent Hamiltonian. The wavefunction is, in 
principle, determined for all past and future times. 
The result can also be expressed in terms of an auto­
correlation function 

00 (-it)k 
F(t) == (1/t(q, 0), 1/t(q, t) )= {;-k!-hk, (4) 

This fact is rarely applied, however, in connection with 
the eigenvalue problem (1). where hk is the kth energy moment 

An arbitrary function of the coordinates q which hk= (1/t(q, 0), JCkif;(q, 0) ). (5) 
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For scalar wavefunctions, the scalar products in (4) 
and (5) are, of course, simply integrals, e.g., 

A function if;(q, 0) conforming to the above restric­
tions may be written formally as a uniformly-conver­
gen t expansion in the eigenfunctions [q,,, (q), q, (w, q) J: 

if;(q, 0) = f,e"q,,,(q) + {X> dwe(w)q,(w, q), 
n~ 0 

(6) 

whence 

(7) 

and 

F(t) = f, I en 12 exp( -iwnt) + (CO dw 1 e(w) 12 exp( -iwt). 
n~ 10 

(8) 

We adhere throughout this paper to the convention 
that sums over k are computational, whereas sums over 
n (with the associated continuum) are formal. 

According to (8), the time development of the sys­
tem is governed by a Fourier superposition of waves 
with frequencies corresponding to the energy eigen­
values. Thus a nonstationary system displays, in con­
cept, its entire eigenvalue spectrum. This is more 
explicit in the Fourier transform of the autocorrelation 
function 

G(w) = L:dt exp( -iwt) F(t). (9) 

From the computational form (4) we obtain 

00 h" 
G(w) = 211" L: -lJ<k) (w), 

k~ k! 

which corresponds to the formal expansion 

(10) 

According to the last expression, G(w) consists of a 
row of delta functions plus a continuum beginning at 
w= O. The amplitudes depend on the expansion coeffi­
cients en, e(w) for if;(q, 0), but the positions of the 
delta functions are invariant. Different choices of 
if;(q, O)-which will be denoted as the spectral gen­
erating function-give, in principle, the same eigen­
value spectrum with different sets of amplitudes. 

As a simple illustration, consider a particle of spin 
t in a magnetic field. The Hamiltonian may be written 

X= _P.H(l 0), 
° -1 

(12) 

and the generating function chosen as 

(13) 

The energy moments (5) are then 

hk= (_p.H)k+(p.H)k. (14) 

Substituting in (10), we find 

G(w) = 211"[f,( _p.H)ko(k)(W) + f,(P.H)"O(k) (w)] 
k~ k! k=O k! 

= 211"[0 (w-p.H) +0 (w+p.H) ] 
(15) 

consistent with (11) and showing that the eigenvalues 
arew=±p.H. 

The preceding formalism can also be obtained with­
out time-dependent theory by defining 

F(z)=f,(-iz)\k. (16) 
k~ k! 

The Fourier transform, 

G(w) = L:dz exp( -iwz)F(z), 

is then identical to (9). The method can consequently 
be applied to other operators, replacing h" in (4) by, 
say, 

(17) 

where if;(q) is a function obeying the restrictions im­
posed upon the eigenfunctions of a. 

To develop a practical method for calculating eigen­
values, two modifications of the above are required: 
(i) truncation of the series for F(t), and (ii) replace­
ment of the integrals h" by quantities more accessible 
to computation. These are discussed in the following 
two sections. 

2. FINITE SUMMATION 

Computationally, F(t) is obtained from the infinite 
sum (4). If the series is truncated, however, the Fourier 
transform does not exist, except formally as a sum of 
delta-function derivatives. To adapt the formalism to 
the finite case we first define 

F(r, t) == {H(t+r) -H(t-r)} f,( -it)\k, (18) 
~ k! 

where H(x) is Heaviside's unit step function 

1
1, 

H(x) = 
0, 

x;::: ° 
(19) 

x<O 
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The Fourier transform of (18) is given by 

G(T, w)= L:dtexp(-iwt)F(T, t) 

= 1T dt exp( -iwt) F(t) = 271" t h\/k) (w), (20) 
-~ k=O k! 

