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The problem of the condensation of a gas is mtimately related to the asymptotic behavior of the vlrial 
coefficients, B m , as m-? 00. The problem of the evaluation of the virial coefficients may be divided into two 
distinctly different ones. The first of these, which is purely combinatorial in nature and IS independent of the 
intermolecular force law, IS that of determining the number of a certain type of connected graphs of I points 
and k hnes which are called "stars." This problem is solved by means of generating functions, WI th the result 
that the total number of such stars is asymptotically equal to 

for almost all k. Arguments are also presented which indicate that the total number of topologically different 
stars is 

.!(ll (1-1)) 
II k • 

With these results the combinatorial problem is essentially solved. 
The second problem is that of evaluatmg certain integrals of functions which depend on the intermolecular 

potential. This problem is not so near to a solution. For a purely repulsive force, asymptotic expressions are 
obtained for k=l, and k=I+1. The partial contributions to the virial coefficient in these two cases are. 

(_1)1.~(5 )t(2b)I-,(1-1) 
3 21r 16/2 ' 

and 

( -1)12~~(2b)l-1, 
respectively. Results for some simple one-dimensIOnal rigid lines are also given. 

I. INTRODUCTION 

M OST of the explicit theories of the condensation of 
gases are based on the development of the 

thermodynamic quantities of the gas in powers of 
the density or of the inverse of the specific volume.' 
This leads to the well-known virial development of 
Kamerlingh annes for the equation of state: 

[ 
B2(T) Ba(T) ] 

pv=RT 1+--+--+··· , 
V v2 

(1) 

in which the deviations of the ideal gas law due to the 
interaction of the molecules in pairs, triples, etc., are 
taken successively into account in the successive virial 
coefficients B 2 (T), Ba(T), etc. The theory gives explicit 
expressions for these virial coefficients in terms of the 
intermolecular forces, but the actual evaluation of the 
integrals is notoriously involved and seems quite out of 
the question for the higher coefficients. The condensation 
phenomenon depends on the convergence of the series 

* u. S. Atomic Energy Commission Predoctoral fellow, Uni­
versity of Michigan, 1950-1951. 

1 We have especially in mind the theory of J. E. Mayer; for a 
summary see his book: Statistical Mechanics (John Wiley and 
Sons, Inc., New York, 1940), Chap. 13 Compare alsoB. Kahn and 
G. E. Uhlenbeck, Physica 5, 399 (1938); B. Kahn, dissertation, 
University of Utrecht, 1938; J. de Boer, dissertation, University of 
Amsterdam, 1940; K. Husimi, J. Chern. Phys. 18, 686 (1950). 

(1),2 however, and therefore on the asymptotic behavior 
of the BI(T) for high I, and we thought that this 
asymptotic behavior might be simpler to determine, 
especially for simple force laws, as, for instance, for a gas 
of elastic spheres. 

The motivation to consider especially the case of 
elastic spheres was the striking and paradoxical result of 
Kirkwood and co-workersa who showed that on the 
basis of the so-called superposition approximation, a gas 
of elastic spheres has a transition point at a volume of 
about 1.24 times the volume of close packing. Although 
perhaps hard to believe, one must admit that there is no 
rigorous argument which disproves the existence of such 
a condensation point, and, since the work of Onsager, 
one has learned to be rather skeptical about intuitive 
and approximate arguments. In addition there is the 
suggestion that perhaps the Kirkwood transition has 
something to do with the solidification of helium, which 
is known to occur at temperatures many times the 
critical temperature, so that it is hard to ascribe it to the 
weak attractive forces between the helium atoms which 
are of the order kTcrlt . The solidification of a gas is 

2 Or better on the convergence of the series "1:.bIZ I, where bl are 
the Mayer cluster integrals from which the virial coefficients 
follow. See Sec. II. 

3 J. G. Kirkwood and E. Monroe, J. Chern. Phys. 9, 514 (1941) ; 
Kirkwood, Maun, and Alder, J. Chern. Phys. 18, 1040 (1950) See 
also M. Born and H. S. Green, A General Kinetic Theory of Ltquids 
(Cambridge University Press, Cambridge, 1949) 
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perhaps a general consequence of the sharp repulsive 
forces, which in first" approximation may well be 
idealized by the elastic sphere model. 

On the other hand, the argument of Kirkwood is 
surely not rigorous either, since it depends on his 
superposition approximation,4 and the only way we 
know of to arrive at a rigorous result is through the 
convergence discussion mentioned above. U nfortu­
nately, we have not been able to solve the problem of 
the asymptotic behavior of the bl and Bl, so that the 
question of the existence of a transition point for a gas 
of elastic spheres remains open. We would like to report 
on some partial results. In Sec. II we will recapitulate 
the general formula for the cluster integrals bl and for 
the virial coefficients B l , always with the assumption 
that the intermolecular forces are additive. In this case 
the expressions for bl and Bl consist, for large l, of a 
great number of different integrals over the configura­
tion space of 1 particles. Therefore two problems can be 
distinguished; the first one is to determine the number 
of different integrals and their multiplicities, and the' 
second is to calculate the value of each "irreducible" 
integral. Such a distinction is of course common to 
any successive approximation method, and from the 
Feynman diagrams used in the perturbation theory of 
quantum mechanics it has become a familiar fact that 
the first problem can always be formulated as a problem 
in the theory of linear graphs. One has to count all 
possible topologically different graphs of a certain kind. 
In Sec. III the precise formulation of the combinatorial 
problems will be given in the language of the theory of 
graphs, and in Secs. IV and V the solution of these 
problems will be discussed, with special emphasis on the 
asymptotic behavior for large 1 of the different numbers 
involved. 6 The results are of course independent of the 
form of the intermolecular potential. This enters in the 
second and more difficult problem, the calculation of the 
irreducible integrals. We have made no progress with 
this problem, and in Sec. VI only some remarks and 
suggestions will be presented. 

