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The Bénard problem of the radiating nongray fluids is examined in terms of the Eddington approximation.
The nongrayness of radiation is prescribed by the ratio and product of the Planck and Rosseland means of
the absorption coefficient, n = (ap/ap)'/* and apy = (apag)'’?, respectively. Effects of radjation on the
classical problem are then characterized by four parameters: the Planck number, .G, (the ratio of
conduction to radiation), optical thickness, 7= apyd (d being the distance between the plates)

nongrayness of the fluid 7 and the emissivity of boundaries ¢, and ¢, respectively. The radiation in
general has a stabilizing effect; decreasing @, , increasing degree of nongrayness for n> 1, changing color

of boundaries from black to mirror all delay the onset of instability. The boundary color and nongrayness
of gas are responsible for the extrema observed in stability curves. Accuracy of the Eddington
approximation is checked with the exact solution and the convergence of the approximate solution is
studied in terms of the first and second approximations. Results are given for black-black, mirror~mirror,

and black-mirror boundaries.

I. INTRODUCTION

The Bénard problem of radiating fluids received
considerable attention in the past. In his original paper
Goody! investigated the problem for free boundaries by
considering the thin gas and thick gas approximations,
Following Goody’s approach Murgai and Khosla? and
Khosla and Murgai,? respectively, included the effects
of magnetic field and rotation. Spiegel® reconsidered the
problem for rigid boundaries and for the entire range of
optical thickness but neglected the effect of conduction;
his formulation employed the integral form of the
radiative transfer equation but neglected the effect of
radiative boundaries from the disturbance equations.
In a recent paper of mathematical context, Davis®
investigated the validity of the exchange of stabilities
for slightly nonself-adjoint problems, and following
Spiegel’s formulation, applied his results to the Bénard
problem. Recently, Christophorides and Davis® in-
cluded the effect of conduction. The above studies are
all based on the gray gas. Only Gille and Goody”
considered the spectral effect of nongrayness and com-
vared their results with some measurements.

The foregoing literature survey reveals that the effect
of radiative boundary (color, temperature jump,
perturbations), weighted nongrayness of gas, and the
use and accuracy of the Eddington approximation have
apparently been left untreated. The present study is
aimed at these points.

II. FORMULATION

As is well known, an exact treatment of radiative
transfer in a fluid leads to a formulation in terms of
integrodifferential equations. The solution of these
equations appears to be rather involved.t Approximate
theories have been developed which permit a formula-
tion involving only differential equations. One such
theory expresses radiation in terms of spherical har-
monics, another in terms of a moment sequence. These

theories were originally developed for astrophysical
studies* ™ and were later employed in neutron transport
theory.”” Together with a brief reference in a footnote
of the paper by Traugott,'* the works of Cheng! and of
Unno and Spiegel® treat the general three-dimensional
case with application to gasdynamics and astrophysics,
respectively.

In the present study we confine ourselves to the first-
order spherical harmonics. Later, we shall comment on
the accuracy of the first, third, and fifth-order harmonics
which are usually referred to as the Pi, P;, and P;s
approximations in the neutron transport theory. Since
the formulation based on the first-order spherical
harmonics is identical to that based on the first two
moments of the radiative transfer equation, the follow-
ing brief review employs the latter approach because of
its simplicity.

The usual (frequency averaged) transfer equation
may be replaced, in terms of the first three moments of
the intensity over the solid angle £,

J=fal dQ=c®,  q®=[oll dQ,
wii= fg l.'le dQ= GoT,'jR,

by its first two moments,

0iq"=ap(4E—), (1
dimij= — argi¥, (2)

to be closed by the assumption of local isotropy,
Ti=%578:i (3)

which is the so-called Eddington approximation,
Combining (2) and (3), we have

(4)

