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Effect of Chain Conformations on the Frequency Distribution of an Idealized Chain*

G, Jannink anp G. C. SUMMERFIELD

Department of Nuclear IFngineering, The University of Michigan, Ann Arbor, Michigan

The frequency distribution of a simplified carbon skeleton chain is calculated for several conformations,
given by successions of trans- and gauche structures in various orders. It is found that the phonon frequency
distribution is sensitive to these orders. Validity of the model and use of the results are discussed.

I. INTRODUCTION

N important characteristic of a large system of

atoms is the phonon frequency distribution, that

15, the number of vibrational normal modes per unit

frequency interval. This function will reflect both the

interatomic forces and the configuration of the atomic
system.

This function is directly related to a number of
measurable properties of an atomic system, for ex-
ample, the specific heat! and the cross section for in-
elastic neutron scattering.?

When the atomic system is arranged in a regular
lattice with a few defects, the frequency distribution
can be determined fairly easily by using the method
of Green’s functions.? The frequency distribution can
also be computed by other methods* when certain
types of defects occur at many locations in the lattice,
as for example, in a binary alloy.

Here we determine the dependance of the frequency
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distribution on the conformation for a chain of atoms.
The variation of infrared and Raman active modes as
a function of conformation has been given for a number
of models.’ The model of the chain which is considered
here looks like the carbon skeleton of polyethylene with
the following 51mphfy1ng assumptions (Fig. 1): The
“in-plane” motion is approximated by the superposi-
tion of three independent motions—two longitudinal
motions of the even and odd rows, respectively, and one
zigzag motion along C-C bonds. The “out-of-plane”
motion is approximated by the superposition of two
independent transverse motions of even and odd rows,
respectively.
The angle of internal rotation ¢; is defined with re-
spect to the plane of vertices, 7, j—1, j—2. From the
geometry of the figure we have

cosB;=1—sin’a(l — cose;),

where 2c is the valence angle.

To each vertex j one associates a Cartesian coordinate
system: The x axis joins the j—2 and j vertices, the y
and z axes are, respectively, in and orthogonal to the 7,
j—1, 7—2 plane.

The equations for the harmonic motion of the vertices

*D. E. Witenhafer and J. L. Koenig, Bull. Am. Phys. Soc. 11,
232 (1960).
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are written in internal coordinates. For the bending
mode, the passage from Cartesian displacement x
to internal displacement / is illustrated in Fig. 2.
Similar transformations define s and { in:

ml;= —~ cosBi_sli—a+2vel;~vs cosliy» (bending),
m;= —, cos2as;_y+ 27 ,5;—v, cos2as;yy (stretching),
mi;= —i|CoSPs| tiat2veti—ve| cOSPia| Ly

(out of plane). (1)

A conformation is given by a sequence {¢:}, i=1, - - -,
N. The effect of a change in conformation is to modify
the orientation of the interatomic forces; we assume,
however, that the magnitude of binary interaction is
invariant under changes in conformations. We consider
two cases: (1) ¢; can have one of the two values, 0
or ¢, and (2) ¢; can have any value in the interval
(0,2r). In case (1) we expect results analogous to single
mass defects and binary alloys. In case (2) we expect
results similar to level distributions for a random
matrix.®

When every ¢ is zero, the chain is extended. When
only one element is different from zero, it is called
singly folded. When more than one element is different
from zero, it is called multiply folded.

II. CALCULATIONS FOR SINGLY
FOLDED CHAINS

If Mo(w)=A¢—wl, where A, is the dynamical
matrix of the extended structure with cyclic boundary

cos g

0.5

cos 3 ‘\

o Y

o] 20 180

Fig. 1. Trans- and gauche conformations of the carbon skeleton

for 2a=060°. The diagram at the bottom is the variation of force

orientations as a function of internal rotation angle; the dotted

Lines are drawn symmetrically to cosg and |cos¢], respectively,
and intersect on the coss curve.

¢C. E. Porter, Statistical Theories of Specira: Flucluations
(Academic Press, New York, 1965), pp. 239, 298.
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Frc. 2. Dynamical matrix in Cartesian and internal displacements
coordinates for the bending motion. B matrix.

conditions, there corresponds to the singly folded chain
a matrix M which, according to the Green’s function
method, is written as

M= M(I+Mi D).
The frequencies are the roots of
| I+ M () D] =0. (2)

In our approximation the “defect” matrix has the form

0 day
D= F=1,3 ) (3)
dija 0

Vo

AGlw/w) - $e 20"

n
pione Fic. 3. Correction
to the extended fre-
quency distribution
for a singly folded
chain. The exact
normalization of
these curves is given
by Eq. (7).
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For the bending mode:
dyy j=dj 117 v (1 —cosB;).
For the transverse mode, this matrix element is
djoy ;= dj 1= y:(1— [ cosgy | ).