II. GENERAL EXPRESSIONS FOR THE CLUSTER 
INTEGRALS AND VIRIAL COEFFICIENTS 

For additive intermolecular forces one can write the 
partition function for N particles in the volume V, 
followIng Mayer, in the form: 

Z = ~(21rmkT)3NI2 
Nt h2 

X r ... r d3rl· .. iPrN IT (l+iii) (2) 
Jy Jy i<i=l 

4 For a criticism of this approximation with regard to the radial 
distribu tion function and the value of the fourth vidal coefficient 
for a gas of elastic spheres see B. R. A. Nljboer and L. van Hove, 
Phys. Rev. 85, 777 (1952). 

6 Thanks to a communication of Professor G. P6lya the actual 
counting problems for finite 1 are almost completely solved also. 
We will mention the results but omit the proofs, since the asymp­
totic behavior can be seen by more intuitive arguments. For a 

where i,}=exp( -c/J(r,})/kT)-l, and the product goes 
over all possible pairs. Consider first the product: 

N 

II (1+ I,}), 
'<1=1 

for 1 particles. If one expands the product, one clearly 
gets 211(1-1) terms, and each term can be represented by 
a linear graph if one indicates each particle by a point 
and each factor i d by a line between particles i and j. 
The different terms can first be grouped according to the 
number of factors i,}, that is, according to the number, 
k, of lines in the graph. One can further distinguish 
between 

(a) Separated graphs, consisting of two or more graphs 
which are not connected together, and 

(b) Connected graphs. The so-called cluster function 
Ul(rl, r2, "', rl) is the sum of all terms represented by 
connected graphs of 1 points and the cluster integral is 
then defined by: . 

bl=_l_ r.··f iPrl" ·darlUl(rl, r2, ... , rl). (3) 
llV Jv y 

For fixed 1 and large volume the bl become asymptotically 
independent of V, and one can show then that Z be­
comes a polynomial of degree N in V, given by: 

(
27rmkT)3NI2 (Vbl)ml 

Z= -- S'II--
h2 (mil I mlt 

(4) 

where the round summation sign indicates a sum over all 
sets of integers ml, m2, ... with the condition (indicated 
by the prime): 

N 

L Iml=N. 
1=1 

Since for large N the partition function Z is related to 
the free energy per particle if;('1J, T), with v=lim(V/N) 
by:6 

Z=exp( -Nif;/kT) (5) 

one can then derive the well-known Mayer equations: 

p= kT Ll blz l, 

(6) 

which express the pressure and the specific volume as 
power series in the variable z, which is related to the 
chemical potential of the gas. 

To obtain the virial development for the equation of 
state one must elimInate z between the two Eqs. (6). 

similar investigation of the number of different Feynman diagrams 
in various field theories, see C. A Hurst, Proc. Roy. Soc. (London) 
214,44 (1952); also, R. J. Riddell, Jr., Phys. Rev. 91,1243 (1953). 

6 For a rigorous proof of these statements, see L. van Hove, 
Physica 15,951 (1949). 
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Formally this can be done as follows: define a set of 
quantities f3.(T), 11= 1,2, ... by the prescription that 
12bl is to be the coefficient of fl-1 in exp(l L: f3.t'). This 
gives, for instance: 

b2= tf31, 

b3= tf32+t{112, 

b4= if33+f31f32+tf313
, 

and so on. One can solve successively for the (1' in terms 
of the bl , and thus one sees that the two sets of quantities 
bl and f3. are uniquely related to each other. Then one 
can show7 that from (6) follows: 

p 1 00 II 1 
-=--L: -{1.-, 
kT v .~1 11+ 1 Vrl-1 

so that the l'th virial coefficient BI is given by 

(l-1) 
B I = ---{11-1. 

I 

(7) 

(8) 

The question arises how to express the (1' as an 
integral over the configuration space of II particles, 
analogous to the expression (3) for bt. To do this one has 
to separate the terms represented by connected graphs, 
which enter in UI, in two groups in the following way. 
An articulation point of a graph is a point where the 
graph could be cut8 into two or more separated graphs 
by cutting all the lines going to this point. A connected 
graph which has no articulation points will be called a 
star. From the terms represented by connected graphs of 
I points, select the terms which are represented by stars. 
The sum of these terms will be called the star junction, 
V(r1, f2, "', fl), and Mayer proves that: 

Equations (3) and (9) are the starting point of our 
considera tions. 