Here, I; denotes the unit vector in the direction of
propagation, ¢ is the velocity of light, #%® is the radiant
internal energy, ¢,% is the radiant flux, 7,/ is the radiant

a.rj= - 3aquR.
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stress, Ey=0T* is the blackbody radiation, ¢ is the
Stefan-Boltzmann constant, T is the absolute tempera-
ture, and j and ;; are introduced for notational con-
venience. Noting that 4E,>4 as r—0 and (1) should
give the flux for thin gas, d.q;f=4apE,, and that
4E,— for T and (4) should yield the flux for thick
gas, ¢q.®=—(4/3ar)d;E,, we, respectively, replaced,
following Traugott,® the gray absorption coefficient
involved in (1) and (4) by its Planck mean ap and
Rosseland mean ag. These mean values bring a weighted
effect of nongrayness into our discussion. Combining
(1) and (4), we get the balance of radiative energy,

a,-ajq.-’*— 3apa1eq,'R= 4aPaij, (5)
or, in terms of 7,
8:0:j—3apar j= —12aparEy (6)

which proves convenient in the following formulation.
Assuming the fluid incompressible, viscosity, and
conductivity constant, neglecting viscous dissipation
and radiative contributions to momentum, modifying
the thermal energy by the radiant flux, and relating the
blackbody radiation to temperature, we have

it mdri= Xi— (1/po)dip-+vordunss,

8: T+ T = kdrdh T+ (ap/pocy,) (j—40T*), (7)

9%0% j— 3apar j= —12apape T4,

where u; is the velocity, X; is the body force per unit
mass, p is the pressure, po is the reference value of
density, » is the kinematic viscosity, T is the absolute
temperature, « is the thermal diffusivity, and ¢, is the
specific heat at constant volume.

Although the fluid dynamical boundary conditions
remain identical to those of the classical Bénard
problem, thermal boundary conditions require the
additional radiative conditions which we consider next.
The boundary conditions compatible with the Eddington
approximation and for one-dimensional problems may
be found in Goody.¥ Also Varma et al.® developed, in
terms of spherical harmonics, the conditions for black
boundaries and gray gas (in this connection Mark!??
and Marshak? conditions of neutron transport theory
may be noted). Here, we extend Goody’s approach to
three-dimensional problems, and further include the
color of boundaries and the weighted nongrayness of
gas. This approach appears to be simpler conceptually
and shorter algebraically than that of Varma ef al.'®

In terms of the hemispherical intensities, the first
moment of the intensity may be expressed as

j=gt+i (8)
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and for boundaries in the x;, x2-plane (1) reduces to

Og.®

a_xs‘ = ap[‘l»Eb,,— ( jw++jw_)]-

9)

Furthermore, the assumption of hemispherical isotropy
gives
qu®=3(ju*—ju). (10)

The hemispherical intensities, obtained from (9) and
(10), may then be written as

jw+ = 2Ebo+ QwR"' %aPaQwR/axs,
Ju~=2Ep— ‘IwR_ %O‘Paqwn/ dxs,

(11)
(12)

where E;, denotes the blackbody emissive power, the
subscript 0 and w refer to fluid and wall values on the
boundary. Furthermore, from the balance among
jw+; jw_, and Eb-n)

Jut=2eBp,+pju, (13)

where e and p are the hemispherical (diffuse) emissivity
and reflectivity of the wall, respectively. Combination
of (10) and (13) yields

Jut=2E5,—2(p/€) " (14)

Finally, elimination of j,* between (11) and (14) gives
the radiative boundary condition in terms of ¢,%,

4(Ey, — Epy) = qu®/A— (1/97)0¢u"/03,  (15)

Ioe I
n=l
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Fic. 1. The effect of Planck number on the gray gas with free
boundaries.
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where 1/A=4(1/e—3%), r=aud, au= (aprar)'? n=
(ap/ar)'?, 3=xs/d, and d is the distance between the
plates.