The stretch mode is not affected by changes in con-
formation in this model. The dependance of the stretch
frequency on a valence-angle defect is given later. The
elements of the matrix are the Green’s function of the
extended conformation; they are written:

Mo =gln), n=li—j|.

In this case,

[ cotghg'4 sinfni8:2 ’
e cosnl; 2 even  (4)
()= 2y sind 2ypsind
W, » odd

sin/2=w"w;? wpi=4y.

Por the bending and out-of-plane modes, the frequency
distribution for the extended structure is

Go(w) — Z GU"”, (\5)
where = is the index of the mode (in and out of plane),
and r is the index of the row (upper and lower).

Go™=1/w (1—w?/ w

(6)

A single fold introduces a correction to the frequency
distribution of the form:

AG™(@) = fraG ™ (a0 N 8= 0s?) 4 8(c0?) ]
0, »<0
4 L‘?w(l—f—v}

—d{w (e [ 14 (14/2) (14411},
>0, (7)

7

so that the frequency distribution of u singly folded
chain excluding the stretch mode is

Glw)=Go+3 AG™, (8)
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‘Tapik 1. Correspondence between o and £

w? £ Contour
(m (wz,*/Z)( 1 LC(;ZJ) N —wi Jeos2o= (1 /'{:05”204 -1 T, Iy
to
(wr?/2)(1—coslu cosg) ¢ 0S¢ <r T Iy
(w2,2/2){(14cosZa) —1 w0 Iy

1%

where
Jomr=— (v 20/ Ne[ P+ 320 01— ] (9)

and
ya= —sin’a(l— cosd) 2—sin®a(l —cose) |

for bending motion, and
r=cosip—1

for trangverse motion. In all cuses p<Q.

The effect of folding is to reduce the singularities of
Glw?) atw=0 and w=w;, and to raise the frequency dis-
tribution in the central part of the (Qw:) interval
(Fig. 3).

For the transverse mode, this effect reaches a maxi-
mum at ¢=1/2; the left and right branches move
independently. For the bend mode the effect is greatest
at d=m.

The effect of a valence-angle defect on the stretch
mode is determined in a similar way; the defect matrix
clements are

(funlyf == dj.j-—l = YS(COSZQ"- COSZ(X;),

where o’ 13 the “defect” value.

Relations (2) and (3) remain valid. The Green's
function, however, has an additional factor cos?a in
the denominator which modifies the integration path
given in Mahanty et al.7

The Fourier transform of the square frequency dis-
tribution is determined in this reference from

AM@=/¢WMMJ+M§WL (10)

ufiw;

Log

104

16, 5. Separation \
of the out-of-band 10 '
stretching modes
from the continuum
as a function of
valence-angle defect

See Eq. (14).
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7J. Mahanty, A. A. Maradudin, and G. H. Welss, Progr.
Theoret. Phys. (Kyoto) 20, 369 (1958).
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F1G. 6. Frequency distribution for several concentrations of randomly distributed gauche conformations.
The appropriate change of variable is here Green’s function is
—(1/ys cos2a)[£7/(6—E1)], [¢(<1
= (/42— cos2a(t—£1)]. 1) gw)= (12)

—(1/ys cos2a)[E/(E1=8)], |E|>1.

The correspondence is given in Fig. 4 and Table I.  The frequency distribution of the unperturbed chain is
The out-of-band mode above the continuum arises
- —(1— 3
in the Ty integration, and the out-of-band mode below Gor= (w/mwr)[ cosa— (1~ 20*/ws?) T (13)
the continuum arises in the I's integration. Thus the The additional term due to the defect is

AG(w)= fGoa—%{ 8 w?—wr2(14cos2a) J+ 6[w2—?’—12‘—(1- cosZa):]} (14)

0, u<O

+9 20(14p)
r
J=(41/2)21/ N[1*+(8/cos?20) ][ cos?2a— (1 - 20?/wy?)7]

u=cos?2a/cos2a—1.

(5{w2——w~;—[1+COSZa(l-f-u/Z)(l—f—u)“‘*]] +6 {wz—fzi[l——cosZa(1+u/2)(1+p,)—"] } ), u>0

(15)
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Then the contribution to the frequency distribution
from the stretch mode for a singly folded chain is

Gs(w) = Gos+ AG..

For a’ <a, the valence defect reduces the singularities
at (wr/2)(1cos2a). In the range o’ > «, the singularities
are “enhanced.” Also, two out-of-band modes appear:
one lower than the lowest, the other higher than the
greatest unperturbed modes.® The separations (wo/wr)?
are given as a function of &’ in Tig. 5.

II. CALCULATIONS FOR MULTIPLY
FOLDED CHAINS

Our model includes only nearest-neighbor forces and
we neglect interactions between modes. Consequently,
the dynamical matrix for any conformation is in tri-
diagonal form (Fig. 2). The eigenvalue distribution f of
such matrices is known to be easily calculated by use of
Sturm sequences. This method is explained in detail

f
(o) periodic.
®.......... rondom .
30 n n
204

w¥a?