III. COMBINATORIAL PROBLEMS IN THE THEORY 
OF GRAPHS' 

The simplest type of connected graph is the so-called 
Cayley tree. They consist of I points and 1-1 lines, from 
which follows that there are no closed loops in a Cayley 
tree. A more general type of connected graph may be 
called Husimi trees, since they were first introduced in a 
paper by Husimi.lO A Husimi tree is a connected graph 
in which no line lies on more than one cycle. It is 

7 For the proof see B. Kahn and G. E. Uhlenbeck, reference 1. 
8 Therefore it is also often called a "cutting point." 
9 For the general topological theory of linear graphs see the book 

of Koenig, Theorie der Endlichen und Unendlichen Graphen 
(Leipzig, 1936). Combinatorial questions are not discussed in this 
book. For these the basic reference is the paper of G. P6lya, Acta 
Math. 68, 145 (1938) 

10 K. Husimi, J. Chern. Phys. 18,682 (1950). 

characterized by the numbers n2, na, n4, ... of lines, 
triangles, quadrilaterals, etc., out of which it is built up. 
The number of points, I, is equal to 1 +n2+ 2n3+' . '. A 
pure Husimi tree is one which consists of only one type 
of figure. Clearly a Cayley tree is a special case of a pure 
Husimi tree. 

A general connected graph is divided by its articula­
tion points into a number of stars. If in each star one 
would disregard all internal lines and consider only the 
"outline" one would obtain a Husimi tree. In this sense 
the general connected graph is a generalization of the 
Husimi tree, just as a star is a generalization of a 
polygon. 

There are two kinds of combinatorial problems con­
nected with each type of graph. The first and simplest 
kind of problem is to find the number of different graphs 
if all points are distinguished from each other. For 
Cayley trees of I points, the answerll is simply P-2. For 
Husimi trees of I points and type n2, n3, ... the answer10 

is: 
I 

I! 2: n -2 _______ 1'=2 • 
(10) 

I 

II [(i-1)!Jn'n,! 
>=2 

which clearly specializes to p-2 for Cayley trees. In the 
next section we will determine the numbers d(l, k) and 
c(l, k) of separated (or disjoint) and of connected graphs 
of I points and k lines, always assuming that all points 
are distinguished from each other. Clearly: 

(
tl (l-1») 

del, k)+c(l, k) = k . (11) 

In addition we will find the fraction of the connected 
graphs which are stars. Let s(l, k) denote their number. 

The numbers c(l, k) and s(l, k) for all possible values 
of k indicate how many terms are involved in the cluster 
and star function of I points. However if one integrates 
over the configuration space of the I points, all terms 
which differ only in the labelling of the I points will 
clearly give the same results. To find the number of 
"irreducible" integrals in (3) and (9) one has to de­
termine the number of connected graphs and stars which 
are really different. This brings us to the second and 
more difficult kind of problem: to find the number of 
topologically different graphs of a certain type if the 
points are not distinguishable. For Cayley trees the 
problem has been solved in all details,12 and a beginning 
has been made for the case of Husimi trees of type 
n2, n3, .... 13 In Sec. V we will give the answer for the 
numbers o(l, k) and ",(I, k) of separated and of con-

11 A. Cayley, Collected Mathematical Papers (Cambridge 1889-
1898) Vol. 13, p 26; other proofs are given by P6lya, refererrce 9, 
and by G. Bol, Abhardl. Math. Seminar Hamburg 12, 242 (1938). 

12 R Otter, Ann. Math 49,583 (1948.). 
13 F. Harary and G. E. Uhlenbeck, Proc. Nat!. Acad. U. S. 39, 

315 (1953). 
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nected graphs of I points and k lines which are topo­
logically different. The corresponding number, CT(l, k), 
for stars is not yet known. 

We will denote by d,(l, k), c,(l, k), and s,(l, k) the 
number of separated graphs, connected graphs, and 
stars of I points and k lines and of a definite topological 
type indicated by the index i, so that: 

O(l. k) 

d(l, k)= L d,(l, k), 
z=l 

,,/(l, k) 

c(l, k)= L c,(l, k), (12) 
z=1 

q(l, k) 

s(l,k)= L s,(l,k). 
;=1 

As an example we have drawn in Fig. 1 all topologically 
different graphs of five points, arranged according to the 
value of k. The numbers in parentheses refer to the 
number of times the graph occurs, and represent there­
fore the d,(S, k), c,(S, k), s,(S, k). One can also read off 
the numbers 0(5, k), 'Y(S, k), and CT(5, k). For instance, 
0(5,6)= 1, 'Y(S, 6)=5 of which two are stars so CT(5, 6) 
= 2. In terms of these numbers one can then express the 
cluster integrals and the virial coefficients as follows: 

1 !I(l-I) ,,/(/, k) 

bl=- L L c,(l, k);]c(')(l, k), 
llV k=I-1 .=1 

(l-1) H(/-I) u(/, k) 

B I = --- L L s,(l, k);].(') (I, k). 
llV k=1 ,=1 

(13) 

;] c(') (l, k) and;] .(.) (l, k) are the irreducible integrals for 
the connected graph and star of I points, k lines, and of 
the i'th topological type. 

