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This paper presents an experimental technique for obtaining fully resolved measurements of 
the vector velocity field u(x,t> throughout a four-dimensional spatiotemporal region in 
a turbulent flow. The method uses fully resolved four-dimensional scalar field imaging 
measurements in turbulent flows [Phys. Fluids A 3, 1115 ( 1991)] to extract the 
underlying velocity field from the exact conserved scalar transport equation. A procedure for 
accomplishing this is described, and results from a series of test cases are presented. 
These involve synthetically generated scalar fields as well as actual measured turbulent flow 
scalar fields advected numerically by various imposed flow fields. The imposed velocity 
fields are exactly known, allowing a careful validation of the technique and its potential 
accuracy. Results obtained from a zeroth iteration of the technique are found to be 
very close to the exact underlying vector velocity field. Further results show that successive 
iterations bring the velocity field from the zeroth iteration even closer to the exact 
result. It is also shown that the comparatively dense velocity field information that this 
technique provides is well suited for accurate extraction of the more dynamically insightful 
strain rate and vorticity fields e(x,t) and o(x,t). 

I. INTRODUCTION 

The inability to measure fully resolved four- 
dimensional space- and time-varying vector velocity fields 
u(x,t) in complex flows presents one of the biggest obsta- 
cles in the study of the physics of fluid flows. The need for 
such an experimental technique is arguably greatest in tur- 
bulent flows, where relatively little is known about the de- 
tailed spatial structure and dynamics of the vector vorticity 
fields and tensor strain rate fields on the inner scales of 
such flows. Because of the lack of such a suitable measure- 
ment technique, investigations of the fine scale structure 
and dynamics in turbulent flows have been essentially re- 
stricted to large-scale direct numerical simulations (DNS) 
of the full equations of fluid motion. While such simula- 
tions have indeed provided considerable insight, they re- 
main limited to comparatively simple flows such as homo- 
geneous, isotropic or sheared turbulence at relatively low 
Reynolds numbers. The fine structure and dynamics of the 
velocity field-and, in particular, of the more dynamically 
insightful vorticity and strain rate fields-in real, inhomo- 
geneous, anisotropic turbulent shear flows at even moder- 
ately high outer-scale Reynolds numbers presently remain 
inaccessible to direct study. 

There are many experimental techniques currently in 
use for velocity measurements in turbulent flows. Most of 
these are inherently single-point techniques, producing a 
time series of one or more components of the velocity vec- 
tor at a single point in space. These include the whole class 
of invasive probe techniques, the most commonly used be- 
ing hot-wire and hot-film anemometry. More contempo- 
rary noninvasive optical techniques also exist, of which 
laser Doppler velocimetry is by far the most popular. Lim- 
ited spatial or temporal coherence information can be ex- 
tracted at relatively coarse scales of the flow by using such 

single-point techniques simultaneously at a number of 
points to produce a spatial array of time series data.ie8 
However, the low spatial resolution attainable by such 
multiple single-point measurements renders them unsuit- 
able for evaluating the local spatial derivatives necessary to 
extract the underlying fine scale structure and dynamics of 
turbulent flows. 

Recently developed two-dimensional optical imaging 
methods permit measurements of vector velocities simulta- 
neously at a large number of points in a flow. Reviews of 
some of these techniques are given by Adrian,gY’o 
Merzkirch, ’ ’ Lauterborn and Vogel, l2 Hesselink, l3 Miles 
and Nosenchuck,14 Chang and Reid,15 and Gad-el-Hak. I6 
The majority of these techniques involve particle imaging 
methods, among them laser speckle velocimetry, *7-24 par- 
ticle tracking velocimetry,25-2g and particle image 
velocimetry.3e-33 These typically yield the projection of the 
velocity vectors in a single measurement plane. Three- 
dimensional particle tracking34’35 and holographic particle 
image velocimetry3638 are now being explored as tech- 
niques for measuring full three-component vector velocity 
fields in complex flows. However, even with these mul- 
tipoint measurement techniques, accurate spatial differen- 
tiation to extract the underlying fine structure of the vor- 
ticity and strain rate fields remains compromised by the 
comparatively low spatial and temporal resolution attain- 
able. Various laser-induced fluorescence and phosphores- 
cence techniques3’ have also been considered, some of 
which allow direct extraction of the velocity gradient 
field,40 but these too appear unsuitable for studies of the 
fine scale dynamics of turbulent flows at Reynolds numbers 
of interest. 

Here, we take an entirely different approach to the 
measurement of the fully resolved, four-dimensional, vec- 
tor velocity field u( x,t) on the inner scales of turbulent 
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shear flows. Our approach is rooted in the recently dem- 
onstrated experimental capability for obtaining fully re- 
solved four-dimensional measurements of the fine scale 
structure of SC> 1 conserved scalar fields &x,t) on the 
inner scales of turbulent flows.4143 In this paper, we 
present a technique for extracting the underlying space- 
and time-varying vector velocity field from such scalar field 
measurements of a single, dynamically passive conserved 
scalar in a turbulent flow. The technique involves inverting 
the exact conserved scalar transport equation throughout 
the dense, four-dimensional, spatiotemporal data space to 
directly yield the velocity component field ~1, (XJ) along 
the local scalar gradient vector Vg(x,t) . An examination of 
the corresponding gradient field Vull (x,t) then allows ex- 
traction of the full vector velocity field u (XJ) . We describe 
this approach in detail and apply it to a series of test cases 
in which synthetically generated scalar fields as well as 
actual measured turbulent flow scalar fields are numeri- 
cally advected by various imposed flow fields. Since the 
objective velocity fields are exactly known, we are able to 
obtain a careful validation of this scalar imaging velocim- 
etry technique as well as an indication of its potential ac- 
curacy. 

