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The modular transformation of the Riemann theta function is used to show that the implicit
dispersion relation for the N-polycnoidal waves of the Korteweg—de Vries equation has a
countable infinity of branches for N>2. Although the transformation also implies that each
branch or mode can be written in a countable infinity of ways, it is also shown that there is a unique
“physical” representation for each mode such that the parameters of the theta function can be
interpreted as wavenumbers and amplitudes in the limit of either very small or very large
amplitude. Unfortunately, the small amplitude “physical” representation is different (by a
modular transformation) from the large amplitude “physical” representation for a given mode,
but this difference explains an apparent paradox as described in the text. The general modular
transformation expresses the theta function in terms of complex wavenumbers, phase speeds, and
coordinates that have no physical relevance to the Korteweg—de Vries equation, but it is shown
that for N>2, there is a subgroup, here dubbed the “special modular transformation,” which gives
a real result. This subgroup is explicitly constructed for general N and presented as a table for

N=2.
PACS numbers: 02.30.Jr, 02.60.Lj, 02.30.Qy

I. INTRODUCTION

This present work will focus on four themes. The first is
the specialization of the general modular transformation of
the theta function to that subgroup, here dubbed the “spe-
cial” modular transformation, which is relevant to the
Korteweg—de Vries equation. This construction is done in
Secs. II, III, and IV, beginning with a description of the
general transformation, then explicitly constructing the
“special” transformation for general V, and finally discuss-
ing in detail the special case N = 2, which is the subject of the
companion papers by the author.’

The second half of the paper will discuss in turn the
three remaining issues: the multiplicity of roots of the N-
polycnoidal wave dispersion relation for N>2 (Sec. V); the
so-called “paradox of the wavenumbers” (Sec. VI); and final-
ly which of the infinite number of mathematically equivalent
ways of writing the theta function is the “physical” represen-
tation in which the wavenumbers and phase speeds are those
of the actual solitons or sine waves of the solution (Sec. VII).
Before turning to the transformation itself, it is useful to
describe each of these last three themes in enough detail to
motivate the technical discussion of Secs. II, ITI, and IV.

The implicit dispersion relation for N-polycnoidal
waves, derived in Refs. 1 and 2, is linear in all the unknowns
for the special case N = 1 (the ordinary cnoidal wave discov-
ered by Korteweg and de Vries in 1895) and thus has a
unique solution. However, for N>2, the dispersion relation
is transcendentally nonlinear—that is, the algebraic equa-
tions we must solve are defined by infinite series in one or
more unknowns—so an infinite number of roots is at least
possible. The mere existence of the modular transformation
raises this to a near certainty. As reviewed in Ref. 1, the N-
polycnoidal wave is the second logarithmic derivative with
respect to x of the N-dimensional Riemann theta function
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6 [g](T,g ) whose ¥V arguments are the “phase variables”

S=k;(x —c;t)+ ¢, (1.1)
where x is the spatial coordinate, ¢ is time, and where the
constants k;,c; and ¢; are the jth wavenumber, phase speed,
and phase factor, respectively. The coefficients of the N-di-
mensional Fourier series in the §; of the theta function are
completely determined by the elements of the symmetric
N XN *“theta matrix” T as shown explicitly in Eq. (2.1) be-
low. The special modular transformation allows the §; and ¢,
(theta matrix elements) to be simultaneously altered in a
countable infinity of ways without changing the sum of the
infinite series. Thus, a single root of the dispersion relation
generates the solution at an infinite number of discrete points
in parameter space.

A more precise picture can be obtained by looking at the
limits of either very large amplitude or very small amplitude
where the phase speeds c; are known analytically,' and ex-
amining what we shall name the “modes” of the wave. In the
small amplitude regime, the diagonal theta matrix elements
t;>1 and the N-polycnoidal wave can be approximated as
the sum of N sine waves each proportional to cos (27¢; ) for a
different j. Without loss of generality,” one can always re-
scale the N-polycnoidal wave to unit period. For N = 2, we
can thus always take k, = 1, but strict periodicity in x is
preserved if k, = n, where n is any integer >2. Because each
different choice for &, gives a distinct solution, one whose
graph is distinct from that for any other choice of n, we will
refer to the different possibilities as “modes” and write their
wavenumbers in square brackets separated by a comma, viz.,
[1,n].