IV. THE NUMBERS d(l,k), eel, k), AND s(l, k) 

Let us begin with the separated configurations. Since 
a separated configuration is made up of a number (at 
least two) of connected graphs, and since the numbers 
del, k) and c(l, k) ate related by Eq. (11), it is evident 
that one must be able to express d(l, k) in the d's in­
volving smaller numbers of particles. To formulate this 
relation, let the separated configuration of I points and 
k lines consist of nl isolated points, n2 connected pairs of 
points, n3 connected triples of points, etc. Let j be an 
index which distinguishes between the n, different con­
nected graphs of i particles, and let k'J be the number of 
lines in the j'th graph. Clearly one must have: 

I-I I-I m 

L in,=l, L L k'J=k. (14) 
1.=1 '/,=21=1 

The upper limit of i is 1-1, since one must have at least 
one point separated from the rest of the graph. One then 

( II (101 (301 (151 (101 (301 (601 

(201 160) (10 I (601 (601 ( 151 ( 5 I 

(121 (601 (601 /30) (60) \301 (601 

~ c ~ 0 ~ f- U 
(601 ( 5 I (IS I (601 ( 10) (201 (601 

~ ~ ~ 
\ / 

(301 (101 (301 (.l51 (101 ( II 

FIG. 1. Topologically different graphs of five points. 

can convince oneself that: 

!-I l! 
del, k)=S' II -.--

(n,) 0=1 (~!)n'n.! 

ni { (!i(i-l») } X S' II -dei, k'J) , 
(k.,) 1=1 k'J 

(15) 

where the round summation signs go over all sets of 
numbers n, and k,j consistent with the relations (14), of 
which one is reminded by the primes. One can remove 
these restrictions by multiplying (15) by xlyk, and one 
can then write: 

d(l, k) 
--= coefficient of Xlyk in: 

I! 

The sums over the k'J are readily carried out, to give: 

d(l, k) 
--= coefficient of Xlyk in: 

I! 

.=1 1 { x' j(i-l)(.-2) dei, k) ~n. 
S II - (1+y)!.(,-IL - L _-x'yk . 
(ni) 1-1 n,! i! k=O i! 

If one adds and subtracts the term for i=l, then the 
product may be taken to infinity since terms with i>l 
will not contribute to the coefficient of Xl. One thus 
obtains: 

_ 2 = coefficient of Xlyk in: 1 (!.1(l-1») 

I! k 

[

00 x' d(~~ ] 
exp L _(l+y)b(,-1l-L _-x'yk . 

0=1 i! "k i! 
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Introducing therefore the generating functions: 

and 

00 x' 
N(x, y)=L: -(l+y)',(,-I), 

_1 i! 

00 d(l, k) 
D(x, y)=L: L: --x1yk, 

1=1 k II 

where the summation over k goes from zero to 
!(l-1)(1-2), the greatest number of lines which can 
occur in a separated configuration, one obtains the 
simple relation :14 

D(x, y)=N(x, y)-ln{l+N(x, y)}. (16) 

From this one easily derives the explicit expression: 

r 

1 (_1)' I! (L:!I,(l,-I») 
del, k)=L: -- 5' _1 , 

r=2 r (I,) lrlI2!" ·l,! k 
(17) 

where in the round sum the 1, all start from one and the 
prime means the condition 11+12+, .. +1,= 1. For k near 
the upper limit, HI-I) (l- 2), only the terms with 
r= 2, It = 1, 12= 1-1, or vice versa, contribute, so that 
for k>HI-2)(1-3)+I: 

_ (!(l-1)(1-2») 
d(l, k)-l . 

k 
(18) 

For smaller k one gets corrections to this number, the 
first of which are: 

(
!(l-2)(l-3)+1) 

11(1-1) 
2 k 

(
! (l- 2) (1- 3) ) 

-ICl-l) . 
k 

For large 1 this can be written: 

!U-1)(l-2»)[ 1 ] 
del, k)"'l( k 1-

Z
e-2k/l+. .. , 

(19) 

(20) 

so that for k>llogl the correction goes to zero for l~oo. 
In the main range of values for k, Eq. (18) gives the 
asymptotic behavior for large I of the number of 
separated configurations. Only for small k, for which 
d(l, k) is small anyway, does Eq. (18) fail for large I. 

