Exact solution for the peripheral photoresponse of a p-n junction
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An exact analytical solution is given for the photoresponse of a p-n junction on a thick
semiconductor due to lateral diffusion of minority carriers.

I. INTRODUCTION

In a recent series of papers'~ Holloway and Brailsford
have considered the peripheral response of a photodiode,
that is, the effective increase in collecting area of the device
due to the lateral diffusion of minority carriers into the de-
pletion region. The geometry being considered is shown in
Fig. 1. Clearly, carriers will arrive at the depletion region
only if they are generated within a distance of the order of L,
the minority carrier diffusion length, of the edge. In fact, if
we consider a stripe geometry (with a mesa iength much
greater than L ) and a device whose thickness ¢ is much less
than L, the problem can be solved exactly.' The number of
carriers collected on each side of the diode is QL per unit
length of stripe, where Q is the generation rate per unit area
of surface. For finite thicknesses ¢, however, the number of
carriers collected can only be found numerically.?

Also, Holloway and Brailsford® have shown that the
sofution to this size effect problem for the case where the
light generates carriers only at the surface of the p-type re-
gion yields the finite-size correction to the diffusion-limited
saturation current of a p-n junction if Q is replaced by the
Shockly result for the saturation current of an infinite junc-
tion. Holloway* has very recently given numerical solutions
for the peripheral response to line or spot illumination (as
from an electron beam) near the edge of a junction. This may
be used to infer diffusion lengths.’ Thus it is of quite signifi-
cant practical importance to extend our understanding of
diffusion problems of this type.

In this paper we present exact analytical expressions for
the current collected upon uniform or thin line excitation of
the surface of the device in Fig. 1 for the case of a large mesa
on a thick device: c»L and w» L. The method we will useisa
straightforward application of the Weiner-Hopf technique.®
In Sec. 11 we formulate the problem precisely and solve it for
uniform i{lumination. Section III gives our solution for line
illumination and Sec. 1V summarizes our results.

Il. UNIFORM iLLUMINATION

When ¢ and w are large compared to L, our problem
reduces to the geometry shown in Fig. 1(b). The depletion
region extends fromx = 0tox = — o for y = 0, and the p-
type semiconductor occupies the lower half of the y plane.

For y <0, the minority carrier concentration »n satisfies
the steady-state diffusion equation:

Vn-n/L*=0. )
The depletion region absorbs carriers: we may idealize the
situation by writing a boundary condition
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n=0 (x<0,y=0). (2a)
The generation of carriers is represented by
on/dy=Qe "™ (x>0,y=0). (2b)

The convergence factor exp( — bx) is introduced for conve-
nience. The parameter b will be set to zero eventually. Clear-
ly we must take

n—0 (y— — o). {2¢)
The mixed boundary conditions, Eqgs. (2a} and (2b), represent
the essential difficulty of the problem. However, the Weiner-

Hopf method® is designed for problems of just this type. To
apply it, write

nxy) =52 ., G (kyle™dk /2. (3)
Then, using Eq. (1) we find

#G /9y* — (k* + 1/LH)G =0, (4a)

G = & (k Jexplgy), (4b)
where

g=(k>+1/L%"2. (4c)
Now, using £q. (2};

&= J.mn(x,O)e‘ dx =@ _, (5a)

(o]
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FIG. 1.(a) Geometry of the lateral diffusion problem. (b) Coordinate system
used when w,c> L.
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FIG. 2. Branch cuts for the function g(k ).

qP = f In(x,0)/dye ~ **dx

+ f Qe ~ P e~ *xdx
0

=9, + Qi/tk—ib). (5b)
By inspection of Eq. {5) we see that if we analytically contin-
ue k into the complex plane the unknown function @_ is
analytic and bounded for Im{k }-» — w0, and ¥ is analytic
and bounded for Im(k }— o . Both functions are analyticin a
strip containing the real axis. To handle the square root in
Eq. (4c) we introduce branch cuts at in Fig. 2, and put

VK—i/Ld_=¥ /Nk+i/L +f, (6a)
f=0i/ltk—ibWNk+i/LY=f, +f_, {6b)
fo=1Qi/tk —ib)1[INK+i/L — 1/ib+i/L'},
(6c)
fo=Qi/f(k—ibWib+i/L}]. {6d)

Once more, f_ is analytic on the real axis and for
Im(k} <0, and £, for Im(k)> 0. Now write

Vk—i/L®_ —~f_ =¥, /Nk+i/L +f,. (7)
Now the left-hand side of the equation is, by construction,
analytic in the lower half plane and near the real axis, but
since it is equal to the right-hand side which is analytic near
the real axis and in upper half plane, both sides are entire.
However, the only entire function which approaches zero as
Im(k }— + o is the constant zero. Thus,

O=d_=f_/Jk—i/L. (8)
And from Egs. (3) and (4b),

nix,y) = J- (f_ Nk —i/L )™+ vdk /2. (9)
This is the complete sojution to the boundary value problem.