Now when the modular transformation is applied to a
theta function, it alters a wavenumber by an integer. Thus,
each mode [1,7] can always be expressed in terms of a theta
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function with k, = 1 and &, = 2. Thus, the dispersion rela-
tion for the gravest [1,2] mode has roots corresponding to the
modular transformations of all the other modes [1,#]. In Sec.
V, we will tighten this argument and look at the multiple
roots of the dispersion relation in some detail.

The “paradox of wavenumbers” arises because one can
equally well define the “modes” of the N-polycnoidal wave
in terms of the limit of large amplitude. In this regime, the
peaks of the wave are very tall and narrow and essentially
indistinguishable (because of their narrowness) from the soli-
tary waves (solitons) of the spatially unbounded {as opposed
to periodic) Korteweg—de Vries equation. There are solitons
of N different sizes on each interval and, as explained in Ref.
1, the role of the wavenumbers k; is quite different from that
in the small amplitude limit in that the &; specify how many
solitons of the jth size appear on each spatial period. To em-
phasize the different role of wavenumbers, we shall denote
the modes as identified in the near-soliton regime by writing
the wavenumbers in braces.

The “paradox” referred to aboveis that { 1,1} is now the
gravest N = 2 mode (one tall soliton and one short soliton on
each unit spatial interval), whereas the simplest small ampli-
tude mode is [1,2]. Since the linear dispersion relation gives a
unique phase speed in the limit of infinitesimal waves, it is
not possible to superimpose two sine waves with k; = k, =1
and obtain two distinct phase speeds; such a mode would
collapse into an ordinary (N = 1) cnoidal wave. Since the
wavenumbers are fixed parameters of the implicit dispersion
relation, this apparent contradiction about the identity of the
gravest mode is very confusing.

In Sec. VI, this paradox will be resolved with the aid of
the special modular transformation. There, it is shown that if
onesets k; = k, = 1 and begins to vary the amplitude down-
wards in small steps, solving the dispersion relation numeri-
cally at each step starting from the known soliton velocities,
one will eventually compute the [1,2] small amplitude mode.
However, the numerical phase speeds obtained with
k, = k, = 1 will not be those of the [1,2] mode directly, but
rather the modular transformation of these phase speeds.
Thus, the paradox is resolved: the gravest {1,2] and {1,1}
modes are indeed the same, continuous mode, but the equiv-
alence can be demonstrated only via the special modular
transformation.

This in turn raises the third issue. Given that a particu-
lar N-polycnoidal wave can be written in a countable infinity
of ways thanks to the modular transformation, what repre-
sentation, if any, is best? In the limit of very large or very
small amplitude, we have already answered this question:
For the gravest N = 2 mode, for example, the [1,2] ({1,1 1)
representation is best for small (large) amplitude because the
phase speeds can then be physically interpreted as the actual
phase speeds of the two linear sine waves or of the two soli-
tons, respectively. What is to be done for intermediate ampli-
tude, however? In Sec. VII, we will attempt to answer this
question and give several alternative ways of quantifying the
(thus far) vague meaning of “small amplitude” and “large
amplitude.”

The final section of the paper is a summary and pro-
spectus.
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Il. THE GENERAL MODULAR TRANSFORMATION

The N-polycnoidal wave is the second logarithmic deri-
vative with respect to x of the N-dimensional Riemann theta

0
function 8 [ 0} (T,&), where the N arguments (“phase varia-

bles”) are § = (§1,52,-»5,) With §; = k;(x —¢;t) + ¢; as in
(1.1) above and where the theta function is defined by the
uniformly convergent sum

oc 0 0

o)
5o )

where € = (€,,€5,...,6y5) and € = (€}, €5,...,€x) are together
the “characteristic” of the theta function and the ¢;; are the
elements of the N X N symmetric “theta matrix” T. In Ref. 1
and also the works of Nakamura,* Hirota and Ito,* and their
collaborators, the details of calculating the phase speeds c;
and off-diagonal theta matrix elements (¢;, %) [“un-
knowns”] in terms of the wavenumbers k; and diagonal the-
ta matrix elements ¢, [“parameters”] are explained. In this
work, however, we shall concentrate solely on transforma-
tions of the theta function.