having defined 
XT(W) ==sinTw/7I"w. (21) 

The formal interpretation of G(T, w) is obtained by 
substituting the expansion (7) for hk into (20): 

G(T, w) = 271" t ! Cn !2XT (W+Wn ) 
n=O 

+271" jCOdw'! c(w') !2X.(W+W'). (22) 
o 

The spectral function (22) derives from the eigenvalue 
spectrum (11) by broadening each delta function 
Cl (w+w') into a normalized slit-diffraction function 
x.(w+w'). Formally, (22) is obtained from (11) by 
the convolution integral 

G(r, w) = L:dw'x.(w-~')G(w')' (23) 

The sequence of slit functions for increasing r is a 
well known representation of the delta function 

lim(sinrw/7I"w) = Cl(w), (24) 

so that 
limG(r, w) =G(w), (25) 

as is also evident from the second integral in (20). 
A more direct way of obtaining (20) and (22) from 

(10) and (11) is suggested by the theory of general­
ized functions.1 The equality of (10) and (11) is 
maintained if the delta function is replaced by one 
of a sequence of functions which represents it, for 
example, the slit function according to (24). The 
Gaussian representation of the delta function 

. exp( -w2/2(J2) 
hm Cl(w) 
a .... O (271")!(J 

(26) 

(20') 

and 

G( ) =lcod , {exp[ - (w+w')2/2(J2]} ( ') 
(J, W -co w (271")tu G w . (23') 

The slit-function representation (24) is superior to the 
Gaussian representation (26) because the summation 
(20) converges more rapidly than (20').2 

The modified autocorrelation function (18) has been 
introduced in order that the Fourier transform exist 
term by term. We next define the truncated summation 

N (-it)k 
FN(r, t) == {H(t+r) -H(t-r)} t;-k!-hk (27) 

and its Fourier transform 

(28) 

Practical application of the formalism will depend 
largely on the convergence of the sequence GN (r, w), 
which is the subject of Sec. 4. 

3. MODIFICATION OF THE ENERGY MOMENTS 

For most dynamical systems of interest, the inte­
grations for hk [Eq. (5)] would present formidable 
computational difficulties. Furthermore, when the Ham­
iltonian contains singularities--e.g., inverse-power po­
tentials-higher energy moments usually diverge. For­
tunately, a simple alternative to the coefficients hk 
exists. Instead of taking the Fourier transform of the 
autocorrelation function F(t), one could take the trans­
form of ""(q, t) directly, restricting q to some fixed 
configuration point q' sufficiently distant from any 
singularity. Adhering as closely as possible to the orig­
inal notation, we define 

co (-it)k 
F(t, q') = (Cl(q-q'), ""(q', t»= t;-k!-hk(q'), (29) 

with 

hk(q') == (Cl(q-q') , JCk1f;(q, 0) )=JCk1f;(q, 0) ]q=oq" (30) 

The hk (q') are formally given by 

hk(q') = tCncf>n(q')wnk+jCO dwc(w)cf>(w, q')w", (31) 
n=O 0 

and the transform of (29) by 

G(w, q') = 271" tCncf>n(q') Cl(w+wn ) +271"c( -w)cf>(w, q'). 
n~O 

(32) 

An analogous relation applies in the truncated for­
malism 

(33) 

GN(r, w, q') incorporates both modifications mentioned 
at the end of Sec. 1 and should provide the most 
practical form for computation. Note that GN(r, w) 

1 M. J. Lighthill, Fourier Analysis and Generalized Functions 2 The author is indebted to R. G. Gordon for suggesting use of 
(Cambridge University Press, Cambridge, England, 1960). the slit function in this connection. 
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can be recovered from GN(r, w, q) by the scalar product 

<if;(q, 0), GN(r, w, q) )=GN(r, w). (34) 

In the limit N----too, the spectral function (33) is 
formally given by 

G(r, w, q') = 211' I:cnCPn(q'h,(w+wn) 
n9l 

+211'[Odw'C(w')cp(w', q'h,(w+w'). (35) 
o 

In contrast to the amplitudes 1 Cn 12, the CnCPn(q') are 
complex numbers. If the spectral-generating function 
if;(q,O) is real, however, the latter coefficients occur in 
degenerate sets as 

n'+d' 
L: CnCPn ( q') , 

n=n' 

which are real. These quantities can be either positive 
or negative. The spectral function (35) will conse­
quently exhibit both positive and negative peaks: 