The presentation is organized as follows. In Sec. II, we 
describe the scalar imaging velocimetry technique. Section 
III presents results from several test cases that allow a 
validation of the method and an assessment of its capabil- 
ities, and in Sec. IV we discuss the general utility of this 
method and draw conclusions regarding its suitability for 
permitting direct experimental studies of the fine scale 
structure and dynamics of the vector velocity fields, as well 
as the vorticity vector field and the strain rate tensor field, 
on the inner scale of turbulent flows. The Appendix de- 
scribes the numerical techniques used here to implement 
this technique in the test cases presented. 

II. SCALAR IMAGING VELOCIMETRY 

In this section, we describe the approach used to ex- 
tract the vector velocity field u(x,t) from fully resolved 
four-dimensional measurements of a single, dynamically 
passive, conserved scalar field &x,t) in turbulent flows. 
We begin with a brief overview of the experimental method 
currently in use for measuring scalar field data of the type 
to which the present velocimetry technique is to be applied. 
Details of such tiirbulent scalar field measurements, as well 
as examples of the data obtained, are presented in Refs. 42 
and 43. Here, we only summarize those aspects that are 
essential to the extraction of the underlying velocity field. 

Briefly, such fully resolved four-dimensional scalar 
field measurements are based on successive, high-speed, 
planar imaging of the laser-induced fluorescence from a 
dynamically passive laser dye carried by the flow, whose 
concentration is a conserved scalar variable. A collimated 
laser beam is repeatedly swept in a raster fashion through- 
out a small volume in the flow by a pair of low-inertia 
mirrors driven by two galvanometric scanners slaved to the 
imaging array timing. The successive 256 X 256 scalar field 
data planes are acquired at rates up to 142 planes/set into 
gigabyte-sized data sets using very fast computer disk 

ranks to produce four-dimensional spatiotemporal data 
space structures as shown in Fig. 2 of Ref. 43. Each such 
measured data space consists of a rapid succession of indi- 
vidual three-dimensional spatial data volumes. Each of 
these data volumes in turn consists of a sequence of two- 
dimensional spatial data planes, each of which consists of 
an array of 256 x 256 individual data points. The flow fa- 
cility and imaging electronics are designed so that the re- 
sulting effective spatial resolution (AX, Ay, AZ) between 
adjacent points in each three-dimensional data volume is 
smaller than the local strain-limited molecular diffusion 
scale dD /6 - SC- *‘2 Res 3’4 of the scalar field. Similarly, 
the temporal resolution At between the same data point in 
successive spatial data volumes is smaller than the local 
molecular diffusion scale advection time AzD /u. This reso- 
lution, together with the high signal quality attained, al- 
lows accurate differentiation of the measured conserved 
scalar field data in all three space dimensions and in time to 
determine the components of the instantaneous time deriv- 
ative field (~Y/dt)&x,t), the scalar gradient vector field 
Vc(x,t), and the Laplacian field V2[(x,t) throughout the 
four-dimensional data space. Such measurements have 
been reported at outer-scale Reynolds numbers 
Res G (Z&Y) as high as 6000 with individual fully resolved 
data planes spanning an area as large 1.6/2,x 1.6;1,. 

Of practical relevance for the present discussion, note 
that this technique produces the measured scalar field 
{(x,t) at every point on a dense and regular grid in the 
four-dimensional spatiotemporal data space. Moreover, the 
scalar diffusivity is typically quite small, or more precisely 
the Schmidt number is large. For example, in the disodium 
fluorescein measurements referred to above, Sc~2075. As 
a consequence, the underlying velocity field that we are 
aiming here to extract from such measurements is consid- 
erably smoother than the scalar field from which we begin. 
In particular, the finest gradient length scale in d,, in the 
velocity field is larger, by a factor of SC~‘~, than the small- 
est gradient length scale d, in the scalar field, so this ratio 
of scales is about 45 for the measurements referred to 
above. 

A. Direct extraction of u$x,f) from g(x,f) 

Any such dynamically passive, conserved scalar field 
c(x,t) follows the exact advective-diffusive transport equa- 
tion 

( ;+u.v- & v 2 &x,t) =o. 1 
Here, and throughout, all variables are taken to be nondi- 
mensionalized with reference length and velocity scales, I* 
and u*, and reference scalar value c*. In Eq. ( 1 ), the 
dimensionless scalar diffusivity (l/Re SC) involves the 
product of the Reynolds number Re= (u*Z */Y) and the 
Schmidt number SC = (v/D), where Y and D are the vor- 
ticity and scalar diffusivities, respectively. 

Note in Eq. ( 1) that the influence of the underlying 
fluid velocity field u(x,t) on the scalar field [(x,t) is 
strictly through the convective term u-V{. This can be writ- 
ten as uII 1 Vc I, where uII represents the component of the 
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FIG. 1. Schematic showing the difference in uII (x,t) between two closely 
spaced points due to the change in u(x,i) and the change in &&x,t). 

local velocity vector along the local scalar gradient vector 
direction. Four-dimensional measurements of the scalar 
field [(x,t), with resolution and signal quality sufficient to 
allow accurate direct differentiation in both space and 
time, allow extraction of this velocity component through- 
out the spatiotemporal data space as 

UII (x,t> = i 
ama & v 2ch,t) -----g- 1 E I wx,t> I 1 -l. 

(2) 
This involves not only the scalar gradient field Vc( x,t), but 
also the Laplacian field V*c(x,t) and the time derivative 
field (d/&)Qx,t) . The inversion is, of course, only possi- 
ble where the local scalar gradient vector magnitude is not 
zero. 

Southerland et alaM recently reported the measurement 
of ~11 (x,t) using Eq. (2) for the relatively simple flow field 
represented by an axisymmetric laminar vortex ring. Their 
results, which also show the individual component fields 
involved in Eq. (2)) used linear central difference approx- 
imations, without any explicit smoothing or filtering, on 
the measured scalar field c(x,t) to numerically evaluate the 
scalar gradient magnitude field 1 VLJx,t) 1 as well as the 
time derivative field (a/at>c( x,t> and the Laplacian field 
V2c(x,t). Figure 6 of Ref. 44 shows that remarkably clean 
first- and second-derivative fields are indeed obtainable 
from measured four-dimensional conserved scalar field 
data. 