The most general transformations are lucidly described
in a recent book by Rauch and Farkas.’ So as to conform
with their notation and that of most other mathematics
texts, this paper will use theta matrix elements ¢; that are
imaginary in contrast to the real matrix elements 7; and R ;
which are more convenient in the two companion papers
{Ref. 1). The results given in Table I, however, are notation-
independent as explained in the table caption. If ¥ is the
dimensionality of the theta function (mathematicians often
use g for N because N is also the “genus” of the Riemann
surface associated with the theta function), then the transfor-
mations are generated by a (2N ) X (2N ) dimensional matrix
M which is a member of Sp(,Z ), the so-called “homogen-
eous symplectic modular group.” The term “‘symplectic”
means that if one defines an (2N )X (2N ) matrix J via

JE( Oy wIN)’
—Iy Oy

where 0, is the N X N matrix whose elements are all zeros
andI, isthe N X Nidentity matrix, then for any matrix M in
the general 2N X 2N symplectic group,

MIM' =J, 2.2)
where M7 is the transpose of M. One can show that (2.2)
implies

det M| = + 1, (2.3)
where “det” denotes the determinant. “Modular” denotes
that subgroup of the general symplectic group whose matrix
elements are all integers. Rauch and Farkas® explain why M

must be both symplectic and modular, but their careful and
readable exposition will not be repeated here.

(2.1)
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The individual transformations are actually expressed
in terms of submatrices of M, so Rauch and Farkas write M
in the block form

D C)
M= y
(B A

where A, B, Care all N X N matrices. They prove the follow-
ing.

Theorem: (Modular Transformation) If M is a member
of the (2N )X (2N ) homogeneous symplectic modular group
andif A, B, C,and Dareits (N X N ) submatrices as defined by
(2.4) above, then if

E=[CcT+D) 1, (2.5)
= (AT +B) (CT+ D)™/, (2.6)

(2.4)

where T is symmetric and positive definite imaginary and

¢ = De — Ce’' + diag (CD"), (2.7)
& = — Be + A€’ + diag (AB”), (2.8)

where diag (R) is the vector-valued function of an arbitrary
square matrix that returns the diagonal matrix elements of
its argument as its result, i.e.,

n
. Y22
diag (R)= b 2.9

Y

then
ol o) €ti-kex|m( S S pucit)]o[S]wm
) (2.10)

where the P,; are the elements of the N X N matrix P, where
=(CT+D)"'C (2.11)

and where K is a constant dependent on M, ¢, and €. Fur-
thermore, T is a theta matrix, i.e., symmetric and positive
definite imaginary.

This theorem is far too general for the theory of the
Korteweg—de Vries equation. First, the Korteweg—de Vries
solution u(x,? }is proportional to the second logarithmic deri-
vative with respect to x of the theta function, so the constant
K in (2.10), which is explicitly computed by Rauch and Far-
kas, is irrelevant to the theory of the Korteweg-de Vries
equation and shall be ignored here.

Second, since the theta matrix T is positive definite
imaginary, i.e., it must be complex, most of the transforma-
tions described by the theorem will yield complex phase var-
iables § ; even if the untransformed variables are all real.
Since complex coordinates are physically meaningless for
the waves of the Korteweg—de Vries equation,® it follows
that one loses nothing by concentrating only on that sub-
group of transformations which yields real coordinates.