One could, in principle, trace out an (unnormahzed) 
exact eigenfunction CPn(q) by observing the amplitude 
cnCPn (q') of some peak as a function of q'. N ormaliza­
tion would then give the expansion coefficient Cn. Its 
nearness to unity [for normalized if;(q, 0)] might be 
used as a criterion for testing an approximate eigen­
function. 

4. CONVERGENCE OF THE SPECTRAL FUNCTION 

We consider next the convergence properties of the 
sequence of spectral functions GN(r, w, q') [Eq. (33)] 
as N----too. These results also apply mutatis mutandis 
to the sequence GN(r, w) [Eq. (28)]. 

Example (i): the spectral-generating function is an 
eigenfunction of JC with the eigenvalue woo GN(r, w, q') 
is then given by 

N w k 

GN(r, w, q') = 27Tif;(q', 0) L:-:-:x
k
o
, .(k) (w) 

k9l • 

~27Tif;(q', Oh.(w+wo). (36) 

The sum (36) is simply a Taylor series expansion for 
x.(w+wo) about wo=O. Denoting by tJ.XN the remainder 
after the term k=N, i.e., 

N wok 
X.(w+wo) = L:-k,X,(k) (w) +tJ.XN, (37) 

k9l • 

we have by Lagrange's form for the Taylor series re­
mainder 

1 Wo IN 
1 tJ.xN-ll '::;N! 1 X.<N)(w) 1 max· (38) 

For even N, the maximum of 1 X.(N)(W) 1, at w=O, is 
rN+1/(N+ 1) 11'. The same formula applied to odd N 

is approximately correct, thus 

I Wo INrN+l 
ItJ.XN-ll ;5 (N+l)!1I" (39) 

The remainder approaches zero as N----too; thus the 
series (36) converges absolutely for all values of r. 

It is also of interest to consider how rapidly con­
vergence is attained. If we specify that the series in 
(37) represent x.(w+wo) with an error not exceeding 
0.001r/1I' at any value of w, rand N are related by 

(lwolr)N;50.001(N+l)!, (40) 

which, for large N, becomes 

I Wo I r ;5N / e. ( 41) 

Thus, to obtain the requisite accuracy for I Wo I r= 1 
requires N = 6, for I Wo I r= 10, N ""'27; for I Wo I r= 100, 
N"",2700. 

The rate of convergence of the series (33) and the 
accuracy of its maximum are both favored by small 
values of r. It is desirable, however, to seek conver­
gence with the largest possible r in order to obtain 
maximum resolution of eigenvalue peaks. A rough cri­
terion for resolvability of two equally intense resonances 
separated by tJ.w is that tJ.w~l/r. 

When if;(q, 0) is not an eigenstate, an estimate of 
the error in GN(r, w, q') may be obtained by applying 
the relations (37)-(39) to 'each function x.(w+wn) 
in (35): 

2rN+1 {CO 
I tJ.GN-ll ;5 (N+l)! ~ I cnCPn(q') II Wn IN 

+ ~codw I c(w)cp(w, q') I wN}. (42) 

tJ.GN represents a remainder provided that it approaches 
o as N----too. 

Example (ii) : if;(q, 0) contains no contributions from 
eigenstates with I w I ~ A. Then 

I tJ.GN-ll ~O[ANrN+l/(N+l)!], (43) 

as N----too, and Formulas (40) and (41) apply with A 
replacing I Wo I. 

