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The mechanism of the instability of a layer of liquid flowing down an inclined plane is studied.
First, the instability of the flow with respect to Tollimen~Schlichting wave is investigated. The results
obtained are then compared with the known results of the instability of the same flow with respect
to surface wave formation. It is found that, for a given angle of inclination, there exists a critical wave-
length of the surface wave. If the wavelengths of the free surface disturbances are shorter than this
critical wavelength, the film can become unstable due to shear waves before it becomes unstable with
respect to surface waves. On the other hand, if the wavelengths of the free surface disturbances are
longer than this critical wavelength, then the film will always become unstable due to free surface

disturbances.

I. INTRODUCTION

HE problem of instability of a layer of fluid

flowing down an inclined plane was first studied
by Kapitza' and others. The first complete boundary
conditions were given by Yih.” The governing dif-
ferential equation is the well-known Orr-Sommerfeld
equation. The boundary conditions are the nonslip
condition at the bottom plane and the stress con-
ditions at the free surface. The Orr-Sommerfeld
equation and the boundary conditions constitute
an eigenvalue problem. Benjamin® and Yih* studied
the instability of the problem with respect to surface
wave formation. In this paper, the instability with
respect to Tollmien-Schlichting waves is studied.
Several neutral-stability curves for different angles
of inclination and surface tension have been ob-
tained. The reduction of the angle of inclination and
the surface tension are all shown to be stabilizing
factors. One of the curves corresponding to 8 =
3w and zero surface tension is shown to be the
neutral-stability curve of the plane Poiseulle flow.
This neutral curve checks with that obtained by
Lin.’

By comparing the results obtained in this paper
and those obtained by Yih and Benjamin, it is
shown that there exists a critical wavelength of the
surface wave. If the wavelengths of the free surface
disturbances are shorter than this critical wave-
length, the film can become unstable due to shear
waves. On the other hand, if the wavelengths of
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the free surface disturbances are longer than this
critical wavelength, then the film will always become
unstable due to free surface disturbances.

II. FORMULATION OF THE PROBLEM

Consider a layer of liquid flowing down an in-
clined plane, under the action of gravity. The plane
is of infinite length and the flow is assumed to be
parallel to the plate, so that the velocity component
parallel to the z axis does not change along this
axis. This primary flow is given by (cf. Fig. 1)

U = (gsin /)& — 1), M)
in which ¢ is the gravitational acceleration, 8 the
angle of inclination of the plane, v the kinematic
viscosity, d the depth of the fluid, and Y the dis-
tance from the free surface (positive if measured
upward from the free surface).

By introducing the following dimensionless quant-
ities:

y=Y/d, U=U/U,
Eq. (1) can be written in a dimensionless form
Uy) = T — 9, @)

U, being the maximum velocity of the primary flow,
ie.,

U, = gdsin /2. 3

The governing differential equation of the in-
stability problem of this flow with respect to in-

Fia. 1. Definition sketch.
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finitesimal disturbances is the well-known Orr-Som-

merfeld equation®™®

¢iv _ 2&2 173 + a4¢
= wR[(U — 9@ —a'¢) — U'¢], (@)

in which ¢ is a function of y related to the velocity
disturbances in the z and y directions by the fol-
lowing equations:

u' = ay/dy, 6y
v = —9y/ox,
where
¥ = ¢(y) exp [ia(x — c7)]. (6)

In Eq. (6), c is the complex wave speed, a the wave
number, and 7 the time.