Turning now to the numbers of stars, s(l, k), among 
the connected graphs of I points and k lines, we first 
derive a recurrence relation for the number of connected 
graphs, c(l, k), which is based on the idea that any 
connected graph can be considered to be built up out of 
stars which are connected to each other at the articula­
tion points. To formulate this more precisely, let the 

14 We assume the convention that d(l, 0) =0. 

connected graph consist of n2 stars of two points (bars), 
na stars of three points (triangles), n4 stars of four points 
(rectangles with zero, one or two diagonal lines), etc. 
Let j distinguish between the n, different stars of i 
points, and let k'J be the number of lines in the j'th star. 
One must have of course: 

1 l 1U 

L: (i-l)n,=I-l, L: L: k'J=k. (21) 
t==2 

The upper limit for i is I since the connected graph may 
just be one star of points. Similarly to Eq. (15), one now 
has: 

1 nz 

c(l, k) = 5' H(n2, na, ... ) S' II II sCi, k'J)' (22) 
(n,) (k,,) 0=1,=2 

where II (n2, na, ... ) is the number of Husimi trees of 
type n2, na, ... given by Eq. (10), and the two primes 
refer to the two conditions (21). Removing these condi­
tions again by multiplying with xl-lyk, one obtains: 

c (l, k) = coefficient of x l-lyk in: 

I! {oo h(,-I) sCi, k) } 
- exp I L: L _-X'-Iyk. 
[2 1=2 k=, (i-I)! 

If we now introduce the generating function: 

00 !l(l-l) s(l, k) 
S(x,y)=L: L: _-X1yk, 

1=2 k=l l! 

and use Eq. (11), one can write (23) in the form: 

(
!l(l-l») 

k -del, k) = coefficient of Xl-lyk in: 

I! { as (x, y)} 
-exp I . 
12 ax 

(23) 

(24) 

If we multiply this equation by (l/l!)xlyk, sum over alII 
and k, and use Eq. (16), we get: 

z(x, Y)=L - --exp I '. , 
00 XI{ d

l
-

l 
[ as(~ y) 1} 

1=1 I! d~I-I a~ H 

where z(x, y) is defined as: 

a 
z(x, y)=x-ln{l+N(x, y)}. (25) 

ax 
From Lagrange's theorem15 then follows: 

as(z, y) z 
In-. (26) 

az x 

15 See for mstance Whittaker and Watson, Modern Analysis, 
Chap VII (Macmillan, New York, 1944). In order that Eq. (26) 
is valid for all I and k, we assume the following conventions: 
s(l, 0) =0, c(l, 0) =d; s(2, 1) = c(2, 1) = 1. 



THE 0 R Y 0 F E QUA T ION 0 F S TAT E 0 F M 0 N 0 A TOM leG A S E S 2061 

It is not possible to obtain from (25) and (26) an explicit 
expression for s (I, k), since expressing x in terms of y and 
z through (25) involves the inversion of a power series. 
However, one can obtain an asymptotic expression for 
large l. To do this it is easier to start from Eq. (24). By 
developing the exponential function and by taking in 
the different powers of laS/ax always the coefficients of 
the highest powers of y, one obtains a recurrence relation 
of the form: 

(
t l (l-1) ) 

k -d(l, k)=s(l, k)+l(l-1)s(l-l, k-l) 

+tz(l-I) (l-2)s(l-2, k-3) 

+tl2(1-1)(l-2)s(i-2, k-2)+···, 

in which the further terms depend on the number of 
stars with less than l- 2 points. From this one sees that 
in first approximation for large I: 

(
tz(l-I) ) 

s(l, k)"-' k . (27) 

In second approximation, using (18): 

(
tz(l-I») (t(l-I)(l-2») 

s(l, k)"-' -l 
k k 

(
Hl-l)(l-2») 

-l(l-l) . 
k-l 

(28) 

This expression is exact for k>t(l-2)(1-3)+1. In the 
next approximation one finds further correction terms 
which contribute for smaller values of k. Just as for the 
del, k), we can conclude that for large l and almost all k 
(in fact again for k>llogl), Eq. (27) will give the num­
ber of stars, or in other words for large I practically all 
graphs of k lines are stars. From Eq. (28) one can see 
further that for large I the number of connected graphs 
with at least one articulation point is asymptotically: 

generating function: 

FI(Y)=L 7f(l, k)yk 
k 

and he finds: 

r=even 

. II (1 +yr)lrirU,.-l). II (1 +ym(r,o» t(r,o)lrl,. (31) 
r r<8 

Here the round summation sign goes over all sets of 
integers j r, starting from zero, which fulfill the condition: 

I 

L rjr=l. 
1'=1 

mer, s) is the least common multiple and t(r, s) the 
greatest common divisor of rand s. Take for example 
1 = 5 ; the sum consists then of seven terms corresponding 
to the seven partitions 5=1+1+1+1+1, 5=1+1+1 
+2,5= 1+1+3,5= 1+2+2,5= 1+4,5=2+3,5=5, 
for which one finds: 

5 !F.(y) = (1 +y)lO+ (1 +y)4(1 +y2)3+20(1 +y) (1 +y3)3 
+ 15 (1 +y)2(1 +y2)4+30(1 +y2) (1 +y4)2 

+20(1 +y) (1 +y3) (1 +y6)+24(1 +y.)2. 
This leads to: 

F.(y) = l+y+2y2+4y+6y4+6y5 

+6y6+4y7+2y8+y9+ylO, 

from which one can read off 7f(5, k), which can be 
checked with Fig. 1. 