Since we formulated the governing equations in terms
of 7, the radiative boundary condition should be in
terms of 7,, rather than ¢,®.- Accordingly, combining (8),
(11), and (12) we have

Jo="4Ey,— (1/17)3¢.%/02. (16)

Elimination of ¢.® and 9¢.,*/dz among (2), (3), (9),
(15), and (16) results in the appropriate form of the
radiative boundary condition,

Fw=4Es+ (1/307)0ju/ 02+4(Ep,— Es,), (17)

where the last term on the right-hand side (related to a
temperature jump) exists only for the case of pure
radiation (see Ref. 17, p. 54 for the boundary condition
corresponding to gray gas and no temperature jump,
expressed in terms of the heat flux). For mirror bound-
aries ¢,®=0 which imples, in terms of (2) and (3),

./ 35=0. (18)

Here, we conclude our formulation by stating the initial
problem and the perturbation equations, respectively.
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The initial steady formulation may be given most
conveniently in terms of the temperature and theradiant
flux as

LT _
dx32 dxa o
&GE -z B,
dx32 30!P0£RQ3 _4aP dxa !
T(0)=T, T(d)=T, (19)
o dgs®(0
7Gs®(0)— _"dﬂ__(_) =0,
[+37 dxs
M dgR(d
wge(d)+ 2L 2D g
4374 dxa

Since we are interested in the high-temperature level
but not the large temperature differences, the last term
of the radiative energy equation dE:/dx; may be
linearized. The solution of the foregoing problem is
trivial and not elaborated here. The stability problem
requires only the gradient of the initial state which is for
nongray gas and gray boundaries

B/Bo=M++N sinheor(z—3%)+K cosher(z—43), (20)
where
- @ _ (To-T) - 12 =1 _ ouk
g= dets y Bo= d 3 o= (3+4X) ] X= ®s ’ ®o= 4TS )
He [14-2oM(/n)] sinher+(o/n) (Ao+M) cosher _ H
2 sinher/2+4 (¢/n) (\o+M1) cosher/2 H+(8x/3¢r) sinher/2’
(Ao—M1) (4x¢/3n) sinher/2 4x/3

N = 7 sihor 2T (o/n) (v hs) coshor/ZILH-+ (8x/3) snbpr/2]”

The results for the mirror and black surfaces are readily
obtainable from the foregoing equations by considering
the limits Ay, A;=0 and Ay, \;=13, respectively. For gray
gas (20) reduces to that obtained by Goody! (see also
Goody').

Following the standard procedure, the linear stability
problem may be analyzed in terms of the normal modes
applied to x3 components of the velocity and vorticity,
w and ¢, the temperature, 8, and the first moment of
intensity, 7. Considering disturbances characterized by a
particular wavenumber %k, we suppose that they
(symbolized by &) have the general form

v (xl, X2, X3, t) =B(xs) exp[i(k1x1+k2x2) +ﬁt],
k= (k4 k),

Then, the formulation of the stability problem (deleting

K= H+-(8x/3¢r) sinher/2 ;

the uncoupled vorticity) may be given as

(D2—a?) (DP—a2—c)W = (ka’R/Bd*)B, (21a)
(DP— a2 — Pc—4xr?)0+-3x2T = — (Bd*/x)W, (22a)
(DP— g2~ 372)] = —4:°9), (23a)

where D=d/dz, c=pd%/v, a=d(kl+ks?)!* is the non-
dimensional wavenumber, R=_gayBd*/ kv is the Ray-
leigh number, P is the Prandtl number, o, is the co-
efficient of volumetric expansion, J is dimensionalized
by 12¢T#, and T'~T, is assumed in (22).

Concerning the boundary conditions, those of the
classical Bénard problem,

O=W=0 forz=0and 1, (24)
DW=0 for a rigid surface, (25a)
D*W=0 for a free surface, (25b)
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must be supplemented by the radiative conditions for a
mirror surface

DI=0, (26)
and for gray surfaces,
J—(n/3\7)DJ=0  for 2=0,
J+(/3\r)DI=0  forz=1. (27)

For \o, Mi=3, Eqgs. (27) apply to free as well as black-
rigid boundaries.

