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The twofold multiplicity problem associated with the Wigner supermultiplet reduction SU(4) => 
SU~2) ~ SU(2) .is re~olved by spin-iso.spin projection techniques analogous to the angular momentum 
I?roJ.ectlon techmque Introduced ?y Elho~t to :esolve th~ SU(3) => R(3) multiplicity problem. The pro
Jectl~n . quantum ~umbers, wh~ch furnIsh either ~n. lI;lteger or half-integer characterization of the 
multIplICIty, are assIgned accordIng to an (ST)-multlphclty formula derived from a consideration of the 
symmetry properties of spin-isospin degeneracy diagrams. An expression is obtained for the coefficients 
which relate the SU(4) => SU(2) ® SU(2) projected basis states to states labeled according to the 
natura.l U(4) => U(3) =>. U(2) =>. U(1) chain. Gene~al e~pressions for SU(4) => SU(2) ® SU(2) coupling 
coefficIents and tensonal matnx elements are gIven In terms of the corresponding U(4) => U(3) => 
U(2) => U(I) quantities. 

1. INTRODUCTION 

In 1937 Wignerl pioneered work that established 
SU(4) as a group of major importance in nuclear 
structure studies. Its basis, the charge independence 
of nuclear forces, followed from an observed approxi
mate fourfold degeneracy of nuclear energy levels. The 
result was the introduction of a nucleon distinguishing 
isospin quantum number which was combined with 
that of ordinary spin in the development of a spin
isospin supermultiplet theory. Group-theoretically, 
it corresponds to a state labeling scheme based upon 
the spin-isospin reduction SU(4) :::> SU(2) ® SU(2). 

In general, a complete specification of states in the 
supermultiplet scheme requires six labels in addition 
to those of the irreducible representation (IR) of 
SU(4). The direct product SU(2) ® SU(2) provides 
only four; two additional labels are needed. Techniques 
that can be used to resolve the multiplicity have been 
proposed by several authors. 2 In particular, Moshinsky 
and Nagel2 have given a recipe for the construction of 
two operators whose eigenvalues may be used to 
complete the labeling. Labels obtained in this manner 
do not, however, exhibit any obvious symmetry 
properties, nor do they correspond in any way to 
know quantities of physical interest. In addition, 
the labels are not necessarily rational numbers. 

A mathematically more convenient reduction is 
the natural or Gel'fand3 chain U(4):::> U(3) :::> 

U(2) :::l U(I). In this case, the IR labels of U(3), 
U(2) , and U(1) provide the required six labels. 
Unfortunately, the reduction is unphysical. Neverthe
less, since calculations are simpler within such a 
framework, the scheme has been used to calculate 
quantities of physical interest which depend only 
upon the IR labels of SU(4). An example in point is 
that of the SU(4) unitary recoupling coefficients 
(U functions) given by Hecht and Pang.4 

The purpose of the present paper is to state and 
prove the existence of another solution to the SUe 4) :::> 

SU(2) ® SU(2) multiplicity problem, one in which 
the two additional labels are chosen so as to furnish 
an integer or half-integer characterization of the 
multiplicity that exhibits spin-isospin symmetry 
properties. The technique used is one of spin-isospin 
projection; it parallels closely Elliott's5 resolution of 
the multiplicity problem in the SU(3) :::> R(3) reduc
tion. The simplifications associated with the U(4) :::> 

U(3) :::> U(2) :::> U(l) reduction are incorporated into 
the scheme via coefficients which relate the projected 
SU(4) :::> SU(2) ® SU(2) basis states to those labeled 
according to the U(4) :::> U(3) :::> U(2):::> U(l) chain. 

To establish notation, Sec. 2 is devoted to a brief 
review of SUe 4) operator and state labeling techniques. 
In Sec. 3 a discussion of SU(4) spin-isospin degeneracy 
diagrams is given, and a new rule for determining the 
number of occurrences of a spin-isospin pair (ST) 
in a given IR of SU(4) is derived. In Sec. 4 the pro
jection hypothesis is stated, and the completeness of 
the states so defined is proved. In Sec. 5 an expression 
is obtained for the coefficients which relate the pro
jected basis states to those labeled according to the 
canonical U(4):::> U(3) :::> U(2):::> U(l) reduction; 
general expressions for SU(4) :::> SU(2) ® SU(2) cou
pling coefficients and tensorial matrix elements in 
terms of the corresponding U(4) :::> U(3) :::> U(2) :::> 

U(1) quantities are also given. 

2. BASIC NOTATION 

A. Infinitesimal Generators 

The 16 infinitesimal generators of U(4) are given in 
terms of nucleon spin-charge creation and annihilation 
operators by 

(2.1) 
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where s denotes the full set of space quantum num
bers. The Aap satisfy the U(4) commutation relations 

[A ap , ApaJ = oppAaa - oaaApp. (2.2) 

Deletion of the operator N = La Aaa which commutes 
with the Aap leads to a set of 15 infinitesimal generators 
for the group SUe 4). If rJ. = 1, 2, 3, and 4 represent 
the spin-isospin quantum numbers ms and mt in the 
sense 

11) = I+t. +i), 12) = I+i, -i), 
13) = I-i, +i), 14) = I-i, -t), (2.3) 

then the SUe 4) generators can be expressed in terms 
of SU(4) ::J SU(2) ® SU(2) tensors as4 

So = HAn - A33 + A22 - Au), 

To = HAn - A22 + A33 - A44), 

Eoo = HAn - A22 - A33 + A44), 

S_ = A31 + A42 , S+ = A13 + A24 , 

T+ = A12 + A34 , L = A21 + A43 , (2.4) 

E10 = Au - A24 , E_10 = A31 - A42 , 

E01 = A12 - A34 , Eo -1 = A21 - A43 , 

En = A14 , E-1 - 1 = A41 , 

E1 -1 = A23 , E-11 = A32 · 

The commutation properties of S, T, and E follow 
from the commutation properties of the Aap given by 
Eq. (2.2). 

B. Irreducible Representations 

Gel'fand patterns of the type 

IG) = 

h14 h24 h34 h44 

h13 h23 ha3 

h12 h22 

hn 

(2.5) 

furnish a complete set of labels for the basis states of 
an IR of U(4). The hall' 1 ~ rJ. ~ {3 ~ 4, specify the 
IR's of U({3) in the canonical chain U(4) ::J U(3) ::J 

U(2) :;) U(l) to which the state belongs. The hap are 
integral and satisfy the Young tableau or between
ness conditions 

haP ~ ha,p_1 ~ ha+1,p ~ O. (2.6) 

Replacing each hap by hap - h44 leads to the corre
sponding basis state for SU(4); it differs from the 
U(4) state by at most an h44-dependent phase 
factor. 

Other characterizations for the IR's of SU(4) in-

elude the set of three numbers (A'lA2Aa) given by 
Al = h14 - h24 • A2 = h24 - h34' and Aa = h34 - h44 • 

SU(4) conjugation properties can then be expressed 
as relating the (A1A2A3) and (A3A2A1) IR's.6 Wigner1 

introduced the triplet of numbers (PP'P") given by 
P = teAl + 2A2 + A3), P' = HAl + Aa), and P" = 
HAl - As)· They are associated with the maximum 
eigenvalues for the operators Eoo , So, and To (e.g., 
P = maximum eigenvalue of Eoo contained in the 
IR, P' = maximum eigenvalue of So for states with 
Eoo = P, and P" = maximum eigenvalue of To for 
states with Eoo = P and So = P').7 In what follows, 
simplicity of formulation will determine which 
labels are used. In all cases the relationships as given 
above apply. 

