Erratum: Magnetic Susceptibilities of Uranium (IV) and Plutonium (IV) Ions in Cubic Fields*

[J. Chem. Phys. 30, 246 (1959)]

GEORGE A. CANDELA, CLYDE A. HUTCHISON, JR., AND W. BURTON LEWIS

Enrico Fermi Institute for Nuclear Studies and Department of Chemistry, University of Chicago, Chicago, Illinois, and University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico

THE asterisk referred to the following footnote:

* The work at Chicago was supported by the Office of Naval Research and the U. S. Atomic Energy Commission.

Errata: Bending Motions in the Dihalides of Group II Metals

[J. Chem. Phys. 30, 286 (1959)]

R. STEPHEN BERRY

Department of Chemistry, University of Michigan, Ann Arbor, Michigan

THE statement on page 286 at the end of Sec. II, "The constant of proportionality so defined is simply half of the usual bending constant k_b/\pi.**" is incorrect. The correct statement should read "The constant of proportionality so defined is equal to the usual bending constant k_b/\pi.** Accordingly, Eq. (1) should read

\[2k_b/\pi = k^{(0)} + k^{(1)} + k^{(2)} + k^{(3)} + \ldots \]

(1')

The last column of Table II should be headed 2k_b/\pi, and the values in the column k_b/\pi (calc) of Table III are all in error, being too large by a factor of 2.

The author would like to thank Mr. Alfred Büchler for pointing out this error.

Errata: Diffusion and Heterogeneous Reaction. II. Catalytic Activity of Solids for Hydrogen-Atom Recombination

[J. Chem. Phys. 29, 634 (1958)]

BERNARD J. WOOD AND HENRY WISE

Department of Chemical Physics, Stanford Research Institute, Menlo Park, California

It should be noted that the pressures involved in these experiments were in the region below 2 \times 10^{-2} mm Hg and not 2 \times 10^{-3} mm Hg as stated in the first paragraph of the communication.

Notes

Thomas-Fermi Model for Diatomic Hydrides

T. TIEZ

University of Łódź, Department of Theoretical Physics, Łódź, Poland

(Received July 23, 1958)

In this paper, assuming the Thomas-Fermi method, we have calculated numerically, using the accurate Kobayashi and Taima table\(^2\) for the Thomas-Fermi function \(\varphi_0\) and \(\varphi'_0\), the number of free electrons \(N\), force constants \(k_e\), and the molar diamagnetic susceptibilities \(\chi\) of the diamagnetic hydrides. As known\(^3\) for \(N\) and \(k_e\), we have following formula:

\[N = Z_u [\varphi_0(x_e) - x_e \varphi'_0(x_e)] \]

\[k_e = 7.1915 \times 10^5 \left[\frac{Z_u \varphi_0(x_e)}{r_e} \right]^{3/2} \]

(1)

The internuclear equilibrium distance \(r_e\) is given in Angstroms and \(x_e\) is related to \(r_e\) by \(x_e = Z_u r_e / 0.4683\), where \(Z_u\) is the nuclear charge of the united atom.

In Table I we have collected our results for \(N\) and \(k_e\) in 10^6 dynes/cm. Table I gives a comparison of our results for \(k_e\) with observed \(k_e\) and calculated \(k_e\) by Platt\(^4\) who used the Slater functions. Our results for \(N\) are better than those of Varshni\(^3\) by about 6%.

The results of Table I for \(N\) agree well with the results of Braunbek\(^5\) as also of Fajans and Bauer.\(^6\) Using the formula of Gombás\(^7\) for \(x\),

\[x = -9.43 \left[1 - 3.01 N/Z_u + 3.92 (N/Z_u)^2 \right] \left(Z_u - N \right) / Z_u^{2/3} \times 10^{-6} \text{ cm}^3, \]

(2)

we have in Fig. 1 \(-x\times10^6\) as a function of \(Z_u\).

For such diatomic hydrides as are paramagnetic we can use the formula given by Landau\(^8\), \(\kappa = 1.47 \times\)
$10^{-14} \chi^2$, where χ is the volume susceptibility. Figure 1 does not give a comparison with experimental data for χ since such experimental results are unknown in most cases.