III. A VARIATIONAL FORMULATION

In this section we give a variational formulation for
the critical Rayleigh number employing the concept of
adjoint system (of differential equations) developed by
Roberts.22 Other variational forms related to different
formulations of the same problem already exist in the
literature. =517

The adjoint system of the present formulation,
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obtained by the usual steps, is

(D*—a2) (DP—a*— )W = (xa®R/Bo®) (8/£0)®, (21b)
(DP— a2 — Po—4xr®) O+ 3372 = — (Bud/x)W, (22b)
(DP— 2= 32T = — 4729, (23b)

with boundary conditions given by (24)-(27). Here,
the superscript ~ denotes the adjoint problem. Defining

L=(D*—a?)(D*—a*—c), A=«ka’R/Bud,

the characteristic value X may be obtained from (21a)
or (21b) as

A= f:WLWdz//:W@dz,

A= leLWdz / f (8/8)Wd ds,  (28)
0 L]

respectively. After elementary manipulations based on
several integration by parts, and on the appropriate
use of (22a), (23a) or (22b), (23b), (28) may alterna-
tively be stated as

(Bod?/ ) f 1 [D*W D*W + (2a6%+¢) DWDW +a*(a2+c)WW ] dz
0

A==

, (29)

/ 1{D@D(:)-I— (@*+ Pe+-4xr) 00— (Bx/H[DIDI+ (02431 7T 1} dz— 3x /DT
0

where Jot= (3r/7)[\J (1)J (1) 427 (0)J (0) ]. Equation
(29) reduces, with vanishing radiative effects, to the
second variational principle given by Chandrasekhar.”
It may readily be shown that X obtained from (28) or
(29) is stationary to the variationsin ® and ©, and that
the approximate solution technique employed in the
next section is identical to the foregoing variational
formulation.?

Since we neglected radiative contributions to the
momentum equation, the onset of instability is expected
to be stationary as it is in the classical Bénard problem,
In two special cases considered so far, Spiegel® assumed
the base temperature constant and included the entire
optical thickness; Davis,® on the other hand, restricted
himself to small optical thicknesses but incorporated
the variation of the base temperature. It may further
be shown in terms of approximate profiles, and for free
boundaries, that the exchange of stabilities continues
to be valid when both the variable base temperature
and the entire optical thickness are included. However,
the development appears to be lengthy and not interest-
ing, and is not given here. In the next section, assuming
the validity of the exchange of stabilities, we consider
the marginal state corresponding to the stationary
instability.

IV. MARGINAL STATE

Equations (21), (22), and (23) with ¢=0 govern
the marginal state subject to the boundary conditions
(24)-(27). For symmetric (two black, two mirror, or
two identical gray surfaces) the origin of the co-
ordinates may be shifted to the middle plane. However,
we also have cases with asymmetric boundaries. This
suggests that the origin be retained at the lower plate
and

O=3 4.0,= 3 A,sinnwz (30)
be considered with #=1, 3, -« + for symmetric problems
(M=MA1), and with =1, 2, .-+ for asymmetric prob-
lems (Ag#A1). Clearly, with respect to the middle plane,
the first series is made of only even functions, whereas
the second series is composed of both even and odd
functions. When W and J are expressed as

W= (ka’R/Bud2?) Y AuWn, J= 2, AuJsn, (31)

W, and J, satisfy
(D*—a?)*W,,=0,= sinnwz, (32)
(D?—a2—372)J n= — 47?0, = —4r* sinnwz, (33)
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subject to boundary conditions (24)-(27). Having
determined W, and J, from (32) and (33), we insert
the expansions (30) and (31) in (22) to obtain

3 An(nr+ad+4xr?) sinnxz—3xrt T Antm
=(8/B0)a*R Y AmJm. (34)

Multiplying (34) by sinwuwxz and integrating over the
range of 5 we get an infinite set of linear homogeneous
equations for A, which in turn leads to the secular
equation

[1(1/R)[} (w*x*+ a2+ 4x7*)omn— (m/n)1]— (m/n)s]| =0,
(35)

where

7

1
(ﬁ) =a? / E W sinnws ds.
n /2 0 Bo

The critical value of R is obtained by satisfying the
determinant (35) for an arbitrary wavenumber ¢ and
then obtaining its minimum with respect to a.