The states IG) are eigenstates of the operators Aaa 
with eigenvalues Wa , 

Aaa IG) = Wa IG), 

Wa = LrowrJ. - Lrow(rJ. - 1) 

= L hpa - L hp,a-1' (2.7) 
p fJ 

States of particular interest in the present develop
ment are those for which the operator Eoo = HAn -
A22 - A3S + A44) assumes either its (a) maximum 
(E~ax = P) or (b) minimum (E~in = - P) eigenvalue. 
The hap for such states are uniquely specified by Ks 
and KT , the eigenvalues of HAn + A22 - Aa3 - A44) 
= So and HAn - A22 + A33 - A44) = To, respec
tively. Explicitly, 

where 

h1-p 

o ~ P ~ AI' 0 ::;; q ::;; A3 , (2.8a) 

h3 -q 

O::;;p::;;A1,O::;;q::;;Aa, (2.8b) 

Ks + KT = hI - h2 - 2p = Al - 2p, 

Ks - KT = h2 - h3 - 2q = A3 - 2q, (2.9a) 

Ks + KT = hz - ha - 2q = Aa - 2q, 

Ks - KT = hI - h2 - 2p = A} - 2p (2.9b) 

for IGEt) and IGE~>' respectively.s The solid curves 
in Fig. 2 of Sec. 4 illustrate the result schematically. 
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Note that for (a) (A1Aa)-(odd, even) Ks and KT are 
half-integral with Ks differing from KT by twice an 
integer, for (b) (A1Aa)-(odd, odd) Ks and KT are 
integral with Ks differing from KT by twice an 
integer plus one, for (c) (A1Aa)-(even, odd) Ks and KT 
are half-integral with Ks differing from KT by twice 
an integer plus one, and for (d) (AIAa)-(even, even) 
Ks and KT are integral with Ks differing from KT 
by twice an integer. That is, the odd-even charac
teristics of Al and Aa furnish a complete characteriza
tion of distinct symmetry types for the {KsKT }-values 
associated with the IGE ). 

3. SPIN-ISOSPIN MULTIPLICITIES 

Racah9 has given a relatively simple algebraic 
formula for determining the multiplicity N(ST)(A1A2Aa) 
of (ST)-values in an IR (A1A2Aa) of SU(4). Some 
simplifications in his result follow from the investiga
tions of Kretzschmar10 and Perelomov and PopovY 
In each case the expressions given are based upon the 
Littlewood rules12 which allow N(ST)(A1A2Aa) to be 
related to a sum over terms of the type N(sT)(A~A~A~), 
where the IR's (A~A~A~) have particularly simple 
multiplicity structures. In this section an expression 
for N(ST)(A1A2Aa) is given which involves a sum over 
terms of the type N(S'T') (A10Aa) where the (S'T')-values 
are related to the (ST)-values in a very simple way. 
Since Racah's expression for NST(A10Aa) is quite 
transparent, the result is particularly convenient for 
a study of the origin of (8T)-multiplicities and leads 
quite naturally to a rule for the projection numbers of 
Sec. 4. 

A. Degeneracy Diagrams 

A spin-isospin degeneracy diagram for the IR 
(AI A2Aa) of SUe 4) is a regular lattice of points (ST) 
each of which is labeled by the numerical value of 
N(ST) (AIA2Aa), the multiplicity of the pair (ST) in 
the IR (A1A2Aa)' Figure 4 of Sec. 4 gives examples. 
The spin-isospin symmetry property N(ST)(A1A2Aa) = 
N(TS)(A1A2Aa) corresponds to reflection symmetry in 
the 8 = T plane. The conjugation properties of 8U(4) 
imply that N(ST) (AIA2Aa) = N(ST)(AaA2A1). A systematic 
study of SU(4) spin-isospin degeneracy diagrams 
can therefore be limited to a consideration of those 
IR's of 8U(4) for which Al ~ A3 and within such IR's 
those (8T)-values for which SsT. 

Figure 1 illustrates features common to all 8U(4) 
spin-isospin degeneracy diagrams. The heavy solid 
curve EP(A1A2Aa) is, in the terminology of Perelomov 
and Popov, 11 the enveloping polygon for the spin
isospin degeneracy diagram associated with the 
(AIA2Aa) IR of 8U(4). It circumscribes all (8T)-values 

T 

A 
u 

v 

B' 

5 

. FIG. I. General features of an SU(4) spin-isospin degeneracy 
diagram. The heavy solid curve EP(A,A2 A3) is the enveloping polygon 
for the spin-isospin degeneracy diagram associated with the (.1.,.1.2.1.3) 
IR of SU(4). The (ST)- and [UVj-coordinates of the boundary 
points are given by 

A :(r, P), [Q, +.1.2]; B :(P", P), [Q', +Q"]; C :(0, Q"), [Q", +Q"], 

A':(P, r), [.Q, -.1.2]; B':(P, r), [Q', -Q"j; C':(Q", 0), [Q", -Q"], 

where (PP'P") are the Wigner super multiplet quantum numbers 

and the (Q Q' Q") triplet of numbers is given by 

The dashed curve EP(A,0A 3) is the corresponding result for .1.2 = O. 

for which N(ST)(A1A2Aa) is nonzero. The boundary 
points for the polygon are as given in the figure. The 
axes U = T + S and V = T - S have been included 
as a simplifying feature for the discussion that is to 
follow. The dashed curve EP(A10Aa) is the corre
sponding result for ,12 = 0. As shown, the figure 
corresponds to Al + Aa even and hence integral (ST)
values. For Al + Aa odd and hence half-integral 
(8T)-values, the schematics are identical, the only 
difference being that the lines OC and OC' are 
shifted one-half unit from the coordinate axes. 

As can be seen from Fig. 1, EP(A1A2Aa) and 
EP(A10Aa) are simply related; for SsT, EP(A1A2Aa) 
corresponds to EP(A10Aa) shifted ,12 units along the 
T axis, and, for 8 > T, EP(A1A2Aa) corresponds to 
EP(A10Aa) shifted ,12 units along the S axis. More 
precisely, EP(A1A2Aa) is the envelope of all isosceles 
right triangles built by A2 regular lattice displace
ments1a upon the (8T)-values of EP(A10Aa). Therefore, 
EP(A10Aa) is a characteristic structure common to all 
IR (A1A2Aa) (AI and Aa fixed; ,12 arbitrary) of SU(4). 
Furthermore, note that for ,12 = ° the boundary points 
Band B' coincide with the boundary points {P", P'} 
and {P', P"} of Fig. 2a (Sec. 4). Therefore, like rule 
(2.9) for the {KsKT}-values associated with IGE ), a 
classification scheme based on the odd-even charac
teristics of the fundamental lengths U A - U C = Al 
and VB - VA = Aa furnishes a complete characteriza
tion of distinct EP(A10Aa) and hence EP(A1A2Aa) 
symmetry types. 
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The results for EP(A1A2As) suggest that N(ST) (AIA2AS) 
may be simply related to N(S'T,)(A10As) and, further
more, that the classification scheme (a) (AIAs)-(odd, 
even), (b) (AIAs)-(odd, odd), (c) (AIAs)-(even, odd), 
and (d) (AIAs)-(even, even) may furnish a complete 
characterization of distinct N(ST)(A10As) and hence 
N(ST)(A1A2As) symmetry types. To test the hypothesis, 
a quantitative study of the numerology of related 
degeneracy diagrams was made (e.g., see Fig. 4 in 
Sec. 4). In terms of NWVj(AIA2AS) == N(ST)(A1A2As), 
u = T + S, and V = T - S, the result of the in
vestigation, with V ~ 0, is that 