B. Local variations in q(x,f) 

From Eq. (2), the value of ~11 (x,t) at any point in the 
spatiotemporal data space gives the projection of the local 
u(x,t> onto the unit vector &{(x,t> pointing in the local 
scalar gradient vector direction, namely 

q(x,t) =ukGv&,t), (3a) 
where 

~;ls(x,t) =v~(x,wl v&d 1 * (3b) 
As a result, ul,(x,t) differs between any two points x and 
x+dx due to (i) the change in the gradient vector direc- 
tion, which is known, and (ii) the change in u( x,t). This is 
shown schematically in Fig. 1, and can be expressed for- 
mally as 

vu,, =u.v~~+vllT*~~~ (4) 

Note that the gradient fields are, for the present time at 
least, approximated linearly as 

u(x+dx) =u(x) +Vu*dx, 

and 

(54 

&g(x+dx) r&*(x) +v&**dx. (W 

In Eq. (4), the ~11 (x,t) field and the scalar gradient 
vector orientation field ‘&c(x,t) are known from the mea- 
sured scalar field data. The unknowns are the three com- 
ponents of the velocity field u(x,t) and the nine compo- 
nents of its gradient field Vu(x,t). If Eq. (4) were 
interpreted purely locally, then only three linearly indepen- 
dent equations could be formed from it and there would be 
little hope of extracting u(x,t> and Vu(x,t). Of course, 
there are, in fact, only three unknowns in Eq. (4)) since the 
nine components of Vu(x,t) result directly from relations 
among adjacent values of u(x,t). The availability of such 
adjacency information from the three-dimensional spatial 
character of the original scalar field measurements moti- 
vates an iterative procedure to find the velocity field u(x,t) 
in Eq. (4). 

C. The zeroth iteration for u(x,t) 

Recall from Fig. 1 that variations in u~l(x,t) between 
any two points x and x+dx are due to variations in both 
u (x,t) and pvC( x,t) . We begin by examining the character- 
istic length scales over which u(x,t) and &,+(x,t) can be 
expected to vary. For large SC scalar mixing in turbulent 
flows, we can expect that the scalar gradient field Vf(x,t) 
will contain considerably more fine structure than the ve- 
locity gradient field Vu(x,t). In particular, at any point in 
the flow, the influence of a locally uniform but time- 
varying strain field e(t) leads to a competition between the 
effects of strain and diffusion which establishes an equilib- 
rium strain-limited vorticity diffusion length scale 
a,- (v/V/E) “*, closely related to the Kolmogorov scale, giv- 
ing the finest scale on which spatial gradients in the vor- 
ticity field can be locally sustained. A similar competition 
leads to a local strain-limited scalar gradient lengthscale 
A, - (D/E) 1’2, related to the Batchelor scale. The velocity 
gradient field Vu(x,t) will then be linear over lengthscales 
of the order of il,,, while V[(x,t) is linear over lengthscales 
of order /zD~=:/z,,*Sc-“*, so that, for large Schmidt num- 
bers, il,gR, 

It must be noted, however, that it is principally the 
magnitude of Vc that varies over this length scale. The unit 
vector 2vC pointing along the local Vc(x,t) direction will 
vary over somewhat larger length scales. This can be seen, 
for example, in Figs. 5 and 6 of Ref. 43. Indeed, there is 
evidence that, over most of the scalar field, V<(x,t) tends 
to remain largely aligned with the most compressive local 
principal strain rate axis of the velocity gradient field, 
which, in turn, varies over length scales of the order of /2, 
Nevertheless, owing to the continual stretching and folding 
action of the scalar dissipation layers by the Vu(x,t) field, 
there will be regions in the flow in which the local V{ does 
not stay aligned with the principal strain rate axes. Such 
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FIG. 2. The original synthetic conserved scalar field &x,t) for Case I in 
Sec. III A. 

areas can be readily identified, for example, in Figs. 5 and 
6 of Ref. 43, where the scalar gradient layers fold back 
onto themselves within a small region. In these regions at 
least, we can expect &c to vary with dx more rapidly than 
will u. 

We can therefore generate a starting solution for the 
velocity field in such regions by initially ignoring the con- 
tribution from variations in u(x,t) to the spatial variations 
in %I (x,t>. This amounts to assuming that, for small dx, 
Su*evC in Eq. (4) is small in comparison with I&&. In 
such a small neighborhood around any point x, the ~11’s 
found at three different points are then essentially the pro- 
jections of a single local velocity vector u onto the three 
different unit vectors $vP For any three points i={ 1, 2, 3) 
we can express this formally by writing Eq. (3a) in terms 

1 (q)1 

(U$a 
(793 

of the local projection matrix as Gig) 1,x (&*I 1,y Gvvc) l,z 
(&)2,X (%t)zs (Q2,Z 

&)3,X (&)3,y (&$3,2 

u II 1 v , (6) 
W 

where each of the matrix elements (&g>v is the xi compo- 
nent of the unit vector 2vvc at the ith point. If the points are 
selected so that the three $&‘s are sufficiently noncolinear, 
then the local velocity vector u= (u, v, w) can be obtained 
from the measured q(x,t) via the inverse of this local 
projection matrix. Of course, in any such small neighbor- 
hood, there are in principle many combinations of points 
for which Eq. (6) can be written and from which estimates 
for the local velocity vector u can be obtained. This high 
level of redundancy leads to a strong probability of finding 
at least one set of points for which the projection matrix is 
sufficiently nonsingular to allow its accurate inversion. 
Moreover, this redundancy affords considerable opportu- 
nities for incorporating explicit noise reduction, if needed, 
in this zeroth estimate of u (x, t) . 

