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The channel flow of a suddenly pressurized visco-elastic and electrically conducting fluid under the
influence of a constant and transversal magnetic field is given analytic treatment. Flow oscillations
resulting from the elasticity of the fluid and damping effect of the magnetic field on these oscillations

are shown in terms of three parameters.

INTRODUCTION

DVANCES in mechanics of continua now make
it possible to include non-Newtonian and elec-
tromagnetic effects into viscous flow problems. The
laminar flow problems containing the effect of elas-
ticity alone have been treated by Broer' and by
Thomas and Walters,>* and the problem including
the effect of a magnetic field alone by Yen and
Chang.* It is the purpose of this paper to investigate,
by including both elastic and electromagnetic effects,
the channel flow of a suddenly pressurized visco-
elastic and electrically conducting fluid under the
influence of a magnetic field.

FORMULATION

A visco-elastic fluid is considered between parallel
plates (2L distance apart) extending to infinity in
the directions of x; and z; axes (Fig. 1). Following
assumptions are made: (i) fluid is Maxwellian and
has constant properties, (ii) plates are perfect elec-
trical conductors, (iii) a magnetic field of constant
strength H, is transversally applied to plates, and
(iv) fluid is suddenly pressurized in the direction
of x, axis by a constant pressure gradient —dp/édz,
from an initial condition of rest.

Under the assumptions above, the general for-
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mulation of the problem given in Gaussian units
reduces to

ou, _ _18p 1081m , u p 0H,
at pdx, pdx,  Awp " Sz’
OH, _ o 0w , O°H,
at _H°ax2+” ork ?
B9ty OU
™t G = B oz,

where p denotes density, p viscosity, u, magnetic
permeability, o electric conductivity, ¢ speed of
light, n = ¢*/4wu,c magnetic diffusivity, @ elastic
shear rigidity, p static pressure, and 75, u;, and
H,, components of stress tensor, velocity and mag-
netic field vectors, respectively.

Introducing the kinematic viscosity », and the
dimensionless variables § = »/L*, y = z,/L, V =
wL/vy H = H,/H,, P = —p/ox,)L*/pV*, 7 =
l’/p®, £ = p*/GL? a (Alfvén wave speed) =
(wH3/4mp)t, ¢ = (aL/v)’, and x = n/», the for-
mulation may conveniently be rearranged in the
form

aV/30 = P — (ar/dy) + ¢(6H/ay), (1)
0H /28 = (3V/dy) + x(8°H/oy"), ©)
T+ E0r/08) = —oV/dy, ®3)
subject to the initial and boundary conditions
V(y, 0) = H(y, 0) = ~(y, 0) = 0, ©)
V(x£1, ) = 0H(=x1, 6)/oy = 0. 5)

As to be seen in the next section, the boundary
conditions related to 7 need not be considered here.

SOLUTION

Applying Laplace transforms to (1), (2), (3),
and (5) in the usual manner [using (4), and eliminat-
ing the transform of » between transforms of (1)
and (3)], gives
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sV = s P+ ¢(dH/dy) + (1 + &)@’ V/dy®), (6)
sH = (dV/dy) + x(d®H/dy"), (7)
V(x1,s) = dH(x1,s)/dy = 0, (8)

where s is the Laplace transform variable in time,
and V and H denote the Laplace transforms of
V and H, respectively.

Clearly, the boundary conditions given by (8)
are satisfied by assuming solutions in the form

Ty, 9 = 3 Ad6) coshy, ©

n=0

H(y; §) = 2 B,,(S) sin Ay,

provided A, = (n + Hm,n = 0,1, 2, --- . Inserting

(9) and (10) into (6) and (7), and using the ap-

propriate series expansion for P, it is found that

M.+ s+ 0B, = 0,
sls + No/(L + £9)]4, — st\B. = 2P(—1)"/\,.

Solving these equations for A, and B, gives

i 2P(= 111 + &9)(s + xN)

" NS+ £9)(8° 4 xhas - )+ Nls + xN0)]
(11)
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Finally, introducing (11) and (12) into (9) and (10),

respectively, expanding in partial fractions follow-

ing the discussion of the roots of third-order de-

nominators in s, and inverting the results, yields

the solution of the problem,

oo

V(y, 6) = 2P Z (—1)"F.(8; £, £, X) €08 Ny,

n=0

(13)

@, 0 = 2P 3 (—1)"6,(0;, £, ) sin . (14)

Explicit forms of F, and G, are given in the Ap-
pendix. In the limit as x — o, H(y, 6) = 0 ac-
cording to (2), (5), and (4), and the solution is
reduced to

V(y, 6) = 3P — v)
— 2P 3 (—1)FH0; ) cos My (15)

Explicit form of F* is given in the Appendix.