NWVPIA2AS) = NW V] (AI , A2 - 1, As) 

+ NW'V,PIOAa) + °WV](AIA2Aa), 

U' = U - A2 , 

V' = map [V - A2 , Imod (V - A2 , 2)1], (3.1) 

where 0WVPIA2Aa) = ° for cases (a), (b), and (c) 
and, for case (d), 

O[UVj(AIA2Aa) = 1, A2 > U ~ V, U - A2 even, 

= -1, A2> U ~ V, U -A2 odd, 

= 0, otherwise. (3.2) 

The formula is recursive and therefore may be iterated 
to yield 

N[uvlAIA2AS) = ~ N[U'V'j(AIOAs), 
m 

U' = U - m, (3.3) 
V' = max [V - m, Imod (V - m,2)1], 

° :::;; m :::;; A2 , m =;t. U if U - A2 odd, 

which is applicable to all four cases (a)-(d). In terms 
of N(ST) (AIOAa) , Eq. (3.3) has the form 

S> T: 

N(ST)(AIA2Aa) 

= N(ST)(AIOAa) 

+ N(S_l,T)(AIOAa) 

+ 

+ N(TT)(AIOAa) (3.4a) 

+ N(T,T-I)(AIOAs) 

+ N(T_I,T_I)(AIOAs) 

+ 

+ N(S'T,)(AIOAs), 

S' + T' = S + T - A2, 

S:::;; T: 

N(ST)(AIA2As) 

= N(ST)(AIOAa) 

+ N(S,T-I)(AIOAs) 

+ 

+ N(SS)(AIOAa) (3.4b) 

+ N(S,S_l)(AIOAs) 

+ N (S-l,S-l)(AIOAa) 

+ 

+ N(S'T,)(AIOAa), 

S' + T' = S + T - A2 , 

where N(OO)(AIOAa) is not included if S + T - A2 is 
odd. The next section is devoted to an analytic proof 
of this result. 

B. Proof of the Multiplicity Formula 

Racah9 has shown that 

NW V](AIA2AS) = WWVPI + A2, A2 + Aa) 

- WWVPI + A2 + Aa + 1, A2 - 1) 

- WWVj(AI - 1, As - 1), (3.5) 

where w[UVj(xy) vanishes unless 

x + y ~ max (U + V, U - V), 

x + y == U + V == U - V (mod 2), 

and that, if these conditions are satisfied and x ~ y, 

w[UVj(xy) = w[UV](Yx) 

= cp(y + 2 - IVI) 
- cp(y + 1 - U) 

+ cp(U - x + 1) 

- tcp(U - IVI - x + y + 1). (3.6) 

The function cp(z) is given by 

cp(z) = [z2/4], z ~ 0, 
= 0, Z < 0, (3.7) 

where the boldface brackets indicate the greatest 
integer contained in the argument. 

Define 

dNwvPIA2Aa) = NWvPIA2Aa) 

- NWVPI' A2 - 1, As), (3.8a) 

dwWVj(XY) = w[UV1(xy) 
- WWVj(x - 1, Y - 1), (3.8b) 

dcp(z) = cp(z) - cp(z - 1). (3.8c) 
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Then, to prove Eq. (3.1), it is sufficient to demonstrate 
the equivalence of 

~N[UV](AIA2As) 

= ~W[UV](AI + A2, A2 + As) 

- ~W[UV](AI + A2 + As + 1, A2 - 1) 

= ~q:{A2 + As + 2 - V) - ~ip(A2 + As + 1 - V) 

+ ~ip(V - Al - A2 - 1) - ~ip(A2 + 1 - V) 

+ ~ip(A2 - V) - ~ip(V - Al - A2 - A3) (3.9) 

and 

N[U'V,](A10A3) 

= ~w[U'V,](AIA3) 

= ~ip(A3 + 2 - V') - ~ip(A3 + 1 - V') 

+ ~ip(V' - Al - I), (3.10) 

For (A1A3)-(even, even) and A2 > V ~ V, the factor 

t5[UV](A1A2A3) must, of course, be added to 

N[U,V'](A10A3). 

Consider the following special cases: 

Case I: U ~ V ~ A2 • 

Case 2: V ~ A2 ~ V: 

(a) V - A2 = -2n, 

(b) V - A2 = - 2n - 1. 

Case 3: A2 > V ~ V: 

(a) V = V + 2n + I: 

(I) (AIA3)-(odd, even), 

(2) (A1A3)-(even, odd); 

(b) V = V + 2n: 

(I) (AIA3)-(odd, odd), 

(2) (A1A3)-(even, even). 

For case I the result is trivial since V' = V - A2 , 

V' = V - A2 makes ~N[UV](AIA2A3) and N[U'V,P10A3) 
identical functions in ip. In both (a) and (b) of case 2 
an application of the result ~ip(m + 2n) = ~ip(m) + 
n, m, n integer, leads to the desired conclusion. 
Case 3 is somewhat more complicated because 
V' = U - A2 < ° implies that N[U'V,](A10A3) = 0. 
In this case it is therefore necessary to demonstrate 
the equivalence of LlN[UV](A,1A,2A,S) and c5[UV](AIA2AS)' 
The substitution A2 - V = 2m + t5 and A2 + 1 -
V = 2n + v, m, n integer and fl, v being ° or 1, sim
plifies ~N[UV](AIA2As) to 

~N[UVPIA2A3) = ~ip(A3 + 1 + v) 

- Llip(A3 + 1 + fl). (3.11) 

For 3(a) fl = v so that ~N[UVPIA2A3) = 0. For 3(b) 
fl ¥= v, but the substitution A3 + I = 2k + K, k 
integer and K being ° or I, leads to 

~N[UVPIA2AS) = Llip(V) - ~ip(fl) 

= ° (3.12) 
for (bI) and 

~N[UVPIA2A3) 
= ~ip(v + 1) - ~ip(fl + 1) 

= { 1, V - A2 even, fl = 0, v = 1 , (3.13) 
-1, V - A2 odd, fl = 1, v = ° 

for (b2), which is the desired result. 

4. SPIN-ISO SPIN PROJECTION 

The additional quantum numbers that are required 
to resolve the twofold multiplicity associated with the 
reduction SV(4) ::> SV(2) ® SU(2) may be chosen in 
a variety of ways. The solution proposed by Moshin
sky and Nage12 is not necessarily the most convenient 
because of the algebraic diffculties inherent with 
the corresponding eigenvalue problem. In this section 
the existence of another solution to the multiplicity 
problem is stated and proved. It is based upon spin
isospin projection techniques in which the {KsKT }

pairs associated with the states IGE ) furnish the 
required labels. 

A. Projection Hypothesis 

A projection operator for a state of total angular 
momentum J with projection M may be expressed in 
Hill-Wheeler integral form14 as 

PilK = (21 + 1) f dQD'i:K(Q)RAQ), (4.1) 

where Dfux(Q) is an R(3) rotation matrix and RAQ) 
is an R(3) rotation operator, 

(4.2) 

The integration is over Euler angles (ocpy). From this 
definition it follows that 

P'£,;.'K,Pi.tK = bJ'JbK'MP'!WK' (4.3) 

Jt J 
PMK = PKM , (4.4) 

where Pick indicates the Hermitian conjugate of 
PicK' Cases of interest in the present analysis are 
those for which J is either the spin S or the isospin 
T of Eq. (2.4). 
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Since eigenstates of the total spin and isospin 
operators may be obtained from a state IG> by simply 
applying the projection operators P'it sK sand PIJ TK T' 

we define 

JGKsSMsKTTMT> == p'i.tsKsprITKT IG>. (4.5) 
The complete G symbol has been retained in the 
projected ket as a reminder of the Gel'fand state 
from which it was derived; only the IR labels ha4' 
however, remain valid state labels. In many cases the 
IGKsSMsKTTMT> will turn out to be identically zero. 
It remains to specify the IG> and pairs {KsKT} with 
their corresponding (ST)-values for which projected 
states span the IR space. 