10.2 - 

% 
YI 
A) 28 

O- --1.0 
I 1 
0 

si 
10.2 

FIG. 3. The velocity Fmponent field ull(x,t) along the local scalar gra- 
dient vector direction evF (x,t) for Case I in Sec. III A, obtained via Eq. 
(2). 
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FIG. 4. The zeroth iteration result II’ for the vector velocity field for 
Case I in Sec. III A, obtained from the ul,(x,t) field in Fig. 3 via Eq. (6). 
Compare with the corresponding fourth iteration result u4(x,t) in Fig. 5 
and the corresponding exact result shown in Fig. 6. (a) The x-component 
field u’(x,t). (b) The y-component field u’(x,t). 
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FIG. 5. The fourth iteration result u4(x,r) for the vector velocity field for 
Case I in Sec. III A, obtained from the zeroth iteration result u’(x,t) in 
Fig. 4 via successive iterations in Eq. (11). Compare with the zeroth 
iteration result II’ in Fig. 4 and the corresponding exact result shown 
in Fig. 6. (a) The x-component field u4(x,t). (b) The y-component field 
d(x,t). 

Having found the starting values for the velocity vector 
in regions where the second term in Eq. (4) is negligible, 
we can then interpolate to obtain a starting solution for 
u(x,t) at each point in the data volume. This starting so- 
lution will be denoted by u’(x,t). Alternatively, we might 
obtain the starting solution by simply applying Eq. (6) at 
every point in each data volume, without attempting to 
identify those regions where the underlying approximation 
is most valid. Our results in Sec. III show that, at least for 
the large SC considered here, the u’(x,t> obtained in this 
manner are very close to the exact solution. 

D. Successive iterations for u(x,f) 

While this starting solution might be adequate for 
many purposes, it is possible to obtain a more accurate 
solution for u(x,t) by writing Eq. (4) as a sequence of 
successive approximations, namely 

(7) 
Here uk-r denotes the velocity field obtained from the pre- 
vious iteration, and uk the velocity field that results from 

10.2 

$ 

0 

(a) 

10.2 - 

i 

O- 

il.0 

/I u(& r-c 

‘-1.0 

+l.O 

/I 
7 l- 

I3z 

-1.0 
I 1 
0 

i 
10.2 

(b) 
FIG. 6. The exact analytical result u(x,f) for the vector velocity field for 
Case I in Sec. III A, obtained from Eqs. (9a) and (9b). Compare with the 
zeroth and fourth iteration results, u’(x,t) and u4(x,t), in Figs. 4 and 5, 
respectively. (a) The x-component field u(x,t). (b) The y-component 
field u(x,t). 

using uk--l to estimate the velocity gradient field Vu. We 
begin the iterative procedure for k= 1 with the result of the 
zeroth iteration, u’(x,t), from which we find Vu’(x,t). 
Equation (7) then involves only the three unknown veloc- 

o.o’6 I 

0.0 

0 u-component 
0 v-component 

0 

0 0 0 
Q Q 2 0 

0 1 2 3 4 

k 

FIG. 7. Reduction in rms velocity errors with increasing iteration number 
in Eq. (7) for Case I. 
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(a) 

FIG. 8. The vorticity field result m4(x,t) obtained from the fourth iteration result u4(x,t) for Case I in Sec. III A, compared with the exact analytical 
result o(x,t) from Eqs. (9a) and (9b). (a) The resulting 04(x,t) field. (b) The exact w(x,t) field. 

ity components u”, which we can obtain from the three 
components of this equation based on the measured ~11 (x,t) 
and &&x,t) fields. Successive iterations based on Eq. (7) 
can then be made until the velocity field uk converges to a 
self-consistent result. While various constrained iteration 
schemes that explicitly require V*u=O, or that even enforce 
the vorticity transport equation explicitly, are possible if 
needed to accelerate convergence to the velocity field 
u(x,t), our results in the Sec. III show that stable, rapid 
and accurate convergence is achieved without the need to 
resort to any such measures. 

E. Derivative fields ~(x,f), 0(x$), and Vp(x,f) 

This procedure, in principle, allows the complete 
space- and time-varying vector velocity field U(X,I) to be 
found throughout the four-dimensional data space. The 
primary interest is, of course, in its more dynamically in- 
sightful derivative fields, namely the three components of 
the vorticity field o(x,t) =VXu(x,t) and the six compo- 
nents of the strain rate tensor field e(x,t) &Vu+Vu’). It 
is also worth noting that the pressure gradient field Vp( x,t) 
can, in principle, be obtained from u(x,t) by inverting the 
momentum equation as 

VP(XJ) = - &+“*v-; v2 “(XJ). ( 1 
Note that, since the objective velocity field u(x,t) is 
roughly SC’” times smoother than the original scalar field 
measurements, there would appear to be considerable op- 
portunities for incorporating numerical techniques to in- 
sure a twice differentiable result suitable for evaluating 
V~(x,t) without compromising the fidelity of the underly- 
ing structure of the velocity gradient field Vu(x,t) . 

III. TESTS OF THE SCALAR IMAGING VELOCIMETRY 
(SIV) TECHNIQUE 

In Case III, the same measured turbulent flow scalar 
field {(x,t) is advected to give its evolution in the presence 
of a flow field that is representative of the level of complex- 
ity anticipated over the range of inner flow scales spanned 
by the measurements. The imposed velocity field consists 
of two vertical structures with circulations of opposite sign 
and different magnitudes. These three test cases, with the 
resulting velocity vector fields u (x,t), vorticity vector fields 
o(x,t), and strain rate tensor fields e(x,t), are presented in 
the following sections and compared with the exact values 
to assess the utility of this scalar imaging velocimetry tech- 
nique. 