The boundary conditions as formulated by Yih?®
consists of the nonslip conditions at the bottom, and
the stress conditions at the free surface. They are

¢,(— 1) =0, ¢(—1) =0,
¢”7(0) + @ — 2/¢')¢(0) = 0,
[a(2 cot 8 + o*SR)/c'16(0)
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in which R = U, d/v is the Reynolds number,
S = T/pdU2(T is the surface tension, p the density),
and¢’ =¢ — 1,

Equation (4) and the above four boundary con-
ditions constitute an eigenvalue problem. A non-
trivial solution exists if there exists a relation be-
tween R, ¢, 8, and a. The task is to obtain solution
of the form ¢ = ¢(a, R) for given values of 8 and §, so
that a nontrivial solution exists. In general, ¢ is
complex, ie., ¢ = ¢, + ic;, in which ¢, = ¢, (R, a),
¢; = ¢;(R, ) for given 8 and S. As can be seen from
Eq. (6), the flow is stable if ¢; < 0 and unstable
if ¢, > 0. If ¢; = 0, there is a sustained oscillation.
The relation ¢;(R, ) = 0 gives the neutral-stability
curve in the a—R plane.

The complete solution of the Orr-Sommerfeld
equation can be written as

¢ = 014’1 -+ Cz¢2 + C3¢3 + C4¢4;

where ¢y, ¢, ¢3, and ¢, are four independent partic-
ular solutions of the equation.

Substituting this into the boundary conditions,
one has a system of simultaneous equations in
C;, Cs, C; and C,. Nontrivial solutions of this system

+ a(Bc’ + 3ia)p’(0) — i¢’/(0) = 0, exist if
¢u P21 @31 du
¢{l ¢£1 ¢51 ¢41 — O, (7)
(@17 + lg12) (22 + ldpas) (032 + Upao) ¢ + l¢42)
(m¢1z + j¢{z - ”,) ('”74’22 + .74’22 - WS”,) (m¢82 + .74’32 - W’”,) (m¢42 + ]¢42 - N'
in which = [nln — 3)buey + 2(1 — ¢)}o?bu-y — o’ba_s
i = ¢i(yi)) (7' = 1) 27 3; 4) .7 = 1; 2), + (2n - 3)a —2 — 2y¢(1 — 2n)a,._1], ('n Z 3),
Y = —1; Y = 0: l=d" — 2/6,; E] L]
m = (a/c)@2 cot 8 + a’SR),  j = a(Re’ + 3ia). &, = L dn f dn nH{"[3lGaen)’],  (10)
The four particular solutions used in this analysis
are & = [(an [ an P LG, ()
¢ = Z n(y - yc)M-l (8)
=0 where
e=—1 -0 a =1, a,=1/2y, a =,
vem mA e d = La = 1 6= g 1= @R - v, w = UG
a, = —{[ntn — 1) — 2]a,-,.2y.0’a,—. . .
. and Hy denotes the Hankel function of the third
— a@'t,}/2n(n + Dy, (m 2 3), order. & and ®, were first used by Lin® for the
¢ =¢:In(y —y.) + DO by — y.)",, (9) problem of plane Poiseuille flow. It can be easily
. »=0 , varified that ®; decreases and &, increases exponenti-
bo = —(1—0¢p, by =1, b, = (~1/2y.) + }y.e’, ally as # while ¢, and ¢, remain their order of mag-
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bridge Umverélty Press, New Yog' k, lgna 55). iy (
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nitude of unity. ¢, and ¢, are actually the power
series solutions of the inviscid equation. The proper
branchofIn (y — y,) in (9) is —7x < arg (y — y.) <O.
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Having four particular solutions ¢, ¢, and &,, ®,, one is in & position to use them to solve the secular
equation. Before doing so, one can simplify (7) by order of magnitude analysis. To start with, one
divides the third column by ®;, and the fourth column by ®,,. Thus Eq. (7) is rewritten as

¢11 ¢21 1 ®41/¢42
¢{1 ¢£1 @§1/¢31 ¢£1/¢42 — 0
@” @ 144
17 44 =32 it >} X4z
@ + 161 4 + o) (38 4 1 2e) (244 0)
gt ) (ot gt~ L) (B L% B (1) L% i)
(¢12 + m¢12 m 12 ¢22 + m¢22 m 22 @31 + m @31 m@g]. 1 + m @42 m @42 F
12

The last row in Eq. (12) has been divided through by m. Each element in the first two columns are of
order unity (if § > m, then j should be factored out instead of m, and the same is true). If one neglects
the elements of exponentially small order compared with elements of order one, (12) can be reduced to

