A Bibliography of Electron Microscopy. II

COMPiled BY

CLAIRE MARTON, Division of Electron Optics, Stanford University, Stanford University, California

AND

SAMUEL SASS, In Charge of Physics and Observatory Libraries, University of Michigan, Ann Arbor, Michigan

SINCE the closing date of our bibliography published in this journal,1 a number of papers on electron microscopy appeared in this country and a large number of foreign papers came to our knowledge. This supplement is an attempt, therefore, to bring the bibliography up to date. Due to wartime conditions it may not be as complete as we would wish, but we hope that these additions will help the research workers in this new field.

As previously, the material is arranged in eight groups; within each group the arrangement is chronological and within each year alphabetical by author and title.

We again wish to acknowledge the assistance of Professor L. Marton, of the Division of Electron Optics, Stanford University.

March 1, 1944.

II. EMISSION MICROSCOPY

III. TRANSMISSION TYPE MICROSCOPE

IV. OPTICS OF THE TRANSMISSION TYPE ELECTRON MICROSCOPE

Savchenko, F. The dependence of certain optical parameters on the electric and geometric parameters of electric immersion lens. *Zhurnal Tekhnicheskoi Fiziki, Moscow,* 9, 2211–2219 (1939).

Ardenne, M. von. The faithful representation of the structures close to the limit of resolution with the light microscope and the electron microscope. *Kolloid Zeits.* 100, 206–211 (1942).

V. IMAGE DEFECTS

VI. ELECTRON SPEEDS ABOVE 100 KV

VII. DIFFERENT RELATED INSTRUMENTS

VIII. APPLICATIONS OF THE TRANSMISSION TYPE MICROSCOPE

Ruska, H. Significance and results of the electron microscope. Siemens Zeits. 20, 228–234 (1940).

Müller, H. O. and Pasewaldt, C. W. Observations on the fine structure of the test diatom Pleurosigma angulatum W.Sm. and stereoscopic pictures with the electron microscope. Naturwiss. 30, 55–60 (1942).

Mudd, S. Changes in the bacterial cell brought about by the action of germicides and antibacterial substances as demonstrated by the electron microscope. *Am. J. Public Health* 33, 167–168 (1943).

Mudd, S., Heinmets, F., and Anderson, T. F. Bacterial morphology as shown by the electron microscope. VI. Capsule, cell-wall, and inner protoplas of pneumococcus, type III. *J. Bact.* 46, 205–211 (1943).

Journal of Applied Physics

Schmidt, R. W. Oxidation of metal powders in electron microscopic investigations. Kolloid Zeits. 102, 15-17 (1943).

New Books

The Physical Chemistry of Electrolytic Solutions.
A.C.S. Monograph Series, No. 95

By Herbert S. Harned and Benton B. Owen.

The purpose of this treatise, as stated by the authors in their preface, is to present the well-established interionic attraction theory in a logical rather than a historical order and to discuss the numerical treatment of the data and the various properties of electrolytes in terms of the fundamental equations of theory.

The fifteen chapters of the monograph are divided into three general parts. Chapters one to five contain a thermodynamic introduction, a general statement of the interionic attraction theory, the theory of ionic solutions in equilibrium and in perturbed states, and a very useful numerical summary of the theoretical results in which the theoretical equations are reduced to their simplest forms. Chapters six to ten contain discussions of experimental methods, with emphasis on the numerical treatment of data rather than experimental techniques, employed to study the properties of electrolytic solutions. These include conductance in aqueous and non-aqueous solutions, freezing point, boiling point, vapor pressure, and the electromotive force method. The last section, chapters eleven to fifteen, deals with the properties of electrolytes, beginning with hydrochloric acid and proceeding to other 1–1 electrolytes, polyvalent electrolytes, mixtures of strong electrolytes and weak electrolytes. These chapters and the appendix contain a large amount of useful information, much of it critically evaluated, in the form of figures and tables.

In general the purpose of the authors is well achieved. Their extensive experience in the experimental study of electrolytes is well known and gives authority to their