A. Case I 

In this section, we apply the scalar imaging velocime- This case consists of a simple conserved scalar field 
try technique described above to three test cases, with the c(x,t), shown in Fig. 2, which is numerically evolved un- 
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aim of obtaining a careful validation of the technique and 
an assessment of its potential accuracy. Case I involves a 
comparatively simple conserved scalar field f(x,t) that is 
defined analytically, and whose time evolution in the pres- 
ence of a single region of concentrated vorticity is also 
defined analytically. Since this synthetic conserved scalar 
field is free of any noise that would be present in an actual 
measured scalar field, this case provides an assessment of 
the potential limiting accuracy of the scalar imaging ve- 
locimetry method. Moreover, the underlying velocity field 
u(x,t) is known exactly and can be compared with the 
result obtained from the scalar imaging velocimetry 
method. 

Case II involves an actual measured turbulent flow 
conserved scalar field g(x,t), from the fully resolved four- 
dimensional measurements in Ref. 43, which is numeri- 
cally advected in time to give its evolution in the presence 
of a uniform shear flow. In this case, the scalar field is quite 
complex and contains a level of noise inherently represen- 
tative of real turbulent flow measurements. However, the 
underlying velocity field is still simple and exactly speci- 
fied, again allowing a precise determination of the accuracy 
of the technique. 
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FIG. 9. The strain rate tensor field result e4(x,t) obtained from the fourth iteration result u4(x,t) for the vector velocity field for Case I in Sec. III A, 
4 compared with the exact analytical result e(x,t) from Eqs. (9a) and (9b). (a) The resulting exx (XJ) field. (b) The exact eXX(x,t) geld. (c) The resulting 

E$,(x,I) field. (d) The exact eJx,t) field. (e) The resulting &,(x,t) field. (f) The exact e,..(x,t) field. 

der the dynamical influence of a single region of concen- This scalar field is numerically advanced in time by the 
trated vorticity. Both the original scalar field and the un- velocity field 
derlying velocity field are synthetically generated from 
known analytical functions. As a consequence, there is es- r (Y -Yo) 
sentially no noise present in the scalar field from which the U(X7t) =G (x-xop+ (y-yo)2+62 

(94 

velocity field is to be extracted, and thus this case allows an 
assessment of the limiting accuracy of the method. and 
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FIG. 10. The trace field resulting from the strain rate tensor field e4(x,t) 
in Fig. 9 for Case I in Sec. III A, shown on the same scale as the strain 
rate tensor components in Fig. 9 and demonstrating that continuity is 
essentially satisfied. 

r (x--x0) 
y(XJ)= -G (x-xo)~+(y~j~)2+~2 ; (9b) 

which corresponds to a single algebraic vortex blob, lo- 
cated at (~0,~0) and with circulation r and core size S. 
Normalization of all variables in this case is done with the 
reference scales I* = 6 and u* G ( l?/4&). 

The inversion of the scalar transport equation via Eq. 
(2) involves the space and time derivatives of the scalar 
field, which are obtained numerically using central differ- 
ences from the advected scalar field data (see the Appen- 
dix). Equation (2) then produces the ~1, (x,t> field shown 
in Fig. 3. Note that zero values of ~11 are indicated by a 
pure yellow coloring, with colors increasing uniformly to 
pure red indicating positive values and those increasing to 
pure blue denoting negative values. Areas in which the 
scalar gradient vector magnitude lies below a minimum 
threshold value have been flagged black, since in those 
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FIG. 11. The conserved scalar field <(x,t) from the turbulent flow mea- 
surements in Ref. 43 used for Case II in Sec. III B. 
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FIG. 12. The individual derivative fields obtained from the conserved 
scalar field c(x,t) in Fig. 11 for Case II in Sec. III B. (a) The x-derivative 
field (&‘/ax). (b) The y-derivative field (a</@). (c) The t-derivative 
field (ac/kk) . 

regions no direct inference of ~11 (XJ) from the measured 
scalar field is possible. 

The uII (XJ) field in Fig. 3 is then used to extract the 
zeroth iteration result for the underlying velocity field 
u( x,t) via Eq. (6), which ignores the effect of variations in 
the true velocity vector u and approximates variations in uII 
as being due solely to variations in &,+( x,t> . The resulting 
u’(x,t) is shown in Fig. 4, where the same color assign- 
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FIG. 13. The velocity component field ull(x,t) along the local scalar 
gradient vector direction for Case II in Sec. III B, obtained from the 
component fields in Fig. 12 via Eq. (2). 

ment scheme as before is used. This initial estimate for the 
vector velocity field is then used in Eq. (7) to obtain suc- 
cessive improvements in uk( x,t) . The result obtained after 
four iterations is shown in Fig. 5, where the improvement 
in u4(x,t) can be seen in comparison with the initial result 
in Fig. 4. The exact velocity field u(x,t) from Eqs. (9a) 
and (9b) is shown in Fig. 6, against which the results 
obtained in Figs. 4 and 5 should be compared. Most of the 
improvement due to the iterations leading from Figs. 4 to 
Fig. 5 is actually achieved in the first few iterations. This 
can be seen in Fig. 7, which shows the reduction of the rms 
error in each velocity component, normalized by the peak 
value of that component, with increasing iteration number 
k. 