The Projection Hypothesis 

The projected states 
s T 

IGEKsSMsKTTMT> == PMsKsPMTKT IGE>, (4.6) 

with ICE> the Gel'fand states for which the operator 
Eoo assumes its maximum (AI ~ ,13) or minimum 
(AI < ,13) eigenvalue, span the (A1A2A3) IR space of 
SU(4) if with each integer (AI + ,13 even) or half
integer (AI + ,13 odd) pair {KsKT} satisfying 

Ks + KT = max (,11,13) - 2p, 

Ks - KT = min (AIA3) - 2q, 

05:,. P 5:,. [max (A1A3)/2] , 

K 5:,. q 5:,. min (AI A3), 

K = 0, Ks + KT "e 0, 

K = [min (,11,13)/2], Ks + KT = 0, (4.7) 

is associated the (ST)-values 

a> T: (ST) = (a + {t, T + '1'), 

o 5:,. {t 5:,. ,12' 

o 5:,. 'I' < a - T + A2 - {t, 

(4.8a) 
a 5:,. T "e 0: (ST) = (a + {t, T + '1'), 

o 5:,. 'I' 5:,. ,12' 

o 5:,. {t5:,. T - a + ,12 - '1', 

(4.8b) 
a = T = 0: (ST) = (,12 - 2{t - '1', '1'), 

o S; {t S; [,12/2], 

o S; 'I' 5:,. ,12 - 2, (4.8c) 

where a = IKsl and T = IKTI. The projections Ms 
and M T assume the usual values - S 5:,. M s 5:,. S 
and -T5:,. MT 5:,. T. 

The proof of the hypothesis will be made in two 
steps. First, the value of N(ST)(A1A2Aa) predicted by 
the rule will be shown to be precisely that derived in 

Sec. 3. And, secondly, the assumption that there 
exists a function belonging to the IR space but orthog
onal to the projected states will be shown to lead to a 
contradiction. Before proceeding, however, we first 
consider in more detail the structure of the rule as 
given by Eqs. (4.7) and (4.8). 

Since the Gel'fand states IGE > are eigenstates of 
So and To, the {KsKT }-pairs of Eq. (4.7) are necessar
ily a subset of the allowed {KsKT}-pairs given by Eq. 
(2.9). The choice made (see Fig. 2) is not, however, 
unique; other possibilities exist. For example, 
simply replacing each {KsKT}-pair of Eq. (4.7) by 
{ - Ks , - KT} (inversion in the {KsKT }-plane) pro
vides an equally acceptable set of projection numbers. 
It is also true that any partial inversion in the {KsKT}
plane provides an acceptable set of projection numbers. 
The essential feature of any such choice is that only 
one of the pairs, {KsKT} or its inversion {-Ks, 
-KT},be included. Inclusion of both pairs leads to 
states which are not linearly independent. The choice 
made by Eq. (4.7) is therefore one of convention; its 
simplifying feature is that it maximizes the number of 
{KsKT}-pairs contained within EP(A10A3). 

In some applications it is convenient to know the 
rule corresponding to Eq. (4.7) for projection from 
IGEt> if Al < ,13 and from IGE~> if Al ~ Aa. It can be 
obtained from Eq. (4.7) by simply interchanging the 
max-min specifications. It follows that the rules for 
determining the {KsKT}-pairs for projection from 
IGEt> and IGE~> without regard to the relationship 
of Al and A3 are given by the following: 

projection from IGEt >: 
Ks + KT = Al - 2p, 

Ks - KT = ,13 - 2q, 

o 5:,. P 5:,. [A.1/2], 

K 5:,. q 5:,. ,13' 

K = 0, Ks + KT "e 0, 

K = [A3/2], Ks + KT = 0; (4.9a) 

projection from IGE~>: 

Ks + KT = ,13 - 2q, 

Ks - KT = Al - 2p, 

o S; q S; [,13/2], 

K5:,.p5:,.Al' 

K = 0, Ks + KT "e 0, 

K = [A 1/2], Ks + KT = O. (4.9b) 

Figure 2 illustrates the result schematically. The 
dashed curves (Ks + KT = 0 not allowed) and the bro
ken curves (Ks + KT = 0 allowed) divide the {KsKT}
pairs of Eq. (2.9) into two sets equivalent under 



SU(4) :::> SU(2) @ SU(2) PROJECTION TECHNIQUES 3231 
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(·P:·P") 

p .. "O) 
(-p.:.p' 

KS 

~) W 

FIG. 2. The envelope of {KsKT}-pairs associated with IGE>. (a) 
IGE ) = I GEt), (b) IGE) = IGE {). The boundaries are denoted by 
their (pq)- and {KsKr}-values. The dashed curves (Ks + Kr = 0 
not allowed) and the broken curves (Ks + Kr = 0 allowed) divide 
the {KsKT}-pairs into two sets equivalent under inversion; the 
pairs for which Ks + Kr ~ 0 are by convention the projection 
numbers of Eq. (4.9). 

inversion; the pairs for which Ks + K1, 2: 0 are by 
convention the projection numbers of Eq. (4.9). In 
any case the spectrum of (ST)-values given by Eq. 
(4.8) depends only upon a and T and is therefore in
dependent of the {KsKT}-rule chosen as long as all 
{KsKT}-pairs belonging to the Gel'fand state IGE ) 

under consideration, but not equivalent under inver
sion, are included in the rule specification. 

Figure 3 iIIustrates Eq. (4.8) by giving the spectrum 
of (ST)-values associated with a given {KsKT}-pair 
for the cases 0'<7, a = 7 = a', and 0'= 7 = O. 
The schematics of the figure are such that the (ST)
values labeled by the same symbol are those derived 
from the same {KsKT}-pair. In the examples shown, 
..1.2 = 4. For 0'< 7, both {KsKT} = {aT} and {KsKT} = 
{TO'} have been given. In the case a < T, note that ex
ceptfor (ST) = (T + ..1.2 - V, 7 + v), 0 S v S .42, for 
each (ST){KsKrl (labeled by +) there exists the trans
pose set (TS){K rK s} (labeled by 0). The asymmetry can 
be removed for .42 odd by relating (ST) = (7 + .42 - v, 
7 + v), 0 S v S [..1.2/2], to {aT} and (ST) = (7 + 
..1.2 - v, 7 + v), [..1.2/2] + 1 S v S ..1.2, to {7a}. For 
..1.2 even, however, the asymmetry associated with 
(ST) = (7 + tA2' 7 + tA.2) cannot be removed. The 
choice made by Eqs. (4.8) is therefore again one of 
convention. Its simplifying feature is manifest in the 
form of Eqs. (4.8a) and (4.8b). For () = T = a', an 
asymmetry only exists if {KsKT} = {-a', a/}. It is 
related to the fact that the transpose of (ST){Ks.-K s) 

is not allowed because {-Ks , Ks} is related to 
{Ks, - Ks} by inversion. The singularity of the point 
{KsKT} = {DO} is manifest in the form of Eq. (4.8c). 