Inspecting (2.5) reveals two possibilities for such a sub-
group: (i) D = 0, in which case 5 is pure imaginary and all the
factorsof i =y — 1 in(2.5) and the theta series (1.2) cancel to
give a series involving real x and ¢ only or (ii) C = 0 so thatg‘
is real if § is real. The first possibility is equivalent to apply-
ing the Poisson summation method to rewrite the Fourier
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series of the theta function as a series of Gaussian functions
as explained in an earlier paper by the author.? Strictly
speaking, the Poisson sum is merely the special case
C= -1,,B=1I,. One can easily show, however, that us-
ing the most general C, B allowed by the symplectic condi-
tion (2.2) is equivalent to possibility (ii) for some A, B fol-
lowed by Poisson summation. Consequently, (i) adds
nothing to (ii) except the possibility of Poisson summation
which was already thoroughly explored in earlier work.
Therefore, the rest of this article will focus on the second
case C = 0. Keeping T pure imaginary then requires that
B = 0, so the general sympletic modular transformation has
been reduced to those for which A and D, the diagonal sub-
matrices, are the only nonzero blocks.

By substituting such a block diagonal M into the sym-
plectic condition (2.2) and noting

D’ 0)
T _
M ‘(0 AT

one can show that the symplectic condition is satisfied if and
only if

(2.12)

=[D']". (2.13)

Rauch and Farkas® give a complete set of that finite number
of generators whose products and inverse give the most gen-
eral symplectic matrix which is also modular, i.e., has inte-
gral elements. For the special case considered here, one can
discuss these (2V) X (2/V ) generating matrices in terms of a
single N X N block (say the A block) because the rest of M is
specified uniquely by B=0, C=0, and D= [AT] ' ac
cording to (2.13). In the next section, these generators will be
explicitly constructed.

11l. THE SPECIAL MODULAR TRANSFORM

The modular transformation with B = C = 0 so the M
is block diagonal will be referred to as the “special” modular
transformation. As shown in the previous section, the ““spe-
cial” transformation is, excluding Poisson summation, the
most general transformation of theta functions which is phy-
sically relevant to polycnoidal waves of the Korteweg—de
Vries equation. It is useful to restate the theorems of the
previous section for this special case.

Theorem: (special modular transformation) Let

£ =Ag, (3.1)
T = ATA7, (3.2)
e=[A""]7 (3.3)
& = A€, (3.4)

where A is the lower right-hand block of a block-diagonal
matrix M of the symplectic modular group. (The general
form of A is constructed below.) Then

o|c]&h=xo %],

where X is a constant.

Note that the Gaussian factor has disappeared because
the matrix P of the general theorem is now identically zero;
the special transformation takes a theta Fourier series direct-
ly into another theta Fourier series.

(3.5)
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The generators are of two classes. For each, one begins
with the N X ¥ identity matrix and modifies it according to a
prescription given by Rauch and Farkas. For the first class,

" A,; in their notation with i,/ restricted so that /% j, add
— 1 to the ( /,i} element of the identity matrix. For the second
class D; change the sign of the (i) element of the identity
matrix. Rauch and Farkas also include the inverses of the

* 4, in their generator set zs the ~ 4, ;; the D, are their own
1nverses. (The ~A,; are obtained by adding + 1 to the (/i)
element of the identity matrix.) One thus obtains a complete
(but not necessarily minimal) generating set with 2N2 — N
members. The statement that this set is the complete gener-
ator of the special transformations means that the most gen-
eral N X N matrix 4 which appears in (3.1)—(3.3) is the pro-
duct of an arbitrary number of the generating matrices each
raised to an arbitrary, non-negative power, i.c., if one adopts
the revised notation of labeling the generators A,,
i=1,2,..,2N? — N, then the most general transformation is

A=APAEADAT, (3.6

q

wheren , 20, 1<ij <2 N’ — Nbutareotherwise arbitrary; m,
the number of factors, is arbitrary also. The generators do
not commute even for the special transformation, so (3.6)
usually cannot be simplified.

TABLE I. The transformations produced by the generators of the special
modular group A, and A,, and their inverses for N = 2 (double cnoidal
wave). The plus signs correspond to A : the minus signsto A, ' and A, ™'

The( * ) quantities are the new variables created by the transformation. The
matrices whose elements are 7, and R,; are explained in Boyd'; the T,
transform exactly as those of the usual imaginary theta matrix elements 7, ;
used by mathematicians. The k; and ¢; are the wavenumbers and phase
speeds that appear in the “‘angle” variables X and ¥ when the special modu-
lar transformation is applied to the double cnoidal wave of the Korteweg—de
Vries equation.