4’11 ¢21 1
¢1’.1 ¢;1 ¢2"31/¢31 O — 0- (13)
@!I
@4 + 1) @i + 16w 0 (B + )
. , . , ;3 ;e
(¢12 + ’Jn;¢{2 - ZE‘MQ’) (¢22 + %{‘2552 ""%11' ‘2555’) 0 (1 + —'I:f;’; Eﬁ - *?%L"‘g:"z“)
Expansion of the above determinant with respect to its last column gives
¢ll ¢21 1
i% i Eﬁ_ﬁ_ﬁ) ' ’ ’
(1 + M B LM By i ¢34 ®31/®Ps1
@1z + 1) (D22 + lp2o) 0
¢11 ¢21 1
q’i‘fl l ! 14 4 =
— 8;—2' + ¢11 ¢21 ¢31/®31 - 0' (14)
<¢x2 + #d’{z - %’L‘Mé’) (‘3522 + Jyﬁ‘ﬁéz - '3,,;‘3555’) 0

The first term of the above equation is of the order (aR) whereas the second term is of order («R)*. Hence,
for R so large that («R)~? can be neglected compared with unity, one can approximate (14) by

¢1i ¢2l 1
ol b2 /@ | = 0, (15
(6 + Lot - -?n;qb;;') (b + Lot - & #) o

since This is the secular equation for the stability of plane

Poiseuille flow with respect to symmetrie disturb-
ances (¢ odd in y).°

By use of the relations, ¢)/ = [o® — 2(1 — ¢) '}/,
and ¢5)/ = [ — 2(1 — ¢)7'|¢s, one can, for the
case of T = 0 and B = %, reduce (15) to

1/ P + 1 # 0.

For the case of infinite surface tension and any 8, or
8 = 0 and any surface tension, one has m = o,
Thus (15) can be further reduced to

b1 D2 1 11 P 1
4’11 ¢51 ‘1’51/@31 = 0. ¢{1 L5 ‘I’§1/@31 = 0:
b1z Poa 0 b1z Pi2 0
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which is the secular equation of the stability prob-
lem of the plane Poiseuille flow with respect to
antisymmetric disturbances. Thus, the neutral-sta-
bility curves, for any finite surface tension and any
B of the present problem, can be expected to lie
between the two neutral stability curves of plane
Poiseuille flow. One of which is for the symmetric
disturbances, the other for the antisymmetric dis-
turbances.

III. METHODS OF COMPUTATION AND
THE RESULTS

In terms of ¢, ¢, and ®; the secular equation
(15) can be written as

(@5:/®51) — (X + ¢Y)/(U +4V) =0,  (16)
where
X = ¢(mepse + fc'bs)
— (¢ In(l — a) + ¥a) (M. + fc'd])
+ 7 (918 — 30’¢ls),
Y = ¢uBa’ph — ¢5") + wii(mepio + c'dl)
+ [bulal — @) + ¥u]@1i — 3071, an

U = ¢li(ms + fc'¢52)
— {¢{y n(1 — a) + [p/(a@ — D] + ¥s}
(mepys + fe'Pls) + 7l (@18 — 307Bla),
V = ¢/i(8a’ds; — $44") + moly(mss + f'dla)
— (¢ In(1 — a) + dula — 1) + ¥4
-(3a’¢l. — 15",

and
&, /85, = (@ — 1)F(2), (18)
in which :
a=(1—c)}
s ¢ (O[g(r w3
ro = =it
¢ = (Uhh,
Z = =& = @RU)Y. — v, (20)
f = ak.
Substitution of (17) and (18) into (16) yields
(@ — DF,.(& — ula,c, 2 8,8 =0, @1)

(a — DF.( — v(a,c,2,8,8) =0,
where
u = (XU + YV)/(U* + V),
v= (YU — XV)/(U* + V?),

LIQUID FILM 311
12
Pz
Lo STABLE o T R
A\ e
c N T R
4 UNSTABLE =
g
2 sb
g
g
;’ 6l ~-=- C.C.LIN'S RESULT
—— OBTAINED BY A MODIFIED METHOD
4 1 1 L 1 It 1 3 i J L J 1 ]
2 3 4 5 678900 20 30 40 50 60

3,
R(I0) = Upd/v = REYNOLDS NUMBER

F16. 2. Neutral stability curve for the case § = 0.0 and 8 = 3,
i.e., neutral stability curve for plane Poiseuille flow.