The eight degeneracy diagrams of Fig. 4 illustrate 
in complete detail the result of associating (ST)
values as prescribed by Eqs. (4.8) with the {KsKT }

pairs defined by Eqs. (4.7). The examples shown 

correspond to symmetry types (a) (A.1A.a)-(odd, even), 
(b) (A1Aa)-(odd, odd), (c) (A1AaHeven, odd), (d) 
(Al .4S)"(even, even) for two cases, ..1.2 zero and ..1.2 such 
that the degeneracy of S = T = p' is a maximum. 
On each degeneracy diagram the {KsKT}-lattice 
corresponding to Eqs. (4.7) is given in outline form. 
Note that for symmetry types (a) and (b) the {KsKT}
lattices are rectangular (Ks + KT = 0 not allowed). 
The corresponding degeneracy diagrams reflect a 
maximum degree of regularity. For symmetry types 
(c) and (d) the {KsKT}-lattices are not rectangular 
(Ks + KT = 0 allowed). Nevertheless, since sym
metry type (c) is equivalent to symmetry type (a) 
under conjugation (..1.1..1.3 interchange), degeneracy 
diagrams of type (c) also possess a maximum degree 
of regularity. For symmetry type (d), however, the 
singularity of the point {KsKd = {~O} is an inherent 
feature whi.ch propagates an irregularity into the 
multiplicities of the (ST)-values associated with 
(ST) = (00) by A S A2 regular lattice displacements. 

B. Completeness of the Projected States 

First of all, consider the multiplicity N{Jm(AIA2Aa) 
of (ST)-values predicted by Eqs. (4.8). As can be seen 
from Fig. 3, the basic structure of the rule is one 
of triangulation. That is, the (ST)-values associated 
with each {KsKT}-pair for A2 2: 0 are simply those 

0"+ >"2 t--------------:x r;:/ 
xx /' 
x x x 
x x"x X 

O"I------------x".x X X x 
r+A2 + + + + / 

+++61+ 
+++EDe+ 
+ + + e e/e + 

T't-----+v+ +; $/ $ $ e + 
00000 
00000 

0'01----./--+--0 00 0 0 A2 -

10 
o 
1".0/ 0 

o-o--o--o~--~----~~----~---
I I 0' T' 0" O"+A2 S 
o 

FIG. 3. Spectrum of (ST)-vaJues associated with the projection 
numbers {KsKr}: 

{KsKr} = {aT}:+, {KsKrl = {Ta}:O, 

{KsKr} = {a'a'}: x, {KsKr} = {O, OJ: O. 

In the examples shown, A2 = 4. 
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FIG. 4. Spin-isospin degeneracy diagrams for the (.1.,.1. 21.3) IR of SU(4). (a) N(STI{5, 0, 2), (b) N(STI(5, 0, 3), (c) N(ST,(4, 0,3), (d) N(ST) X 
(4,0,2), (a') N(ST,(5, 6, 2), (b') N(sP)(5, 7, 3), (c') N(sT)(4, 6, 3), (d') N\S7,,(4, 6, 2). The {KsKT]-lattices given by Eq. (4.7) are included in 
outline form. The value of). 2 in (a'), (b'), (c'), and (d') corresponds to a maximum value for the degeneracy of S = T = P'. 

(ST)-values contained within the envelope of isosceles 
right triangles built by 1.2 regular lattice displacements 
from the (ST)-values associated with {KsKT} for 
1.2 = O. The one exception, {KsKT} = {OO}, admits 
only the subset of these (ST)-values for which S + T 
differs from 1.2 by twice an integer (U - 1.2 even). It 
therefore follows that the {KsKT }-pairs that contribute 
to Nf1TJ(1.I1.21.a) are the {KsKT}-pairs that contribute 
to the N~'T,,(1.I01.a) related to N~T}(AIA2Aa) in the 
same way as the N(S'T"(1.101.a) are related to 
N(ST,(AI1.21.a)· That is, N~T,(I'l1.21.3) satisfies Eqs. 
(3.4). It remains to prove that 

Consider Eqs. (4.8) for the special case 1.2 = 0: 

a> T: (ST) = (a, T + v), ° S v < a - T; 

(4. lOa) 

a S T: (ST) = (a + fl., T), ° S fl. S T - a. 
(4.l0b) 

Then Nf1T)(1.10Aa) is equal to the number of {KsKT }

pairs given by Eqs. (4.7) for which (ST) is contained 

in the set given by Eqs. (4.10): 

S > T: N~T)(1.IOA3) 
= number of {KsKT}-pairs for which 

(J' = S, T S T; (4. 11 a) 

SST: N~T,(AIOA3) 
= number of {KsKT}-pairs for which 

a:::;; S, T = T. (4.11b) 

The algebraic formulation is straightforward; it 
leads directly to the result that NfsT,(AIOAa) = 
N(STJ(1.101.a) and hence NfsT)(1.I1.2Aa) = N(ST) (1.I1.21.a)· 
On the degeneracy diagrams of Fig. 4 the {KsKT}
lattices corresponding to Eqs. (4.7) have been included. 
By using Eqs. (4.11) the result can be verified for 
each of the four cases (a) (A'lAa)-(odd, even), (b) 
(AlA-s)-(odd, odd), (c) (1.11.s)-(even, odd), and (d) 
(1.IAa)-(even, even). 

To complete the proof of the projection hypothesis, 
an adaptation of the method first given by Elliott5 

for the SU(3):::> R(3) reduction and subsequently 
used by Williams and Pursey15 in considering the 
R(S) :::> R(3) reduction problem will be used. It 
proceeds by reductio ad absurdum. That is, the con
sequence of assuming that the projected states do not 
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span the IR space is shown to be a contradiction. Ex
plicitly, suppose there exists a function I q;(S' M~T' M~) > 
belonging to the IR but orthogonal to all the 
I GEKsSMsKTTMT), 

(q;(S'M'sT'MT) I GEKsSMsKTTMT) = O. (4.12) 

Since NfJm(AIA2Aa) = N(ST)(A1A2Aa), the only non
trivial implications of such an assumption are those 
which follow for S' = S, M~ = M s, T' = T, and 
M~ = M T , namely, 

(q;(SMsTMT) I GE{KsKT}) 

= (p~sMsp1TMTq;(SMsTMT) I GE{KsKT}) 

= (q;(SMsTMTI p~sMSpr]TMT IGE{KsKT}) 

= (q;(SMsTMT) I P'itsMsP'1TMT IGE{KsKT}) 

= ij MsKsij MTKT 
X (q;(SMsTMT) I GEKsSMsKTTMT) = o. 

( 4.13) 
As is shown below, Eq. (4.13) implies that 

where (') is an arbitrary element of SU(4). But, by 
definition of irreducibility, functions of the type 
l') IGE{KsKT}) span the IR space. Hence a contra
diction exists; the hypothesis that there exists a 
function 1q;(SMsTMT» belonging to the IR which 
is orthogonal to all the IGEKsSMsKTTMT> is false. 
It follows that the IGEKsSM SKTTM T > span the IR 
space. 