RESULTS

The physical significance of the parameters in-
volved in (13) and (14) is readily found to be:
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F1a. 2. Oscillations in mean velocity for limiting non-
magnetic case x — « depending on elasticity of fluid £ = 0,
02,1, 2.

¢ (viscous shear stress/elastic shear rigidity)/Rey-
nolds number, ¢ (magnetic pressure/viscous shear
stress) Reynolds number, x (magnetic diffusivity/
Momentum diffusivity). A complete study of (13)
and (14) in terms of the variables y, 6, and the
parameters £, {, x is somewhat lengthy. The y
dependence in (13), however, may be eliminated
by considering the mean velocity

1ty
Va0) = 55 [ Vw0 ay,

which is a measure of the flow rate. Oscillations in
the mean velocity for the limiting nonconductive
case x — o are shown in Fig. 2, and those for the
conductive case x = 20 under the influence of the
transversal magnetic field ¢ = 10 in Fig. 3, de-
pending on the elasticity of the fluid ¢ = 0, 0.2,
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F1a. 3. Oscillations in mean velocity for conductive case
x = 20 under transversal magnetic field { = 10 depending
on elasticity of fluid £ = 0, 0.2, 1, 2,
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1, and 2. These results are valid provided the cur-
rent induced in the direction of z, axis flows freely
in a circuit closed appropriately in the same diree-
tion. Otherwise the effect of a polarized electric
field must be taken into account. In the present case,
the z, component of the momentum gives rise to a
magnetic pressure equivalent to a hydrostatic pres-
sure. Oscillations in the induced electrie current
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and magnetic fields, and the magnetic pressure arc
not given here beeause of space considerations.
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APPENDIX
Explicit Values of F, and G.
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where
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Explicit Value of F.*

F* =
where
g = (\o/& — 174894,
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Field-coupled Rayleigh-Taylor instabilities on a fluid interface can be suppressed by means of
feedback. Deflections of the interface are detected to provide a signal which is amplified and fed back
to a structure coupled to the interface through the fields. A theoretical study is given of the conditions
for stability of an infinite interface coupled to an active structure through a perpendicular electric field
and a tangential magnetic field. In both cases the interface is assumed to be perfectly conducting.
A traveling wavetrain analysis is used to show the regimes of stability as they depend on the Taylor
wavelength, electric or magnetic pressure, feedback gain, and technique of sampling interface deflec-
tions. Emphasis is given to the effect of feedback derived from detecting surface deflections averaged
over a sampling area and feeding back to that same area.

1. INTRODUCTION

NE can judge from the literature that in-

stability poses a prime limitation on the engi-
neering of fluid-dynamic and plasma-dynamic sys-
tems. Stability is also of great concern in dealing
with discrete systems, where the limitations are often
obviated by the use of active devices and feedback
techniques. It must have occurred to many that
feedback can also provide the solution to continuum
instability problems. By contrast to discrete sys-
tems, in a continuum, an infinite number of degrees
of freedom must be controlled. Even if complete
information about all of the particles in a fluid
were available, the means to influence each particle
in just the right way is difficult to find. For this
reason, the usefulness of feedback in controlling
fluid- and plasma-dynamic instabilities is largely
determined by the feasibility: (1) of experimentally

determining the important “flow” variable as a
function of space and time without adversely effect-
ing the flow, (ii) of obtaining a sufficient flow sam-
pling, since only a finite amount of information about
the flow is available in spite of the infinite number of
degrees of freedom to be controlled, (iii) and of
influencing the flow in the desired fashion by alter-
ing a flow variable as a function of space and time,

The field-coupled Rayleigh-Taylor instabilities
described here are chosen for study because electric
or magnetic surface forces can be used to influence
the fluid. Because the instabilities involve a surface,
the fluid motions must be detected and influenced
in only two dimensions

The first of two situations to be considered is
shown in Fig. 1, where the interface (surface tension
T) between a highly conducting liquid (density p)
and an insulating liquid or gas (demsity p’) is