F.(z) and F,(2) representing the real and the imag-
inary part of F(2). For given values of 8 and S, (21)
is a system of simultaneous equations in three un-
knowns «, ¢, and Z. Thus, for various values of ¢,
one can solve (21) for « and Z. Then the correspond-
ing R can be obtained from (20), i.e.

ok = —[z/(a — 1)I(1/20).

A plot of the relation between « and R, thus ob-
tained is a neutral-stability curve. In solving (21),
Newton’s method is used. With the above-described
process, the lengthy computation was carried out
by use of an electronic computer at The University
of Michigan. The results are plotted in Figs. 2, 3,
and 4. Only the numerical results for 3 = 1°, SE =
0.0 are given in this paper in Table I to indicate the
general pattern of the variation of the wave speed
with respect to wavelength.

IV. DISCUSSION ON THE RESULTS AND THE
METHOD OF COMPUTATION

The neutral curve of the plane Poiseuille flow with
antisymmetric disturbances is obtained as a special
case of the present problem with 8 = irand 7' = 0.
This curve checks very closely with Lin’s result as
shown in Fig. 2. In Fig. 3 are shown neutral-stability
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Fic. 3. The reduction of angle of inclination is a stabilizing
factor.
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curves for a layer of liquid of zero surface tension
flowing down an inclined plane of different steepness.
It is seen from this Fig. 3 that the reduction of the
angle of inclination is a stabilizing factor. Figure 3
shows that the critical wavelength is increased as
one decreases the angle of inclination. In order to
see the effect of the surface tension, three neutral
stability curves for given 8 and different values of
SR = 2T/(gd sin B) are plotted in Fig. 4. These
curves show that surface tension is a stabilizing
factor. Numerical computation shows that for the
case of T = ® or 8 = 0 no finite eigenvalues can
be obtained from Eq. (16) for 0 < « < 0.3. There-
fore a limiting curve of T = ® or 8§ = 0 of this
problem (which is also the neutral curve of plane
Poiseuille flow with symmetric disturbances) does
not exist in the finite o—R plane. For a given value
of o, Grohne’s’ computation for the problem of
plane Poiseuille low with symmetric disturbances
also indicates that R will approach infinity when
¢; = 0. For various values of 8 and T, several neutral
curves have been obtained. These neutral curves,
however, are neutral curves with respect to the
disturbances of a mode in which aR is much larger
than unity. The instability of the same problem with

TasiE 1. Eigenvalues for SR = 0.0, 8 = 1°.

Z ¢ @ R
2.400196 0.070600 0.371858 4.152194 X 105
2.500516 0.129500 0.539594 5.164135 X 10¢
2.591080 0.172500 0.656387 1.976407 X 104
2.799280 0.236700 0.849765 7327.351990
2.995686 0.261900 0.966308 5791.709595
3.212561 0.264000 1.039895 6476.701111
3.368391 0.255000 1.062553 8126.813538
3.552588 0.237000 1.060653 1.195320 X 104
3.800499 0.204400 1.014058 2.406454 X 104
3.992671 0.175000 0.946671 4.799068 X 104
4.191120 0.143000 0.852935 1.138520 X 105
4.400189 0.110000 0.736120 3.382576 X 108
4.602193 0.081500 0.618260 1.141233 X 108

® D. Grohne, Z. Angew. Math. Mech. 34, 344 (1954).
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TasLE II. Critical Reynolds numbers.