The argument given above hinges upon a proof 
that Eq. (4.13) implies Eq. (4.14). For this, note that 
the operator l') being an element of SU(4) implies 
that it can be expressed as a power series in the 
generators of the group. Furthermore, note that the 
commutation properties of the generators imply that 
the order of the generators within each term of such an 
expansion can be chosen in any desired manner. 
Then we define 

~~ = t(S± + E±1 0)' 

~~ = t(S± - E±10)' 

rJ~ = t(T± + EO±I), 

rJ! = t(T± - EO±l), 

(4.15) 

and consider the case of projection from IGEt >. It is 
convenient to divide the generators into the two sets 

A: Eoo = t(All - A22 - Aa3 + A44), 

So = HAll + A22 - Aaa - A44), 

To = HAn - A22 + Aa3 - A 44), 

En = Au, E-1 - 1 = A41 , (4.16a) 

E1 - 1 = A2S ' E_11 = A32 , 

~~ = A13 , ~~ = A 42 , 

rJ~ = A12 , rJ~ = A4a , 

B: S+ = Ala + A 24 , S_ = Aa1 + A42 , 

T+ = A12 + Aa4 , L = A21 + A43 • (4. 16b) 

When a generator of the set A operates on IGEt ), the 
result is either another intrinsic state of the same type 
(Eoo, So, To, En, E-1 - 1 , E1 - 1 , E-11) or zero (~~, 
e-, rJ~, rJ~)· Generators of the set B do not reproduce 
intrinsic states but are operators which act only in the 
direct product space SU(2) ® SU(2). Express (') in the 
form 

(4.17) 

where the Co: are constants and 1T Ao; and 1TBo: are 
products of generators of the type A and B, respec
tively. Then consider 

(q;(SMsTMT)Il') IGE{KsKT}) 

= ~ Co; (q;(SMsTMT) I 1TBo:1TAo: IGE{KsKd). (4.18) 

Each factor 1T Ao; acting to the right changes at most 
Ks and KT , and the 1TBo; factors acting to the left 
change at most M sand M T. Therefore, 

(q;(SMsTMT)I l') IGE{KsKT}) 

= ~ Co:(q;(SMsTMT)I1TBo;1TAo; IGE{KsKT}) 
0; 

= L C;(q;(SM'sTMT I GE{K'sKT}) = o. 

(4.19) 

The equivalent proof for the case of projection from 
IGEi ) follows by merely replacing the n, ~~, rJ~, 'fj~ 
operators of set A by the operators ~~, ~~, rl~, 1J~. 

S. TRANSFORMATION BRACKETS 

Although the projection numbers {KsKd furnish 
an integral or half-integral solution exhibiting spin
isospin symmetry properties for the SUe 4) ::> SU(2) ® 
SU(2) multiplicity problem, the projected states are 
not normalized nor are they necessarily orthogonal on 
the Ks and KT labels. The difficulties associated with 
the nonorthonormality of the projected states can be 
resolved, however, if an expression for the coefficients 
(transformation brackets) which relate the projected 
states to the orthonormal Gel'fand basis vectors is 
known. This section is devoted to deriving such an 
expression. The method used is similar to that 
developed in Ref. 16, where the analogous problem in 
the SU(3)::> R(3) reduction was considered; it is 
based on the results of Moshinsky and Chacon17 for 
the matrix elements of the permutations (I, 2), (2, 3), 
and (3,4) between the U(4) basis states IG). 
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A. The Expression 

Since the Gel'fand basis vectors IG) for a given IR 
of U(4) form an orthonormal set which spans the 
representation space, an arbitrary projected state 
IGKsSMsKTTMT) belonging to the IR may be ex
panded in terms of the IG) as 

IGKsSMsKTTMT) 

= 2 (G' I GKsSMsKTTMT) IG'), (5.1) 
n' 

where it is to be understood that h~4 = ha<4' The 
(G' 1 GKsSMsKTTMT) in Eq. (5.1) are the trans
formation brackets which relate the U(4) :::> SU(2) ® 
SU(2) scheme of Sec. 4 to the Gel'fand U(4) :::> U(3):::> 
U(2) :::> U(l) scheme. By definition of the projected 
states, we have 

(G'I GKsSMsKTTMT) 

= (G'I P~!sKsptTKT IG) 

= (2S + 1) I dOsD~;sKiO)(2T + 1) 

x I dO'l'D f!:K/OT) (G'I Rs(Os)RT(OT) IG). 

(5.2) 
Therefore, an expression for the 

(G' I GKsSMsKTTMT) 

can be obtained if the matrix elements 

are known. Note that the inverse of the transforma
tion matrix defined by Eq. (5.1) is only guaranteed to 
exist if the IGKsSMsKTTMT) are restricted to the 
projected basis vectors IGEKsSMsKTTM T) defined 
in Sec. 4 by the projection hypothesis. An expression 
for the (G' I GEKsSMsKTTMT> follows as a special 
case of the general result for (G' I GKsSMsKTTMT)' 

For notational convenience let 

hI h2 h3 h4 

IG) = 
x y z 

(5.3) 
p q 

r 

The infinitesimal generators of SU(2) corresponding 
to U(2) in the chain U(4):::> U(3) :::> U(2):::> U(l) are 
given by 

where 

Then, for 

J+ = A 12 , J_ = A 21 , 

Jo = HAn - A 22), (5.4) 

(5.5) 

(5.6) 

it follows that 

(G'I.'Jl(O) IG) = OX'XOY'yOZ'ZOp'poq'qD;"'m(O), 

j = t(p - q), m = r - tep + q), (5.7) 

m' = r' - t(p + q). 

To relate Rs(O) and RT(O) to operators of the type 
:1\(0), the permutation operators (1,2), (2, 3), and 
(3,4) can be used. For example, consider Rs(O). Let 

So = S~ + S~, 
S~ = teAn - A33 ) = (2, 3)Jo(2, 3), 

S~ = teA22 - A44) (5.8a) 

= (1,2)(3,4)(2, 3)Jo(2, 3)(3,4)(1,2), 

[S~, S~J = 0, 

S2 = S~ + SL 

S~ = (2i)-1(A13 - A31) = (2, 3)J2(2, 3), 

S~ = (2i)-1 (A24 - A42) (5.8b) 

= (1,2)(3,4)(2, 3)Jl2, 3)(3, 4)(1, 2), 

[S~, S~] = [S~, S~] = [S5, S~] = O. 
Then 

= (2, 3).'Jl(O)(2, 3)(1, 2)(3, 4)(2, 3) 

x .'Jl(O)(2, 3)(3, 4)(1, 2). (5.9) 

In a similar fashion it can be shown that 

RT(O) = .'Jl(O)(2, 3)(1,2)(3, 4)(2, 3) 

x .'Jl(O)(2, 3)(3, 4)(1, 2)(2, 3). (5.10) 

From Eqs. (5.9) and (5.10) it follows that 

Rs(Os)RT(OT) = RTCOT)Rs(Os) 

Define 

= .'Jl(OT)(2, 3)(1, 2)(3,4)(2,3) 

x .'Jl(OT)(2, 3)(1,2)(3,4) 

x .'Jl(Os)(2, 3)(1,2)(3,4)(2,3) 

x .'Jl(Os)(2, 3)(1, 2)(3, 4). (5.11) 

Mo'o(O) = (G'I.'Jl(O)(2, 3)(1, 2)(3, 4)(2,3) 

X .'Jl(0)(2, 3)(1, 2)(3, 4) IG) (5.12) 
so that 

(G'I Rs(Os)RT(OT) IG) = L MG'G,.(OT)Mana(Os)· 

G
n 

(5.13) 
Let 

..A(,o'G(KJM) = (2J + 1) f dODi:K(O)Mo'o(O). 