The vorticity field w(x,t> obtained from the fourth 
iteration result u4(x,t) in Fig. 5 is shown in Fig. 8 (a), with 
the corresponding exact result from Eqs. (9a) and (9b) 

1 .oo 
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u” (EL) / 

0.0 

FIG. 14. The zeroth iteration result II’ for the vector velocity field 
for Case II in Sec. III B, obtained from the ~11 (x,t) field in Fig. 13 via Eq. 
(6). Compare with the corresponding fourth iteration result u4(x,t) in 
Fig. 15 and the corresponding exact result shown in Fig. 16. (a) The 
x-component field u’(x,t). (b) The y-component field u’(x,t). 
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FIG. 15. The fourth iteration result u4(x,t) for the vector velocity field 
for Case II in Sec. III B, obtained from the zeroth iteration result uO(x,r) 
in Fig. 14 via successive iterations in Eq. ( 11). Compare with the zeroth 
iteration result u’(x,t) in Fig. 14 and the corresponding exact result 
shown in Fig. 16. (a) The x-component field d(x,r). (b) The y- 
component field u4(x,r). 
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/ uI-a 
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FIG. 16. The exact analytical result u(x,t) for the velocity field in Case 
II of Sec. III B. Note that the exact result for u(x,r) is identically zero. 
Compare with the zeroth and fourth iteration results, II’ and u4(x,t), 
in Figs. 14 and 15, respectively. 
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FIG. 17. Reduction in rms velocity errors with increasing iteration num- 
ber in Eq. (7) for Case II. 

shown for comparison in Fig. 8(b). Similarly, the three 
independent components of the strain rate tensor field 
e(x,t) obtained from the fourth iteration result u4(x,t) are 
compared with the exact results in Fig. 9. Note that both 
the vorticity and strain rate fields are very accurately ex- 
tracted by the technique. As a final and rather stringent 
test of the accuracy of these results, Fig. 10 shows the trace 
field resulting from the strain rate tensor field e(x,t) ob- 
tained from u4(x,t); the scale is the same as those in Fig. 9. 
The result in Fig. 11 verifies that continuity is well satisfied 
by the vector velocity field obtained from this technique. 

B. Case II 

This case addresses the use of measured conserved sca- 
lar field data g(x,t> from an actual turbulent flow in this 
scalar imaging velocimetry technique. The scalar field used 
is from the fully resolved four-dimensional turbulent flow 
measurements in Ref. 43, and is shown in Fig. 11. This 
scalar field is advected in time using a second-order 
Runge-Kutta scheme to give its evolution in the presence 

200 

100 

r 

- 4th iteration 
---- Gthiteration 

! 
D.00 

u-error 

FIG. 18. Distributions of u(x,t) velocity component errors with increas- 
ing iteration number k for Case II. 
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FIG. 19. The time derivative field (J</c%) obtained from the measured 
turbulent flow conserved scalar field g(x,t) in Fig. 11 for Case III in Sec. 
III C. The x-derivative and y-derivative fields for this case are essentially 
identical to those shown in Figs. 12(a) and 12(b). 

of a uniform shear flow with YCO and with velocity gra- 
dient (&~/dy) se. In this case, normalization of all vari- 
ables is done with the reference scales I *EL and 
u*= (EL). While the velocity field in this case is still rela- 
tively simple, the scalar field is inherently representative of 
real turbulent flow scalar fields, and, moreover, contains a 
level of noise that also is inherently representative of real 
scalar imaging measurements in turbulent flows. Again, 
the fact that the velocity field is known analytically allows 
precise assessments of the accuracy of the method for this 
considerably more complex case. 

We begin by examining the integrity of the derivative 
fields involved in Eq. (2), which are shown in Fig. 12. The 
same color assignment scheme as before is used to denote 
the quantitative derivative values. Despite the noise inher- 
ent in the measured turbulent flow scalar field data, the 
derivative fields obtained are relatively smooth. From 
these, the inversion in Eq. (2) produces the ull(x,t) field 

*I 26 
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rmrr 
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’ -1.26 

FIG. 20. The velocity component field ull(x,~) along the local scalar 
gradient vector direction &&x,t) for Case III in Sec. III C, obtained via 
Eq. (2). 
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FIG. 21. The zeroth iteration result u’(x,r) for the vector velocity field 
for Case III in Sec. III C, obtained from the u[(x,t) field in Fig. 20 via Eq. 
(6). Compare with the corresponding fourth iteration result u4(x,t) in 
Fig. 22 and the corresponding exact result shown in Fig. 23. (a) The 
x-component field u”( x,t) . (b) The y-component field u’(x,t) . 

shown in Fig. 13. Note that the layerlike structure inherent 
in the scalar gradient vector field Vf( x,t) leads to both the 
structure and the color symmetry seen in ull(x,t) in Fig. 
13. 

The zeroth iteration result II’ obtained via Eq. (6) 
is shown in Fig. 14. The result obtained after four itera- 
tions of Eq. (7) based on this initial result is shown in Fig. 
15. The improvement in u4( XJ) can be seen by comparing 
with the initial result in Fig. 14 and with the exact velocity 
field u( x,t> shown in Fig. 16. For this uniform shear case, 
the vorticity field w(x,t) and strain rate tensor field e(x,t) 
are uniform, and thus, for brevity, will not presented here. 
As in the previous case, Fig. 17 shows that most of the 
improvement between u’(x,t) and u4(x,t) is obtained in 
the first few iterations. Figure 18 shows this convergence in 
terms of the entire distribution of u-component errors, 
where again the error is normalized by the peak value of 
the true velocity component. 

C. Case III 

We now consider the same measured turbulent flow 
scalar field shown in Fig. 11, but impose a somewhat more 

6 
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9.-04 

(b) 

+1.26 

-1.26 

+1.26 

-1.26 

FIG. 22. The fourth iteration result u4(x,t) for the vector velocity field 
for Case III in Sec. III C, obtained from the zeroth iteration result u’(x,t) 
in Fig. 21 via successive iterations in Eq. ( 11). Compare with the zeroth 
iteration result u’(x,t) in Fig. 21 and the corresponding exact result 
shown in Fig. 23. (a) The x-component field n4(x,t). (b) The y- 
component field u4(x,t). 

complex velocity field. The velocity gradients are now con- 
siderably higher and are no longer spatially uniform, with 
the velocity field being representative of the level of com- 
plexity anticipated over the range of inner flow scales 
spanned by the measured turbulent flow scalar field data. 
In particular, we use 