B 3’ 10’ 1° 90°
R, 1433 430 72 0
Ry 10200 6900 6400 5500

respect to the disturbance of another mode in which
aR is much less than unity has been studied by
Yih and Benjamin. In their results

$aR — 3a(3 cot B + o’sR) = 0

gives the neutral curve, and B = %(5 cot 8) is given
as a critical Reynolds number for very long waves.
The critical Reynolds number (denoted by R, ob-
tained in this paper for T = 0 are listed in Table II
for comparison. Table I1 shows that B, < R, for
B8 > 3’. Although the neutral curves for 8 < 3’
have not been obtained, the general trend of the
neutral curves for different 8 and the computation
for the solution of Eq. (16) (which is the secular
equation corresponding to the case of 8 = 0) indicate
that @« — 0 as 8 — 0. Therefore B, < R, also for
B8 < 3, since it is a priori known that (aR), < (aR),
for all 8, and « — 0 for both modes when 8 — 0.
Thus, it is shown that B, < R, foralland T = 0.
The general features of the neutral curves for the
soft and hard modes are shown in Fig. 5. The two
curves never intersect with each other, since in their
range of validity (aR), < (aR), along the neutral-
stability curves. The above-mentioned two different
modes represent two different types of disturbances.
The mode in which aR is much larger than unity
corresponds to hard waves or Tollmien-Schlichting
waves which damp or grow rapidly. The other mode
in which aR is less than unity corresponds to soft
waves or surface waves which damp or grow less
rapidly than the former mode. This can be seen in
the following way: Given ¢;, (aR), < (aR), for all
allowable values of @. Thus, a, < a;, for given ¢,

o

NEUTRAL CURVE
FOR HARD MODE

STABLE BOTH MODES
Fig. 5. General ™[ T
features of neutral-
stability curve.

UNSTABLE
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o A ——
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1

Rg R
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and R; consequently, (ac;), < (ac;),. That is to
say the rate of growth or decay of soft waves is
smaller than that of hard waves for given ¢,. Thus,
it is probable that although the flow is more stable
with respect to shear waves than with surface waves
of very long wavelength, the shear waves may
eventually take over and the disturbances of short
wavelength will spread over the entire flow. The
ar as shown in Fig. 5 is a critical wavenumber which
can be obtained by intersecting R = R, and the
neutral curve of the soft mode. It is clear from Fig.
5 that there exists a critical wavelength (correspond-
ing to az) of the surface wave. If the wavelength
of the free surface disturbances are shorter than this
critical wavelength, the film can become unstable
due to shear waves of shorter wavelength (corre-
sponding to a;).

The difficulty of the computation in this problem
arises from the following two facts: First of all, the
imaginary part of the secular equation is not a
function of ¢ alone; therefore, a fairly simple compu-
tational scheme used by Lin in solving the problem
of plane Poiseuille flow cannot be applied. Another
fact is that the eigenvalues as well as flow parameters
appear in the boundary conditions. As a result the
secular equation becomes considerably more com-
plicated. The assumption made in the analysis is
that the flow will not become turbulent right after
the instability due to surface waves of infinitely
long wavelength occurs, and the linear theory of
instability still applies.

V. CONCLUSION

A layer of liquid film flowing down an inclined
plane will become unstable with respect to surface
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wave of infinitely long wavelength at a critical
Reynolds number B = 1(5 cot 8). As one increases
the Reynolds number of the flow beyond this critical
value, the film will also become unstable with respect
to shear waves at critical Reynolds numbers which
are obtained numerically by the method given in
this paper. If the wavelength of the free surface
wave is finite, then there exists a critical wavelength
for given surface tension and angle of inelination.
The film will become unstable due to shear waves
if the wavelength of the surface disturbances is
less than this critical length. On the other hand, if
the surface wavelength exceeds this critical value,
the film will always become unstable due to surface
wave formation. Since the shear waves grow more
rapidly than the surface waves for given ¢,, the
surface waves will probably be overshadowed even-
tually by the Tollmien-Schlichting waves as the
flow becomes turbulent. It is found that both surface
tension and the reduction of the angle of inclination
are stabilizing factors. As a special case of this
problem, the plane Poiseuille flow is shown to be
always stable with respect to symmetric dis-
turbances.
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