It is of interest to display n(x,0) and dn{x,0)/dy explicit-
ly. For the concentration itself

n{x,0) = f [Qi/ib +i/L' Y 1/f(k — ib Wk —i/L)}

X e**dk /2. (10)
For x < 0 we may close the contour in the lower half plane, so
that n = 0, as required. For x > 0 we have asimple poleand a
branch cut. A bit of algebra gives
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n(x,0) = QL erflyx/L ), (11)
where we have put & = 0 at the end of the calculation. The
current into the depletion region is

on(x,0)/dy = f LQinib + /L Y [Nk + i/L /(k — ib)]
xe*dk /2. (12)

For x > 0, only the pole at ib contributes to the integral and
we recover Eq. (2b). For x <0 we must integrate along a
branch cut:

\/;sz/L

an/dy = Qe"/."lf d———,
TJo t+1

=Q1—efly —x/L)+ 2/ —mx/L}. (13)

The total current into the junction is
J =J‘0 (On/dv)dx = QL /2, (14)

Thus a thick device collects exactly one-half as much Jateral-
ly diffusing current as a thin one. This remarkably simple
solution was previously conjectured on the basis of a numeri-
cal calculation.” Both Egs. (11} and (13) agree with the results
of Ref. 2 in the proper limit.

HE LINE ILLUMINATION

The photoresponse to a small illuminated spot could be
measured by electron-beam or optical excitation, as we men-
tioned above. Clearly this sort of experiment yields far more
information than the response to uniform illumination, as in
the last section. As Holloway* has shown, by translational
invariance along the edge, the response to a spot of length 6z
is the same as the current collected by 8z of the edge of the
device due to an illuminated line. Thus we consider the situa-
tion illustrated in Fig. 3. We must solve the same problem as
in Sec. II except that Eq. (2b) is replaced by

An/dy = Q8(x — xodx, (15)

where dx is the (small) width of the illuminated region. Re-
peating the analysis above we find

D=9 _ {16a)
qP® =¥, + Qdxe "=, (16b)
As before we write
/
7 dx
b3
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FIG. 3. Geometry for line illumination.
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Vk—i/Lo_=¥ /Nk+i/L +f, (17a)
f= Qdxe "/l + i/L. (17b)

However, the decomposition of finto f, is less trivial than
before. There is a general solution® to the problem, however

o Fi8
fo=% flk)dk /[ 2milk " — k)],
@ Fi8
where & is positive and less than 1/L. Equation {9} is still
valid with Eq. (17¢) for f_.
Assembling these resuits we can write an explicit
expression for the collected current:

(17¢)

o w + i8
n(x,0)/dy = {iQdx/ (2] f ac|  ax
— o w + i
o JEF /L eMre™ " (18)
JE FI/Lk' —k)

Now the physically relevant quantity is the totai current col-
lected:

dJ = J‘) dxdn(x,0)/dye"™

defm+i5 dk'e—lk'xo {1_ ,/1/L+lb ) (19)
2ri)weis k' —b\ k1L /

Once more, we have used a convergence factor. Note that the
poleatk ' — ib haszeroresidue. Converting the expressionto
a real integral along the branch cut we have

dJ =2Qdx/m| due=""+"WL(y? 4 1)
(4]

= Qdx{1 — erflyxo/L)]. (20)
This result appears to agree with the results of Holloway* in
the proper limit.
iV. SUMMARY

In this paper we have given exact solutions to the peri-
pheral photoresponse problem for a thick semiconductor. It
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is of interest to explicitly compare the thin'** (c €L ) and thick
{c> L ) limits:
For uniform illumination

J=QL (thin)

—QL/2 (thick);

for line or spot illumination*

dJ = Qdxe =" (thin)

= Qdx{1 — erflyxo/L)]

it is natural to ask whether the techniques used here can
be extended to the case of c ~ L. Though a formal answer can
be written down, the expression, which involves an infinite
number of poles spaced by roughly c¢/L (rather than abranch
cut), does not seem very tractable. It is probably preferable to
solve the case of ¢ ~ L numerically as was done in Refs. 1-4.

(thick).
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