0

l'i6. 7. Comparison of frequency distributions for (a) regularly
spaced folds (teng; =0 followed by one ¢ = 120°) and (b) a random
distribution of 120° folds occurring with a frequency p=0.089.

* It is interesting to note that if we had used fixed, rather than
cyclic, boundary conditions, we would have obtained two extra
out-of-band modes. Both of these modes appear well separated
from and below the continuum and they appear even for the ex-
tended conformation. Fixed boundary conditions correspond to an
infinite mass defect; and it is well known? that this defect does not
produce out-of-band modes above the continuum. However due
to the zigzag geometry, we have two modes below the continuum.
If we use free boundary conditions, we gel no extra out-of-band
modes.
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I'16. 8. Frequency distribution for a periodically folded chain
one-hundred ¢; =0 followed by five ¢; =120°).
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elsewhere,* and we do not go into the details of its ap-
plication. However, it simply is a method of computing
the number of eigenvalues of the dynamical matrix in
an interval of the variable «? in terms of the principal
determinants evaluated at the end points of the interval.

We first consider the case where ¢; takes one of the
two values 0 and &; we chose ¢=120°, corresponding to
“gauche” conformations. We define the concentration
p as the number of internal rotation angles different
from zero, divided by the total number of angles.
We shall determine the frequency distribution of
the transverse mode for various values of p. Another
parameter is the order in which the ¢, are distributed
along the chain; we have considered two extreme cases,
namely, random and periodic distribution.

Figure 6 shows the spectrum for the out-of-plane
mode for eight concentrations of gauche conformations,
randomly distributed. We can recognize the inverse
square law in the vicinities p=0 and p=1. Also recog-
nizable is the occurrence of the sequences &, ¢, ¢, 0,
&, ¢, ¢ in the diagrams for > 0.5, by the peaks labeled
I; this is done according to the analysis of Ref. 4. It
would be interesting to identify the island 0, 0, 0, &,
0, 0, 0, and others by a similar technique.

The effects of ordered sequences of angles 0 and ¢
are shown in I'igs. 7 and 8. In Fig. 7(a), we show the
frequency distribution for the out-of-plane mode for
repeated sequences of ten zero angles followed by one ¢.
Comparing this to Fig. 7(b) for p=0.089, we sce that
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there is a considerable difference between random and
regular ordering of defects. This certainly suggests an
investigation of the frequency distribution for Markov
chains.

In Fig. 8, we show the out-of-plane frequency dis-
tribution for an ordered sequence of one-hundred zero
angles followed by five $=120°. This configuration
should correspond to the folding of chains in crystallites.
While there are differences between this frequency dis-
tribution and the frequency distribution for the ex-
tended chain, it seems unlikely that an experiment
could be devised to measure the differences.

In Fig. 9, we show the frequency distribution for the
out-of-plane and bending modes for a random distribu-
tion of the values of the ¢’s in the interval zero to 2.
These frequency distributions are considerably different
from both the ordered and disordered sequences of
trans- and gauche angles. They also show a character-
istic difference among themselves; this is to be expected
since the matrix elements for in- and out-of-plane mo-
tions do not have the same dependence on the internal
rotation angle.

IV. DISCUSSION

Using a simple model for the motions of the carbon
skeleton of a polyethylene chain, we have computed
the frequency distribution as a function of chain con-
formation. For this model there are variations in the
frequency distribution that should be observable ex-
perimentally. For example, one could distinguish be-
tween certain conformations in the variation of the
specific heat! or the neutron-scattering cross section.?

Our model is certainly too simple to describe the
detailed nature of the frequency distribution as a func-
tion of chain conformation. However, the model does
give the general features of the frequency distribution
quite well for the extended chain. Certainly the ease
with which calculations can be made for this model
makes it at'least a good starting point for more detailed
and realistic calculations.

We have not attempted a detailed calculation of any
measurable quantities such as the specific heat or neu-
tron cross section. We have limited ourselves here to
examining the variation of the frequency distribution
for various chain conformations and, in particular,
which of these should be differentiable experimentally.
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F16. 9. Frequency distributions for in-plane bending and out-of-
plane motions for a random distribution of angles in the range
0, 27).

From these results we would expect to find a measur-
able difference in the specific heats and neutron cross
sections for certain conformations. In a future work, we
will perform an analysis of neutron-scattering data and
specific heats to distinguish between the various
possibilities.

Insertion of the neglected interactions due to the
folding itself may well modify the present results. Other
effects such as change of magnitude of binary forces
may also have a nonnegligible contribution.

However, we have shown that each conformation has
a typical frequency distribution. If a more rigorous
correspondence could be established between conforma-
tions and frequency distributions, it could help to
decide such questions as structures of crystallite,
amorphous, and intermediate regions.