1
(ﬁ) =3xr? / Jm sinnwz dz,
1 0

I |
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F16. 2. The effect of nongrayness on the gas with free boundaries.
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F16. 3. The effect of nongrayness on the gas with black or mirror
boundaries.

The effect of optical thickness, Planck number, non-
grayness and surface color, are summarized in Figs. 1, 2,
3, and 4 for free and rigid boundaries. Calculations have
been carried out in terms of the first and second approxi-
mations, the latter being based on the values of wave-
numbers which gave the minimum of Rayleigh numbers
to the first approximation. For the computational con-
venience, the parameter ¢r/2 has been taken equal to or
larger than 6 in the case of rigid boundaries. This
approximation allows the replacement of hyperbolic
functions with exponentials, however, prevents the
completion of Figs. 3 and 4 for small values of optical
thickness.

V. PURE RADIATION

Although the pure radiation is a special case of the
combined diffusion and radiation, it is not available
from the limit of the latter for ®,—0. The discontinuity
in boundary temperatures is the reason for this in-
convenience. So the case of pure radiation, especially
its initial steady state which requires a separate treat-
ment, is briefly considered (see Ref. 24 for an alterna-
tive development).

The balance of steady, one-dimensional energy in the
absence of diffusion is

dqs"/dxs=0. (36)
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F16. 4. The effect of Planck number on the gray gas with black,
mirror, or black-mirror boundaries.
In view of Eq. (36), the radiant flux
Q3R= - (4/3a3)dE'b/dx3, (37)

which is valid only for ~> when the diffusion is
appreciable, now applies for all values of 7. Thus, the
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where Es,, and Ej,, denote the wall values and Ej,, and
Ey,, the fluid values on the lower and upper boundaries,
respectively, Integrating (37), the constant radiant
flux may be expressed in terms of the wall values of the
fluid temperature,

@s®= (41/37) (Bop— Esyy), (39)

or, by combining (38) and (39), in terms of the wall
temperatures,

- Eb-o_ Ebul
Ve+1/a—143r/4 "
Finally, the desired temperature gradient
8/60=[T(0)—T(d)]/(To—T1),

where 7'(0) and T'(d) denote the fluid wall tempera-
tures, after linearizing Ej by expanding into a Taylor
series about 7, and employing (39) and (40), may be
obtained as

B/Bo=[1+(1/e+1/e1— 1) (4n/37) 1.

g®

(40)

(41)

Tasre II. Critical Rayleigh numbers for gray gas with black
boundaries (®,=0.01).

problem is reduced to a trivial diffusion problem in

terms of E,=qoT*.

The temperature jump on boundaries, noting (36),

may be written from (15) as
Eb-o—Eboo=q8R/ 4\,
E-’b-n_ Ebox = qBR/ 4,

(38)

TaBLE I. Critical Rayleigh numbers for gray gas with free

boundaries (®=0.01).

R,
T a Change in
First Second R.%
approx. approx.

0.01 2.22 659.95
0.1 2.34 908.72 908.7 0.
0.5 2.8 9024.1 8 950.3 0.8
1. 2.67 26 635. 26 363. 1.03
3. 2.25 66 442. 65 197, 1.92
5. 2.22 79 275. 77 873. 1.8
7. 2.22 84 356. 83 281. 1.29

R,
T a Change in
First Second R, %
approx. approx.
0.6 3.93 23 153. 23 575. 1.8
1. 4.16 53 401. 53 915. 0.95
3. 3.43 164 900. 164 880. ~0
5. 3.2 205 150. 205 180. ~0
10. 3.11 228 420.
100. 3.11 231 570.

The stability criterion for the present case can no
longer be given in terms of the Rayleigh number which
involves the thermal conductivity. However,

C= @R = gaoBud*/ (4o T’/ aspecs)

becomes a suitable modified Rayleigh number. Neglect-
ing the diffusion terms in (22) the secular determinant
of the problem may be written as

|{(1/C)[217%mn— (m/nm)1]— (m/n)al|=0,

where (m/n); and (m/n); were defined in connection
with (35). It may be worth mentioning that the initial
temperature gradient for the present case, although not
equal to that for the case of pure diffusion, is constant.
The corresponding stability formulation is self-adjoint,
and the validity of the exchange of stabilities may be
shown by the usual procedure.