2 rj 
u(xJ) = z1 G (x-~.)~+-;.y)“+s! I I I (104 

and 

2 I-. v(x,t)=- c L (x--xl) 
i=l 2T (X-Xi)2+ b--yi)*+6: ’ (lob) 

which corresponds to two vortex blobs of the type in Case 
I. Here, we take the circulation ratio r1/r2= -3/2 and 
62/&= 1. Normalization in this case is done with the ref- 
erence scales I *ES and U* = ( lY,/47rS). The dimensionless 
data plane size was 10, and the vortex locations were cho- 
sen as (xi,y,) = (3,3) and (x2,y2) =(7,8). The same mea- 
sured turbulent flow scalar field as in Case II was advected 
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FIG. 23. The exact analytical result u(x,t) for the vector velocity field for 
Case III in Sec. III C, obtained from Uqs. (10a) and (lob). Compare 
with the zeroth and fourth iteration results, u’(x,t) and u4(x,r), in Figs. 
21 and 22, respectively. (a) The x-component field u(x,t). (b) The y- 
component field u(x,t). 

in time with a second:order Rung+Kutta scheme to pro- 
duce the corresponding scalar fields at different times. 

The space and time derivatives of the scalar field in- 
volved in Eq. (2) were again obtained from the advected 
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FIG. 24. Reduction in mrs velocity errors with increasing iteration num- 
ber in Eq. (7) for Case III. 
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FIG. 25. Distributions of the velocity component errors with increasing 
iteration number for Case III. (a) u-component errors. (b) u-component 
errors. 

scalar field data. The spatial derivatives are essentially 
identical to those in Figs. 12(a) and 12(b) but the time 
derivative is now different owing to the different flow field 
and is shown in Fig. 19. From these derivative fields, the 
inversion in Eq. (2) produces the ull(x,t) field shown in 
Fig. 20. 

The zeroth iteration result u’(x,t) from Eq. (6) is 
shown in Fig. 21. The corresponding result for u4( XJ) 
after four iterations of Eq. (7) is shown in Fig. 22. The 
exact velocity field u(x,t) from Eqs. (10a) and (lob) is 
shown in Fig. 23, against which the results obtained in 
Figs. 21 and 22 should be compared. The u4(x,t) field can 
be clearly seen to be an improvement over the initial field 
u’(x,t), and moreover can be seen to compare well with 
the exact u( x,t> . The convergence is summarized in Figs. 
24 and 25, which show the reduction in rms velocity com- 
ponent errors as well as the entire distribution of velocity 
errors. 

The vorticity field w ( XJ) obtained from the u4( XJ) 
field in Fig. 22 is shown in Fig. 26 (a), and should be 
compared with the corresponding exact result from Eqs. 
( 10a) and ( lob) shown in Fig. 26(b). Similarly, the three 
independent components of the strain rate tensor field 
e(x,t) obtained from the u4(x,t) field are compared with 
the corresponding exact results in Fig. 27. Note that all the 
major structural features of the vorticity and strain rate 
fields are accurately reproduced even in this more complex 
case. As a final check on the accuracy of the resulting 
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FIG. 26. The vorticity field result w’(x,t) obtained from the fourth iteration result u4(x,t) for the vector velocity field for Case III in Sec. III C, 
compared with the exact analytical result w(x,t) from Fqs. (10a) and (lob). (a) The resulting 04(x,t) field. (b) The exact o(x,i) field. 

u4(x,t) field, Fig. 28 shows the trace field obtained from 
the strain rate tensor field E( x,t) in Figs. 27 (a) and 27 (c) . 
The scale is the same as those in Fig. 27 and verifies that 
continuity is again essentially satisfied by the resulting vec- 
tor velocity field obtained from this scalar imaging veloci- 
metry technique. 

IV. CONCLUSIONS 

We have presented an experimental technique for ex- 
tracting the underlying vector velocity field throughout a 
four-dimensional spatiotemporal region from fully resolved 
measurements of a conserved scalar field. The technique 
has been applied to a series of test cases specifically selected 
to assess the validity and potential accuracy of the tech- 
nique through detailed comparisons against known veloc- 
ity fields. In particular, the results from Case I, which 
involves essentially no noise in the original scalar field 
data, suggest that highly accurate extraction of the under- 
lying vorticity and strain rate fields is possible with this 
approach. Moreover, since Cases II and III involve actual 
measured turbulent flow scalar fields, and since the velocity 
gradient length scale ;1, in Case III reflects a level of com- 
plexity in the velocity field relative to the scalar gradient 
length scale /2, that is representative of actual turbulent 
flows, results from these tests should be indicative of the 
applicability of the technique to the study of turbulent 
flows. The spatial and temporal resolution, as well as the 
noise level, of the original scalar field measurements appear 
to be the major practical issues in applying the method. In 
this context, we note that the measurement of sufficiently 
well-resolved scalar fields has been reported in Ref. 43, 
and, indeed, these measurements have been used for two of 
the present test cases. Based on these test cases, it appears 
that current imaging technology allows the requisite scalar 
field to be measured with sufficiently high integrity to per- 
mit the inversion described here. It is important to note in 
this regard that, for a given signal-to-noise level, measure- 
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ment of the scalar field in all three spatial dimensions offers 
considerably greater noise reduction advantages in com- 
puting derivatives than experience in more traditional one- 
dimensional measurements might suggest. For example, a 
properly defined central difference operator on a full 33 
local spatial template produces a gradient field with far less 
noise and with the same spatial resolution than a naive 
template involving just six points would for the same noise 
level in the original scalar field. The time derivative, how- 
ever, offers no such noise reduction possibilities. Accord- 
ingly, our experience to date has shown that noise in this 
term is functionally the limiting quantity in performing the 
inversion. The results from Cases II and III nevertheless 
suggest that measurements such as these are capable of 
producing sufficiently low noise data to allow the inversion 
to determine the underlying velocity field. Collectively, the 
results obtained suggest that this scalar imaging velocime- 
try technique is capable of yielding fully resolved experi- 
mental data for the space- and time-varying vector velocity 
field, and the associated structure and dynamics of its de- 
rivative fields, on the inner scales of turbulent flows. 