From Eq. (31) one can also derive the asymptotic 
behavior of 7f(l, k) for large I. Taking only the partitions 
of I in lone's and in 1-2 one's and one two, one gets: 

l!F ley) = (1 +y)H(I-l) 

+tl(I-I) (1 +y) Hl-2) (/-3)+1 (1 +y2) 1-2+. . . (32) 

(
t(l-I)(1-2») 

1(1-1) . 
k-l (29) from which one sees that for large I the main contribu­

tion to 7f(I, k) comes from the first term, so that: 
V. THE NUMBERS 0(1, k), ,,((I, k), and (1(1, k). 

The first problem is to determine the total number: 

7f(l, k)=o(l, k)+y(l, k), (30) 

of topologically different graphs of I points and k lines, 
which is the analogue of the binomial coefficient 
W(I-I), k) in Eq. (11). This problem has been solved 
by P61ya.I6 He expresses his result in terms of the 

16 We are greatly indebted to Professor G. P6lya for communi­
cating his result to us. In this section we will omit the proofs, since 
they would take up too much space, and since we hope that they 
will appear elsewhere. They can be found in the dissertation of 
R. J. Riddell (Ann Arbor, 1951, p. 57.) 

,,-,1(tl (l-I») 7f(I, k)=- . 
I! k 

(33) 

From the second term in (32) one can find corrections to 
this result, which however vanish for large I and for k 
not too near the two ends of its range, zero and 
tl(I-I),17 

17 We are indebted to Dr. P. Erdos for communicating to us 
various estimates for the range of k for which our asymptotic 
results are valid. With regard to Eq. (33) he thinks that k must lie 
in the range 

k> (1+.)l(logl) >!1(1-1) -k, 

just as for Eqs. (18) and (27). 
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The next question is the determination of the number 
o(l, k) of separated configurations, which are topo­
logically different. The answer18 can be expressed as 
follows: Define the double generation functions as 

'" P(x, y) = L F1(y)x '= L L 71'(1, k)x1yk, 
1=0 1 k 

~(x, y)=L L o(l, k)X1yk. 
(34) 

1 k 

Then one can prove the relation 

1 1 
L -~(xv, yv)= L -{P(xv, y.)+( -l)vpv(x, y)}, (35) 

p v v V 

from which one can find the 0(1, k) in terms of the known 
71'(l, k). Especially one can show from Eq. (35) that for 
large 1 and a suitable range of k, one has 

"" 1 (HI-1)(l-2») 
o(l,k)=-- . 

(1-1)1 k 
(36) 

We have not succeeded in splitting the number of 
topologically different stars u(t, k) from the number of 
connected graphs 'Y(l, k)=7I'(l, k)-o(l, k). However, 
there is no doubt that for large I, u(l, k)::::::'7I'(l, k), and 
that the number of topologically different connected 
graphs with at least one articulation point is asymp­
totically 

1 (!(l-1)(l-2») 
-1(l-1) . 
II k-1 

(37) 

The reason is simply that for large I the great majority 
of all graphs are stars as we saw in Sec. IV, and that only 
very rarely will a graph have some kind of symmetry. As 
a result for large I the numbers d,(I, k), c,(l, k), s,(I, k) 
will be just II for practically all i, so that (see Eq. (12» 
asymptotically o(l, k), 'Y(l, k), and u(l, k) will be (1/1!) 
times d(l, k), c(l, k), and set, k). 

Finally we will consider a few special cases, which 
have some interest for themselves and which will 
illustrate further the relation between the numbers 
s(l, k), s,(l, k), and u(l, k). First consider the case k=l. 
All stars are in the form of a ring, so u(l, I) = 1. The 
points can be put on the ring in any order, which gives 
a factor II in set, t). However we may choose any point 
as the starting point, and we may count either clockwise 
or counter-clockwise around the ring without changing 
the configuration. This gives a "symmetry number" 21 

(0) (b) (c) ( d) 

FIG. 2. Homeomorphic types of graphs for k=I+2. 

18 For the proof, see R. J. Riddell, dissertation, University of 
Michigan, 1951, p. 65. 

by which the 11 has to be divided. So: 

set, 1) = HI-1)! (38) 

If k = 1+ 1 the stars take the form of three chains con­
nected at their ends, in which there may be 11 particles 
in the first chain, l2 in the second, and la in the third (not 
counting the end particles), so thatl1+12+1a=I-2. Not 
more than one chain may have I, = O. Any partition 
therefore of 1- 2 in two or three summands will corre­
spond to a star of a definite topological type. The 
number u(l, 1+ 1) is the number of such partitions and 
these can be found by standard methods. One can show 
that u(l, 1+1) is the coefficient of yl-2 in 

1 1 

(1-y) (1- y2) (1-ya) 1-y 
, 

and explicit expressions can easily be obtained. Espe­
cially for large lone finds that u(l, 1+ 1)""[2/12. To find 
s,(I, 1+1), note that if all chains are different there is 
only a mirror symmetry between left and right, but if 
some chains are alike, then these chains may be inter­
changed as well. Thus we obtain: 

s,(I,I+1)=1!j2n,! 

where n, is the number of chains which are alike. Since 
for large I it will be a rare case if two or more chains are 
alike, it is clear that asymptotically s(l, 1+ 1)""1![2/24, 
and it is also not difficult to show that exactly 

s(l, 1+1)= (l!j24) (/-3)(1-2). (39) 