(42)
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V1. DISCUSSION

First, we examine the convergence of the approximate
technique employed for the solution of the problem.
Three typical computer outputs corresponding to iree,
black, and mirror boundaries are given in Tables I, II,
and III. The critical Rayleigh numbers obtained in
terms of the first and second approximations differ
3.69, at the most. In general, asymmetric cases appear
to need higher order approximations for the same degree
of convergence.

Next, we study the accuracy of the Eddington
approximation (or P; approximation) by comparing it
with Spiegel’s exact solution.* Since Spiegel neglects
the effect of radiation on the base temperature and that
of radiative boundaries on disturbance equations, we
re-evaluate our results by neglecting the same effects.
Figure 5 indicates that the P, approximation and the
exact solution differ as much as 339, around r~m.
Here, it may be interesting, in view of the availability
of the P; and P; approximations from the neutron
transport theory (adjusted to our problem by letting
Yo, cfy—4E; and I=1/ay), to consider the improve-
ments to be brought to our results by these approxima-
tions. The transfer equations corresponding, respec-
tively, to the P3 and P; approximations are

— B VY o+ 5V j—4E) /on®+ VY /30u=5—4E;,
(43)
THIVY/ an® — BV f— 4B )/ on*— 3 EVY ane
+3IVI(5—45)/an+ VY 3an’ =j—4Es, (44)
(see Ref. 12, p. 161). The formulations based on the Py
and P; approximations may readily be obtained by
replacing (6) successively by (43) and (44). The
corresponding solutions, except for the reasonably
increased and tedious algebra, follow the steps of the Py

approximation, and are not elaborated here.
The critical Rayleigh numbers for these approxima-

TasLE III. Critical Rayleigh numbers for gray gas with mirror
boundaries (®y=0.01).

R,
T e Change in
First Second R %
approx. approx.

0.6 3.29 38 077. 37 341, 1.98
1. 3.39 158 680. 153 020. 3.6
3. 3.05 556 340. 544 340. 2.2
5. 3.0 546 640. 536 090. 1,96
10. 3.03 448 950,

100, 3.1 257 800.

587

P, (33.2%)

P3 (9.2%)

P5 (6.9%)

Spiegel (Exact)

P, (24%)
P3 (14.4%)
Pg (7.7%) -

! |
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T

F16. 5. Comparison of the Py, Py, and P; approximations with
Spiegel.

tions given in Fig. 5 show a rather improved accuracy
over the Py approximation, as expected.

The color change of boundaries from black to mirror
and the increasing nongrayness of gas for >1 both
flatten the initial temperature distribution and delay
the onset of instability. These effects are responsible
for the extrema of stability curves, a significant out-
come of the present study, observed at intermediate
optical thicknesses (about r~).

Concerning the nongrayness of the fluids, we have
not made an elaborate study of the approximate values
of  for different fluids. It is known, however, that the
Planck mean depends only on the temperature level,
while the Rosseland mean depends on both on tem-
perature and pressure. As we are interested in high-
temperature levels but in neither large temperature
differences, nor large pressure variations, the assump-
tion of a constant » appears to be reasonable. It is also
well known that the contribution to the Planck and
Rosseland means comes from independent spectral
regions; the former is dominated by the strong line
centers, and the latter by the weak continua between
bands. So depending on the temperature level and the
particular gas, o may be one or two order of magnitude
greater than ag; for only very low densities ap may
exceed ap (Sampson,” p. 101). Thus, the possible range
for n appears to be 0.1-10.

For the radiation parameter ®,, the numerical values
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used in the literature are somewhat small and almost
correspond to the case of pure radiation. This suggests
an increase on the upper value to be employed for this
parameter. Hence, ®,=1 and 0.1 are considered in order
to adequately demonstrate the effect of ® which is
shown in Figs. 1 and 4.
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