Z
)
=}
=%
>

>

il
—
>
~H

T, :T,a)A([T”—l—ZTIwkTM] [T,,+Tﬂ2])

T, Th/ MTon+ Tal [Tl ’

An %u): [R,] [Ri:F Ry )
R [ I’+Rll] |’RII¥2RIZ+R22] ’

Py

'S) o>

NS
Il

m— ——
>
~

S

)=

([k \Cy +1\3c3]/[k + ks, ])

’

A31a A, Y):
( :g’;ﬂ),

(2 =Gt i oren)
(e 22)=Cand i e ™7
(ﬁ')=(k2kl)

(

5>
S

I
N
— o
P
M

+ki,l/1k; ikll).

3418 J. Math. Phys., Vol. 25, No. 12, December 1984

The D; generators merely replace §;— — &;. This is not
a very interesting transformation since one can always take

0 0
g [0] ord [1 ], whichever is convenient, as the theta function

by adjusting the phase factors ¢; in (1.1). These theta func-
tions are always even in each of £,,(,,...,{ v, so the transfor-
mation described by the N D, invariably leaves the theta
function unaltered and is physically irrelevant. Consequent-
ly, the only interesting nontrivial transformations are those
generated by the smaller set of the 2 N ? — 2N matrices that
Rauch and Farkas label "4, and " 4,;

Rauch and Farkas® prove that T is a theta matrix, i.e.,
symmetric and positive definite imaginary, for the general
modular transformation of any A, so the transformed theta
function series is always convergent. Although the determi-
nant of T is invariant under transformation (proof:
det A; = 1foralliand the determinant of the product of two
arbitrary matrices is the product of their determinants), the
trace of T, i.e., the sum of the diagonal elements, generally is
altered by the transformation as evident in Table I. Since the
trace of the theta matrix is the sum of the eigenvalues, it
follows that the eigenvalues, and therefore the rate of con-
vergence of the series are normally changed by the special
modular transformation even though the fact of conver-
gence (does it converge or diverge?) is never altered.

These matrices *4,; exist only for N>2, i.e., for the
double cnoidal wave or higher. All modular transformations
for the ordinary cnoidal wave (¥ = 1) yield a result in which
the spatial coordinate has both real and imaginary parts ex-
cept the Poisson summation discussed in the author’s earlier
paper.' In the next section, the simplest nontrivial case
N = 2 will be described and its generators will be given expli-
citly.

IV. THE SPECIAL MODULAR TRANSFORMATION FOR
N = 6: DOUBLE CNOIDAL WAVE

In Rauch and Farkas® terminology, there are four gen-
erators for N = 2, but since half of these are inverses of the
other half, there are only two generators’ in the usual ter-
minology of group theory where inverses are not counted,
ie.,

(1)

A, = (1 (1)) (4.2)

[The inverses are obtained by merely changing the sign of the
off-diagonal element for both (4.1} and (4.2).] From Table I,
it is apparent that the transformations wrought by 4, can be
obtained from those created by 4, by interchanging the X
and Y coordinates and the subscripts on the theta matrix
elements: there is effectively only a single transformation
(and its inverse) which can, however, be applied to replace
either X or Y by the sum (X - Y).
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In the companion papers by Boyd,' it was convenient to
work in terms of modified theta matrices whose elements are
denoted by T;; and R;;. Since,

T, =mImit,)) (4.3)

the T ; transform exactly as the complex elements 7;; used by
mathematicians and vice versa.

The matrix elements R,;, which give the coefficients of
the Gaussian series of the theta function, are those of a ma-
trix R which is proportional to the inverse of T. When
T—T = ATA7, the corresponding matrix R = (27%) T~!
transforms as

R=[AT]"'RA (4.4)

Equation (4.4) applies for the special modular transforma-
tion of any N; the transformed R for the special case N = 2
are also given in Table 1.