The fact that for k=I+1 all stars take the form of 
three chains is expressed in the theory of graphs by 
saying that all stars are homeomorphic to each other. If k 
increases, the number of homeomorphic types increases 
too. For instance for k=I+2 there are four homeo­
morphisms, as shown in Fig. 2. To find for each type the 
number of topologically different stars, is again a 
partition problem of 1-2,1-3, or 1-4 in four, five, or 
six parts. The s,(t, 1+2) are l!js, where s, is the number 
of symmetry operations which may be performed on the 
star without changing it. For instance if in the four 
types (a), (b), (c), and (d) the chains are all alike s, will 
have the values 2'4!(a); 2a(b); 4!(c); 24(d). Finally by 
summing over all partitions one can determine s(l, 1+2) 
for each of the four types. We will not write down the 
explicit numbers, and mention only that altogether 

1 ! 
s(l, l+2) =--(t-3) (14+4[3-15[2-46l-40). (40) 

48·4! 

VI. REMARKS ON THE INTEGRAL PROBLEM 

1. If the intermolecular force is always repUlsive the 
1'3(r) of Eq. (2) will always by negative. Hence the sign 
of all the irreducible integrals 3(')(l, k) will be (-l)k. 
With regard to the absolute magnitude it is clear that 
the star integrals must decrease with increasing k, be-
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cause adding a line between two points means that we 
introduce a factor in the integrand which requires the 
two points to be less than a certain distance apart. Thus 
with increasing k the integrand will differ from zero over 
a smaller region of the 31 dimensional phase space. This 
is illustrated for the three stars of four points by the 
following known results for the integrals :19 

o =-1.8894b3
; 

14 
--b3 

3 ' 
(41) 

The second column gives the values of the integrals in 
one dimension; b is the van der Walls' b equal to four 
times the proper volume of a molecule in three dimen­
sions, and equal to just the volume in one dimension. 

2. In three dimensions the cluster integrals b I and 
virial coefficients B I for a gas of elastic spheres are only 
known up to 1=4. In one dimension on the other hand 
one knows that: 

( -1)lzt-1 

bl = bl. 
(42) 

1 ! 

Note that the BI are all positive and the b l are alter­
nating in sign. Whether this is also so in three dimensions 
is not known, but is plausible. 

One might hope to gain insight into the relation be­
tween the numbers s(l, k) and the integral 38(/, k) by 
considering the one-dimensional case in greater detail. 
For all configurations the integrals are elementary and 
can be calculated successively. For instance for 1= 5 the 
results for 3'< ,) (l, k) together with the s,(l, k) are given 
in Table 1. It would be of interest to do the calculation 
for arbitrary 1 and k, and to see especially what the 
asymptotic behaviour of the 38(/, k) is for large I. But 
we have not succeeded in doing that.20 

3. Because of the alternating sign of the 38(1, k) for 
repulsive forces the alternating moments of the s(l, k) 
may be of interest. These can all be calculated from the 
general formulas, Eq. (25) and Eq. (26). Defining 

! 1(1-1) 

M 8 (n)(/)= L (-1)kkns(l,k), 
1=1 

19 The irreducible mtegrals III two dimensions have also been 
evaluated by Harris, Sells. and Guth (to be published). 

20 Using Eq. (13) one finds from Table I B5=b4 III agreement 
WIth (42) For 1=4 the numbers s(l, k) are 3,6, 1 and from (41) 
then follows B 4 =b3, again in agreement with (42). 

TABLE I. Decomposition of the 5th virial coefficient for one­
dimensional rigid lines. 

TYPE 0 CJ C1 <:/5) Q @) e €}) @ ~ 
b-'XrJ;i'S.k) _115 +it +8 

_ll _.1!. -& +6 +1i 11 
+5 12 6 4 6 2 3 -T 

Sl (5,k) 12 60 10 60 30 10 15 30 10 1 

one finds for instance: 

M.(O) (l) = - (l-2)!, 

M.(I) (l) = -tl!, (43) 

M,<2) (I) = -t/!(12+3/-6). 

Analogous formulas can be found for the alternating 
moments of d(l, k) and therefore of c(l, k). However, we 
have not been able to exploit these results for the 
general problem. 

4. Since for repulsive forces the j,} have always the 
same sign one may interpret j,} as the (unnormalized) 
probability of going from the point i to the point j. For a 
linear chain of n particles the integral, 

can then be considered as the probability of going from 
rl to In by a random walk of n-1 steps, and from the 
central limit theorem one knows that l(II, In) will be­
come a Gaussian distribution for large n. In fact for the 
case of elastic spheres (j( I I ,-I) I) = -1 for I I,-I} I <d 
and zero otherwise) one easily shows that asymptotically 

(2b)n(107I')! ( 5r2) 
l(II, InY'-'(-1)n-- -- exp -- , 

(271')3 nd2, 2nd2 
(45) 

with b=271'd3/3 and r= III-Ini. For n=3, Eq. (45) 
already gives a close approximation. 