It is striking that the initial estimates u’(x,t) are as 
good as they are, and that most of the successive improve- 
ment from Eq. (7) occurs in the first iterative step. The 
former appears to be due to the fact that the initial neglect 
of VIP&c in favor of uV& in Eq. (4) is indeed a good 
approximation at large Schmidt numbers. The latter may 
then result from the fact that, given this good initial esti- 
mate, the iteration in Eq. (7) is able to essentially correct 
for the errors introduced by this approximation on the first 
step. The ultimate level of improvement attainable through 
further iterations is, of course, limited by numerical pro- 
cessing errors introduced by the discrete implementation of 
Eq. (7). 

While the technique appears to work well for Scsl 
scalar fields, it is interesting to consider whether the same 
can be expected for SC= 1 scalar fields. In the latter case, 
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FIG. 27. The strain rate tensor field result e4(x,i) obtained from the fourth iteration result u4(x,t) for the vector velocity field for Case III in Sec. III C, 
compared with the exact analytical result l (x,t) from Eqs. (lOa) and (lob). (a) The resulting &.(x,f) field. (b) The exact e,,(x,t) field. (c) The 
resulting e&(x,t) field. (d) The exact e,,,(x,t) field. (e) The resulting e$,(x,t) field. (f) The exact e,,(x,r) field. 

the assumption that the first term on the right in Eq. (4) that uk(x,t) should still converge to the correct u(x,t), 
will be small in comparison with the second will be poorer. though this will likely require more iterations. Note that 
However, that may only lead to a poorer initial estimate measurement techniques for SC= 1 scalar fields comparable 
II’( The properties of the iteration in Eq. (7) suggest to those in Refs. 43 and 44 for SC&~ scalars are not yet 
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FIG. 28. The trace field obtained from the strain rate tensor field e4(x,t) 
in Fig. 27 for Case III in Sec. III C, shown on the same scale as the strain 
rate tensor components in Fig. 27 and demonstrating that continuity is 
essentially satisfied. 

available. Owing to the relative magnitudes of the velocity 
gradient and scalar gradient length scales, /2, and ilD, such 
fully resolved SC= 1 measurements would allow a much 
larger region in the velocity field to be examined than is 
presently the case for Sc>l scalar measurements of the 
type in Ref. 43. 

Current refinements of the technique are focusing on 
ways to accelerate the convergence, in part through meth- 
ods mentioned in Sec. II, and on various numerical imple- 
mentation issues aimed at velocity error minimization. In 
other work, we are applying the technique in experimental 
studies of the structure of the vorticity, strain rate, and 
pressure gradient fields in real turbulent flows, and on the 
influence of these dynamical fields on the fine structure of 
the scalar mixing process. Preliminary results suggest that 
this scalar imaging velocimetry technique provides a means 
for experimentally investigating the precise fine structure 
and dynamics of real turbulent flows at a level of detail 
previously conceivable only from large-scale direct numer- 
ical simulations (DNS) of the full Navier-Stokes equa- 
tions. 
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APPENDIX: NUMERICAL IMPLEMENTATION 

Temporal evolution of the scalar fields involved repre- 
sentations of the fields at discrete time intervals dt. For 
Case I, these LJx,t+dt) fields were created analytically, 
the field having been defined to include a (nondissipative) 
dependence on the given velocity field. In this way five 
fields were created, and the time differentiation was done 
using a fourth-order central difference. For Cases II and 
III, a second-order Runge-Kutta integration scheme, in- 
corporating the specified velocities, gave the scalar field for 
two forward time steps, again ignoring dissipation. We 
treated the field from the first forward time step as the 
center plane c(x,t), by the notation of Sec. II. The time 

differentiation then used second-order central differences. 
The desire to lessen the influence of numerical errors in the 
advection motivated the decision to use only three planes 
in the temporal direction. All spatial differentiation was 
done using fourth-order central differences, with the excep- 
tion of the edges of the scalar fields, where fourth-order 
one-sided schemes were used. All the scalar field values 
were specified as &bit numbers. 

To obtain the zeroth iteration results u’(x,t), Eq. (6) 
was applied to all points in the data field that had a scalar 
gradient vector magnitude above a preselected threshold, 
rather than merely to those points at which the scalar gra- 
dient layers folded over onto themselves. It was found that 
the resulting u’(x,t) for each case showed excellent agree- 
ment with the known velocities over the entire field. This 
appears to confirm the arguments in Sec. II B that, at large 
Schmidt numbers, &( x,t) varies over sufficiently smaller 
lengthscales than does u(x,t>, so that VW&~ in Eq. (4) is 
indeed sufficiently small in comparison with u*Vgvg virtu- 
ally everywhere in the test fields. It was thus not necessary 
to identify regions where this approximation is good to 
obtain the initial result for u’(x,t), and for this reason we 
could simply interpolate on a regular 30 X 30 grid to obtain 
the zeroth solution over the entire field for both velocity 
components. The velocity vector for each point was deter- 
mined by averaging the results of the initial application of 
Eq. (6) within a small region around that point. A bilinear 
interpolation was applied on the grid, followed by a cubic 
spline interpolation to yield the continuous and differen- 
tiable zeroth solution. The spatial derivatives were then 
minimally smoothed to remove the spottiness caused by 
the cubic spline interpolation, and were then used as the 
input to the first iterative step. The successive iterations 
were based on an alternative form of Eq. (7) in which the 
differences between two points x and x + dx are replaced by 
sums, namely 

qb+dx) +q(x) =uk*t&++dx) +&&) 1 
+ (Vuk-‘*dx)*~v*(x+dx), (11) 

where uk and Vnk-’ are the values at x. This is still the 
linear system of Eq. (7), but this form improves the con- 
ditioning of the system for small dx. The uk(x,t) compo- 
nent fields from Eq. ( 11) were processed before each sub- 
sequent iteration in the same manner as described above 
for the zeroth solution. 
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