Recalling that X=k%, (x —-c,t)+¢, and Y=k,
(x — ct) + ¢,, it follows that the phase speeds and wavenum-
bers are also altered by the transformation. The changes
made by the generators and their inverses are given in Table
I

V. THE BRANCHING OF THE DISPERSION RELATION

As shown in the Introduction, the existence of the mo-
dular transformation implies that each mode of the 2-polyc-
noidal wave can be transformed into a theta function with
k, =1, k, = 2. This suggests that the dispersion relation for
any given set of parameters is infinitely multibranched. At a
minimum, it has been shown that if we attempt to make a
contour plot of ¢, ¢,, and ¢,, for a single mode, say the gra-
vest, then all the higher modes, which are countably infinite
in number, provide extraneous roots of the dispersion rela-
tion for at least some values of the parameters.

Two issues remain. First, when k, = 1 and k, = 2, for
example, does the [1,3] mode give a solution of the implicit
dispersion relation for all values of (¢,,,Z,,) or only for some
limited region in parameter space? It is reasonable to conjec-
ture that the correct answer is ““all” since the modular trans-
formation is not subject to any parametric restrictions: The
transform of a theta function is always a uniformly conver-
gent series of proper theta function form. However, the
transformed values of the diagonal theta matrix elements
depend on the off-diagonal elements which unfortunately
are part of the solution of the dispersion relation, so this
conjecture cannot be proved without deeper analysis than
that done here.

The second issue is whether all solutions of the implicit
dispersion relation are “regular,” that is to say, are modes
which have well-defined limits for small and large ampli-
tude. Here again, one is tempted to speculate that the answer
is that all solutions are regular. The N-polycnoidal waves
have an analytic structure which is extraordinarily tidy and
simple in other respects. Furthermore, as shown by Boyd,’
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the implicit dispersion can be solved by perturbation theory
for both small and large amplitude with good overlap
between the two regimes; the overlap implies it is difficult to
insert irregular modes that exist only for intermediate pa-
rameter values. However, these are not proofs but plausibil-
ity arguments. It is known that at least one physically impor-
tant type of solitary wave, the “modon” of Stern, Flierl,
McWilliams, Larichev, and Reznik,® does not have a small
amplitude limit, but exists only when the amplitude is above
some threshold.

Thus, a full resolution of these two issues must remain
for future research. It is certain, however, that the implicit
dispersion relation for N-polycnoidal waves has multiple so-
lutions for N>2.

VI. THE WAVENUMBER PARADOX AND THE
CONTINUATION METHOD

A good numerical procedure for tracing the structure of
a mode is the so-called “continuation” method. The basic
idea is to vary one or more of the parameters in small steps.
At each step, the algebraic equations are solved for the un-
knowns via Newton’s method. The first guess which is need-
ed to initialize the Newton iteration is obtained by using the
results from the previous point in parameter space (or by
linear extrapolation from the results at the two previous
points); this will always give convergence if the steps in the
parameter are sufficiently small. To initialize the parameter
march, one needs to know the approximate solution at some
point in parameter space. The perturbation theory of Boyd'
provides such approximate solutions for both very large and
very small amplitudes i.e., for very large and small values of
t;;, so the continuation method can be easily applied to all the
regular solutions of the implicit dispersion relation.

The “paradox of the wavenumbers” is that the gravest
mode in the near-soliton limit is { 1,1}, i.e.,, hask, =k, = 1
while the lowest mode in the small amplitude regime is de-
noted [1,2] because k, = 2k, = 2. When the continuation
method is applied to the { 1,1} mode, beginning in the large
amplitude, near-soliton regime, and both diagonal theta ma-
trix elements are simultaneously increased, what does the
algorithm give when |#;|>1? This limit is the small ampli-
tude regime where a mode that is [1,1], i.e., the sum of two
sine waves of different phase speeds but identical wavenum-
bers, cannot exist. Table IT answers this question: The con-
tinuation method, applied with &, = &, = 1, gives values for
¢, which are the modular transform of those for the gravest
small amplitude mode [1,2].