(5.14) 
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The transformation brackets of Eq. (5.2) are then 
given by 

(G'I GKsSMsKTTMT) 

= 2,.A(,o'o,,(KTTMT).A(,o"o(Ks SMs ). (5.15) 
0" 

An expression for the matrix .A(,o'o(KJM) can be 
obtained by using the completeness of the ortho
normal set of states IG) and Eq. (5.7) to put Mo'a(Q) 
into the form 

Ma'o(n) 

= 2, (G'I $,(0.) IG1) (GIl (2, 3) IG2) (G2 1 (1, 2) IG3 ) 

0" 

x (G3 1 (3, 4) IG4 ) (G4 1 (2, 3) IG5 ) (G5 1 :R(n) IG6 ) 

X (G61 (2,3) IG7> (G71 (1, 2) IGs)(Gsl (3, 4) IG) 

= 2, D:{;'K,(n)D:{;"K,,(n) (GIl (2, 3) IG2) 

0,,(,,*1,5) 
Ielli" 

X (G21 (1, 2) IGa)(Gal (3, 4) IG4) (G4 1 (2, 3) IG5) 

X (G6 1 (2, 3) IG 7) (G71 (1, 2) IGs)(Gsl (3, 4) IG), 

J' = Hp' - q'), M' = " - Hp' + q'), 

K' = r 1 - HP' + q'), 

J" = Hp6 - q6), M" = '5 - t(P6 + q6), 

Kif = '6 - Hp6 + q6)' (5.16) 

where, except for '1 (determined by K') and '5 
(determined by M"), the elements of G1 and G5 are 
equal to the corresponding elements in the G' and G6 , 

respectively. Then, by using the well-known result 
expressing the integral of three rotation matrices in 
terms of a product of two SU(2) Wigner (Clebsch
Gordan) coefficients, it follows that 

.A(,o'o(KJ M) 

= 2, (J'M'; J"M" I JM)(J'K'; J"K" I JK) 
0,,(,,*1,5). 

X (GIl (2, 3) IG2 ) (G2 1 (1, 2) IGa) (Gal (3, 4) IG4 ) 

X (G4 1 (2, 3) IG5) (Gsl (2, 3) IG7)(G71 (1, 2) IGs) 

X (Gsl (3, 4) IG). (5.17) 

The permutation matrices (G'I (n - 1, n) IG), n = 
2, 3, 4, required for an evaluation of Eq. (5.17), have 
been given by Moshinsky and Chacon17 ; they are 
equivalent to special unitary recoupling coefficients 
for the groups U(1), U(2), and U(3), respectively. 
Note that (n - 1, n) operating on IG) changes only 
the h"p for which fJ = n - 1 and these in such a 
manner that the result is zero unless W~_l = Wn . The 
apparent 6 x 6 = 36-fold sum over the G" in Eq. 
(5.17) is therefore in actual fact at worst a sixfold 
sum. The result as given by Eq. (5.17) may, however, 

be the most convenient for the purposes of machine 
coding since the summations over G2 , Ga, G4 and G7 , 

Gs are matrix multiplications involving the permuta
tion matrices. The remaining summation over G6 

then involves simply the product of two Clebsch
Gordan coefficients and one element from each of 
the matrix products. 

It is to be noted that the transformation brackets 
are equivalent to normalization and overlap integrals 
of the projected states. This may be seen by con
sidering 

(G'K'sSMsKTTMT I GKsSMsKTTMT> 

= (G'I p~;sK.l"~r:K~IGKsSMsKTTM T) 
, s T 

= (G I PK~MsPK~JIT IGKsSMsKTTMT) 

= (G' I GKsSK'sKTTKT)' (5.18) 

B. The Application 

In general, the transformation brackets1S 

A(G' I GEKsSMsKTTMT) 

relate the set of non orthogonal basis vectors 
IGEKsSMsKTTMT) to the set of orthonormal basis 
vectors IG') and are therefore the elements of a non
orthogonal matrix A. The inverse expansion of the 
IG) in terms of the IGEK~S'M~K~T'M~> exists, and 
the coefficients B(GEK~S'M~K~T'M~ I G) can be 
obtained by inverting the appropriate A matrix. An 
equivalent but perhaps somewhat simpler evaluation 
of these coefficients can be obtained by considering 
directly the expansion 

IG) = .! B(GEK'sS'M'sKTT'MT I G) 
K~S'M~ 
K~T'1~1;, 

Then 

IGKsSMsKTTMT> 

= P~lsKsPfITKT IG) 

= z B(GEK'sS'M'sKTT'MT I G) 
K~S'll(~ 
K~T'M~ 

X P'1sKspflTKT IGEK'sS'M'sKTT'MT) 

= z B(GEK'sS'M'sKTT'MT I G) 
K~S'M~ 
K~T'M~ 

X OS'SO"ll~KsOT'TOM~KT IGEK;SMsK ~TM T) 

= Z B(GEK'sSKsKTTKT I G) 
K~K~ 

X IGEK'sSMsKTTMT). (5.20) 
That is, the B(GEK~S'M~KTT'MT I G) are not only 
the coefficients in the expansion of the IG) in terms of 
the IGEK~S'M~KTT' MT), but they are also the 
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coefficients in the expansion of I GKsSMsKTTM T) 
in terms of the IGEK~SMsK~TMT). Using this result, 
we can determine a unique solution for the 

B(G K' S'M' K' T'M' ! G) E SST T 

from the set of simultaneous equations 

A(G'! GKsSMsKTTMT) 
= ~ B(GEK'sSKsK'pTKT I G) 

K~K~ 

X A(G'I GEK'sSMsK'pTMT)' (5.21) 

In those cases for which the {KsKT }-labels are redun
dant, it follows that the B(GEK~S'M~K~T'M~ ! G) 
are simply given as the ratio of two transformation 
brackets. Since B is the inverse of A, Eq. (5.21) also 
shows that 

L A(G'I GMsSMsMTTMT) = ~G'G (5.22) 
SMsTMT 

I pGaEKsaSaM SaK Ta TaM Ta) 

and 

~A(G I GKsSMsKTTMT) 
G 

(5.23) 

In a fashion similar to that demonstrated in detail 
in Ref. 16 for the SU(3) ::::l R(3) case, quantities of 
physical interest which depend upon the SU(4) ::::l 

SU(2) ® SU(2) labels can be expressed in terms of 
the corresponding quantities labeled according to the 
canonical U(4)::::l U(3)::::l U(2)::::l U(I) scheme by 
means of the A's and B's. For example, for the 
SU(4) ::::l SU(2) ® SU(2) coupling coefficients defined 
by 

= ~ CiGlEKs,SIMslKTl TIMT, ; G2EKs2S2Ms2KT2T2MT2! pG3EKsaSaMs.KTaTaM T3) 

KS,S,Ms l KT,TIMT, 
KS2S2Ms2 KT2T2MT2 

x IGIEKslSIMslKTJlMT) IG2EKs.S2Ms2KT.T2MT.), (5.24a) 

IGlEKslSIMslK'TIT,MTl) IG2EKs.S2Ms.KT.T2MT.) 

= ~ C2(pGaEKsaSaMsaKTaTaMT'! GIEKslSIMslKTlTIMT,; G2EKs2S2Ms.KT.T2MT2) 
pGaEKsaSaMsaKTaTaMTa 

X IpGaEKs.SaMs.KTaTaMTa)' (5.24b) 

it can be shown that 

ClGIEKslSIMs,KTl TrMT,; G2EKs.S2Ms.KT.T2MT.1 pGaEKsaSaMsaKTaTaMTa) 

= (SIMs,; S2Ms2! S3MSa)(TIMT,; T2MT.1 T3M Ta) ~ (SIM's,; S2M's.! S3KSa) 
G~M~,M~l 
G;M~2M~2 

X (TIM!,!; T2M'p.! T3KTa)B(GIEKs,SlM's,KT1TIMpl ! GD 
X B(G2EKs.S2M's.KT.T2Mp21 G~)(G~; G~ I pGaE), (5.25a) 

C2(pGaEKsaS3MsaKTaT3MTal GIEKslSlMs,KTl T1MT,; G2EKs.S2Ms2KT.T2MT.) 