If, therefore, the star consists of a number of con­
nected chains, which are long enough so that (45) can be 
applied, then the integrand of the star integral becomes 
a Gaussian distribution in the linkage points of the 
chains, and the evaluation becomes straightforward.21 

For instance, for the ring integrals 38(l, I) one gets 
simply: 

(2b)l-15(10)1 
3.(l,/)::::::.1(0)=(-1)1--- - , 

Ii 3 71' 

so that, if one writes Eq. (13) in the form 

!I(I-l) 

B I = L B(l, k), 
1=1 

(46) 

21 The fact that for a single chain the integral (44) can always be 
reduced to a single integral by a Founer transformatIOn (since (44) 
is obtained by folding the function fer) (n-l) times) was first 
noted by E W. Montroll and J. E. Mayer [J. Chern. Phys 9, 626 
(1941)]. Also Eq. (45) and the results for the ring and three chain 
in tegrals can be found essentially in this paper. 
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one gets, using (38): 
I-I 5(5)1 

B(l,1)'"'"'(-I)I-I-(2b)I-L - . 
Ii 3 211" 

(47) 

For 1=3, this differs from the well known exact value 
5b2/8 by 22 percent; for 1=5, the error is only 12 
percent. For the case k=l+l, where the stars take the 
form of three chains linked at their ends, the integral 
becomes 

250 
38(') (/,1+ 1)'"'"'( -1) 1+1-(2b) I-I 

911" 

X[(ll+ 1) (l2+ 1)+ (l2+1) (13+ 1)+ (13+ 1) (11+ l)j!, 

where II, 12, 13 are the numbers of particles in the chains, 
so thatll +12+13= 1-2. Using the result of Sec. Von the 
s,(/, l+I), one can show that for large l: 

250 
B(l, 1+ 1) = (-1) 1-(2b) 1-1. (48) 

9 

In principle one can go on in this way. For k=I+2 one 
has to consider the four homeomorphisms shown in 
Fig. 2, and the calculation (especially the summation 
over all the numbers of particles in the different chains) 
becomes rapidly more involved, so that we have not 
been able to go further. 
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The distribution of frequencies of normal vibrations in the graphite lattice has been obtained in closed form 
for low temperatures in the two-dimensional approximation for the values (a, p, 0) and (a, p, 01/2) of the 
force constants (a, p, 1') for nearest, second-nearest, and third-nearest neighbors. The frequencIes run from 0 
to a finite value Wmax, with two logarithmic peaks In their density. The specific heat has been calculated for 
two special sets of force constant ratios. Deviations from J'2 dependence set in at temperatures much lower 
than predicted by Debye theory. Comparison with experiment leads to a numerical value for (J=hwm=/k, 
from which Wmax, and therefore also a and one of the macroscopic elastic constants, C44, may be calculated. (J 
and Wmax appear very sensitive to the assumed force constant ratios, c,' less so. 

I. INTRODUCTION 

ONE plane in a graphite lattice is shown in Fig. 1. 
On account of the wide separation of planes, it is 

believedl that the interaction between atoms in different 
planes is so slight that each crystallite consists of only a 
few (12-17) planes. It follows that no vibrational waves 
will be propagated perpendicular to the planes (or, at 
any rate, none with a wavelength long enough to be of 
importance at low temperatures). Gurneyl further 
argues that of the remaining possible waves only those 
that are propagated in the planes but consist of vibra­
tions perpendicular to the planes will be appreciably 
excited at low temperatures, since the restoring forces 
for "in-plane" motion will be much greater than for 
"transverse" motion. The principal object of Gurney's 
paper is to point out that the two-dimensional problem 
so resulting leads to a P-Iaw (instead of the P-Iaw 
obtained for three-dimensional solids) for the specific 
heat at low temperatures if the Debye approximation is 
used for the frequency distribution, and that this agrees 
with experiment. . 

It is, however, possible to calculate the frequency 
distribution of transverse vibrations of the two-dimen-

* Results reported at the North Carolina meeting of the 
American Physical Society, March, 1953 (H. B. Rosenstock, 
Phys. Rev. 91, 233(A) (1953). 

1 R. W. Gurney, Phys. Rev. 88, 465 (1952). 

sional "graphite" lattice exactly for certain values of the 
force constants a, {3, and 'Y for nearest, 2nd-nearest, and 
3rd-nearest neighbors. The purpose of this paper is, 
then, to carry out this calculation where possible, to 
calculate the specific heat using several special cases of 
this exact distribution, rather than using the approxi­
mate Debye distribution; and by comparison with 
experiment to try to infer the values of the force con­
stants and the related "elastic constants" which should 
in principle be experimentally measurable. 

II. THE FREQUENCmS 

Let w" be the displacement, perpendicular to the 
plane, of atom ij of Fig. 1, and m be the mass of each 
atom. The kinetic energy of the lattice of N2 particles is 
then 

N,N 

T=!m L w,l 
all .,j 

and the potential energy 

V=!a L (W.,-Wkl)2 
nearest 

neighbors 

+!{3 L (W.,-Wkl)2+h L (W.,-Wkl)2 
2nd 3rd 

nearest nearest 