Example (iii) : I c(w)cp(w, q') I "",exp[ - (W/A)m] 
(A>O, m>O) and/or a parallel dependence in the 
discrete spectrum. For each integral in (42) 

fco dw I c(w)cp(w, q') I wN"", fco dw exp[ - (w/A)m]wN 
o 0 

The remainder in the spectral function is then 

I
"" {[(N-m+1)/m]!(Ar)N+l} 

I tJ.GN- 1 ",,0 (N+1)! . (45) 
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The sequence converges for m> 1 and diverges for 
m< 1, for all values of T. In the limiting case m= 1, 
I c(w)cp(w, q') I -exp( -wIX), convergence is attained 
for XT< 1. For Gaussian dependence (m= 2) a practi­
cal convergence condition analogous to (41) is given by 

XT~(2Nle)!. (46) 

5. CONCLUSION 

Convergence of the spectral function is evidently 
the major stumbling block to direct calculation of en­
ergy eigenvalue spectra. Contributions from the con­
tinuum must fall off at least as rapidly as an exponential 
in order that the sequence GN(T, w, q') converge. Since 
c(w)cp(w, q') and the CnCPn(q') have both positive and 

negative contributions, the asymptotic behavior of 
hk(q') might, however, be more favorable than sug­
gested in Sec. 4. Oscillation in sign should be most 
marked in the continuum because of the high degener­
acy. Choice of the generating function ",(q, 0) and of 
the configuration point q' should be governed by these 
considerations. 
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Mass spectrometric Knudsen effusion experiments have provided evidence for the existence of the suboxide 
species Be20(g) in the equilibrium vapor above crystalline beryllium oxide at temperatures around 23OO°K. 
Be20+ ions appear to be formed both by simple ionization of Be20(g) and by fragmentation of a larger 
molecule. The relative importance of the two processes has been shown to be temperature dependent. An 
average value of -8±10 kcal/mole was obtained for LlHf029s[Be20(g) ] from third-law calculations for 
three equilibria. 

Mass spectral data are given for the equilibrium vapor above beryllium oxide at 23800 K in the presence of 
tungsten. 

INTRODUCTION 

AMASS spectrometric study of the equilibrium 
vapor above BeO(c) in the presence of tungsten 

at high temperatures has been reported by Chupka, 
Berkowitz, and Giese. l They observed a complex 
spectrum containing more than 18 ions and presented 
evidence for the existence of a number of Be-O and 
Be--Q-W polymers in the vapor. We have made a 
similar study and have obtained results which agree 
well with theirs. 

In addition to the previously reported ions, we 
detected in the mass spectrum of beryllium oxide 
vapor small intensities of the ions BenO+ n-l, where 
n= 2 through 5, at temperatures above 23oooK. The 
ionization-efficiency curve for Be2o+ suggests that a 
part of the observed ion current results from simple 
ionization of Be20(g). By using low-energy ionizing 
electrons a third-law value for the heat of formation of 
Be20(g) was derived from mass spectral data. 

* This work was sponsored by the Advanced Research Projects 
Agency and monitored by the U.S. Air Force Systems Command 
under Contract AF04(611)-8523. 

1 W. A. Chupka, J. Berkowitz, and C. F. Giese, J. Chem. Phys. 
30, 827 (1959). 

EXPERIMENTAL 

The mass spectrometer used was a Nuclide Analysis 
Associates Model HT 12-60.2 The ion source control 
unit was modified somewhat to allow use of stepping 
switches for changing the ionizing electron voltage in 
steps of 0.1, 1.0, and 10 V in the range 2 to 100 V. 
As a result, the effect of Knudsen-cell temperature 
changes on shapes of ionization-efficiency curves has 
been lessened, since curves can be measured in less time. 

The experimental method has been described by 
others.3 For the present studies a tungsten Knudsen 
cell was used as a container for chips of beryllia, which 
were pressed from Brush Beryllium Company BeO 
powder. The cell was cylindrical in shape with inner 
dimensions of 0.58 in. wide and 0.88 in. high. The 
effusion orifice was a 0.04-in. diam circular hole. A 
few experiments were also done using a beryllia Knudsen 
cell as an inner liner for the tungsten cell. The beryllia 
cell, whose outer dimensions closely matched the inner 
dimensions of the tungsten cell, was obtained on special 

2 D. L. Hildenbrand, L. P. Theard, and A. M. Saul, J. Chem. 
Phys. 39, 1973 (1963). 

• W. A. Chupka and M. G. Inghram, J. Phys. Chem. 59, 100 
(1955) . 