_ ( M' I . I (2S1 + 1)(2Tl + 1) - SI S"S2MS. SaMsa)(TIMT"T2MT2 TaMTa)~-=---'--~---=--'-~ 
(2S3 + 1)(2Ta + 1) 

x ,~ , (SlKs, ; S2M's.1 S3Ms3>(TlKTl; T2M'p.1 TaM'pa)B(GaEKsaSaM'saKTaTaM'pal G~) 
GaM s.MT2 
a;M~aM;'3 

where p is a label that distinguishes multiple occur
rences of a given IR of Ga in the reduction of the 
direct product Gl ® G2 • In Eqs. (5.25), (Gl ; G2 1 pGa) 
and (pGa \ Gl ; G2) are U(4)::::l U(3) ::::l U(2) ::::l U(l) 
Wigner coefficients, and the (JIMl; J2M21 JaM3) are 
ordinary SU(2) Wigner coefficients. 

Similarly, consider the SU(4)::::l SU(2) ® SU(2) 

tensors defined by 

T(GKsSMsKTTMT) 

= (2S + 1) f dDsDS;sK..{Ds)(2T + 1) 

x f dDTDt*TKiDT) 

X Rs(D.s)RT(D.T)T(G)RTl(D.T)Rsl(D.S), (5.26) 
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where T(G) is the corresponding U(4) ::l U(3) ::l U(2) ::l U(l) tensor defined by 

[A~p, T(G)] = I (G'I A"p IG) T(G'). (5.27) 
G' 

The {KsKT}-quantum-numbers resolve the SU(4) ::J SU(2) ® SU(2) tensorial multiplicity in precisely the 

same manner as described in Sec. 3 for the SU(4) ::J SU(2) ® SU(2) basis states. It can then be shown that 

(pG3EK S3S3M S3K Ta T3 M Tal T( G 1EK S1 S1 M Sl K Tl TIM TJ I G2EK S2S2M S2 K T. T2M T.) 

= (G3 11 T(G l ) IIG2)p ~ C2(pG3EKf,aS3MS.K'-r.T3MTal GIEKslSIMsIKTl7;.MTl; G2EKs.S2Ms.KT2T2MT.) 
1(83I(~3 

where (G3 11 T(G1) IIGz)p is the reduced matrix element 
of T( G1) corresponding to the state IP3)' 

The particularly elegant feature of all such relation
ships is that a knowledge of the A's and B's allows 
completely general expressions for SU(4) ::J SU(2) ® 
SU(2) quantities to be expressed in terms of a subset 
of the corresponding U(4)::l U(3) ::J U(2) ::J U(l) 
quantities [e.g., all SU(4) ::J SU(2) ® SU(2) coupling 
coefficients are determined in terms of U(4):::J 
U(3) :::J U(2) ::l U(l) Wigner coefficients for which 
one set of labels corresponds to the operator Eoo 
having either its maximum or minimum eigenvalue]. 
Furthermore, the problems associated with phase 
conventions and multiplicity relate simply and directly 
to the corresponding problems in the canonical 
scheme. 

6. DISCUSSION 

The fact that a many-nucleon wavefunction can be 
decomposed into a product of its space and its spin
isospin parts allows the techniques developed in this 
paper to be applied quite independently of any special 
spatial considerations. A case of particular interest, 
however, is that dealing with shell-model calculations 
up to and through the first half of the 2s-ld shell. 
For such nuclei the most promising theoretical tool for 
the spatial part of the wavefunction is the Elliott 
SU(3) ::l R(3) classification. For this reason the tech
niques developed in Ref. 16 together with those of the 
present paper furnish expressions which can be used 
to simplify as well as extend such theoretical investi
gations. 

The simplifications are, of course, in calculational 
technique in that the SU(3):::J R(3) and SU(4)::J 
SU(2) ® SU(2) transformation brackets reduce the 
difficulties inherent in the physically significant 
labeling schemes, but not present in the corresponding 
canonical labeling schemes, to forms which can be 
machine coded. Nevertheless, the solution furnished 
by the transformation brackets to the problems 
associated with the nonorthonormality of the pro
jected states is indirect and not necessarily the most 

X A(G3E I pG3EKf,3SSKSaK'-raT3KTa)' (5.28) 

convenient for purposes of machine-coding matrix ele
ment calculations. The difficulty is that the SU(3) ::l 

R(3) coupling coefficients of Ref. 16 and the SU(4) ::l 

SU(2) ® SU(2) coupling coefficients of the present 
paper are not Wigner coefficients. That is, the 
coupling coefficients do not represent the scalar 
product of orthonormalized coupled and uncoupled 
basis states. 

By orthonormalizing separately within each Land 
(ST)-multiplet according to a symmetric recipe (e.g., 
see Ref. 19), the transformations which orthonormal
ize the SU(3) :::J R(3) and SU(4)::l SU(2) ® SU(2) 
basis states can be given in simple algebraic form as 
the ratio of normalization and overlap integrals. 
Since such integrals are equivalent to transformation 
brackets, the problems associated with the non
orthonormality of the projected states can be resolved. 
And, in particular, they can be resolved in a form 
convenient for machine coding while still maintaining 
all the simplifications associated with the projective 
processes. In fact, the SU(3) :::J R(3) and SU(4) :::J 

SU(2) ® SU(2) orthonormalizing transformations can 
be incorporated directly into programs which calculate 
the transformation brackets. The result is then 
SU(3) ::l R(3) and SU(4):::J SU(2) ® SU(2) trans
formation brackets which relate physically significant 
orthonormal basis states to the corresponding canon
ical basis states. Within such a framework the SU(3) ::l 
R(3) coupling coefficients of Ref. 13 and the SU(4) ::l 

SU(2) ® SU(2) coupling coefficients of the present 
paper become Wigner coefficients, and hence standard 
algebraic techniques introduced by Racahzo can be 
applied to simplify matrix element calculations. 
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We prove, by use of energy inequalities, a theorem of uniqueness and local (Le., for finite time) 
stability for the solution of Cauchy problem relative to the integro-differential system of Einstein and 
Liouville. A global theorem of geometrical uniqueness follows from a general method, previously given. 
We will prove elsewhere an existence theorem. 

INTRODUCTION 
The aim of this paper is to prove a uniqueness 

theorem for the solution of the Cauchy problem for 
the coupled Liouville-Einstein equations, i.e., for a 
collisionless relativistic gas under its own gravita
tional field. Such a gas provides a model reasonably 
appropriate for physical systems like systems of 
galaxies or some systems of stars (which are then the 
"particles" of the gas) and certain plasmas or radia
tions (in this last case the particles have a zero rest 
mass). 

With the uniqueness theorem we prove a local 
stability theorem; i.e., we prove that the solution 
(metric and distribution function) depends continu
ously on the initial data: such a theorem, which 
states that a small initial perturbation gives rise to a 

small perturbation during some finite time, seems the 
first necessary step to be assured of before any more 
elaborate research on stability. 

The plan of this paper is the following: 
In Sec. I, I give a brief review of the fundamental 

concepts of relativistic kinetic theory, and' I recall 
the equations governing the motion of a self-gravi
tating collisionless, relativistic gas: the coupled 
Einstein and Liouville equations. I also recall, or 
establish, a few general properties of these equations 
which will be used in the following (i.e., local equiva
lence of Einstein equations in harmonic coordinates 
and tensorial Einstein equations, and use of bounded 
parameters for the momenta in the Liouville equation). 

In Sec. II, I establish some inequalities satisfied by 
the difference of two solutions of the Cauchy problem 