The top line of the table shows the near-soliton regime;
the |¢; | are fairly small and the “Gaussian,” large amplitude
perturbation theory' is quite accurate. By the time the bot-
tom is reached, we are in the small amplitude regime and the
Gaussian perturbation theory is inaccurate while perturba-
tion theory beginning with two Fourier components as the
lowest approximation gives excellent results. However, the
continuation method givesc, = — 287 in the limit whereas
cos (27r[x — ¢, t]) and cos (47[x — ¢, ¢]) have small-ampli-
tude phase speeds of — 47° and — 1677, respectively.
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TABLE II. Numerical solutions of the residual equations, obtained through the “continuation”method, are compared with zeroth-order Fourier perturba-
tion theory (linear sine waves) and Gaussian perturbation theory (two solitary waves). The percentages are the relative errors. The wavenumbers k, and &, for
the numerical and solitary wave calculations are both equal to 1; k, = 2 for the Fourier series approximation. The variable ¢,™ ( = [¢; + ¢,]/2}is the second
phase speed after a modular transformation via the generator matrix 4,. This transformation leaves ¢, and k, unchanged, but it alters &, from 1 to 2.

mod

Ty, T [ c, c, ¢, error ¢, error
0.8 1.6 313.16 — 402.08 — 44.46

(Gaussian) 313.15 — 402.06 9.E-6 6.E-5

{(Fourier) — 39.48 —157.92 893.23% 71.84%
1.2 2.4 73.30 —342.29 — 134.49

(Gaussian) 73.31 —341.68 0.02% 0.18%

(Fourier) — 39.48 — 15791 205.67% 14.83%
1.6 32 4.17 — 308.46 — 152.14

(Gaussian) 427 —305.72 2.42% 0.89%

(Fourier) — 39.48 — 15791 89.44% 3.65%
2.0 4.0 — 21.14 —291.40 —156.27

(Gaussian) — 20.61 - 285.52 2.53% 2.02%

(Fourier) — 39.48 —157.91 46.45% 1.04%
24 4.8 — 31.49 —283.25 - 157.37

(Gaussian) — 29.61 —274.83 5.97% 2.97%

(Fourier) — 39438 — 157.91 20.25% 0.35%
2.8 5.6 — 3594 —279.48 — 157.71

(Gaussian) - 3111 —270.65 13.44% 3.16%

{Fourier) — 39.48 — 157.91 8.97% 0.13%
32 6.4 — 37.90 ~277.76 — 157.83

(Gaussian) — 2775 —272.01 26.76% 2.07%

(Fourier) — 39.48 — 15791 4.01% 0.05%

Agreement comes only after making a modular transforma-
tion that converts the theta function representation from one
with k, = 1 to £, = 2, which is the actual wavenumber of
one of the two dominant components of this mode in this
limit of !t,—,— |-—>oo .

It is useful to see explicitly how a mode can thus diguise
itself. The lowest four terms of the Fourier series of the theta
function are (in any representation)

O=1+4e Tcos2mX)+ e~ ™2 cos(2mY)

+e~ T Tu—Tacog2r[X + Y1), (6.1

where
X=kix—ct), Y=kjx—c,t) (6.2)

The author’s companion paper on perturbation theory'
shows how to evaluate the phase speeds and T, in the “phys-
ical” representation [1,2]%; the results are compared against
¢, and ¢, in Table IL. It is also possible, although one
would never want to do it except to make a point, to calculate
perturbatively in the “unphysical” [1,1] representation as
done in Appendix A of that same paper where it is shown
that

¢, = — 473, (6.3)
c,= — 2877, (6.4)
Ty, = —T, +1og3), (6.5)

for T,,, T,,> 1. Note tht ¢, in (6.4) is the limit of the numeri-
cal calculations in Table II for the column labeled “c,.”

In the physical representation [1,2]°, T, = log(3) and
the Fourier series (6.1) is well approximated by the sum of
the first three terms. In the “unphysical” [1,1] representa-
tion, however, (6.5) shows that the fourth term in (6.1), pro-
portional to cos (27[X + Y']) is larger than the third by a
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factor O (e”"). Discarding cos (277Y) and taking the double

logarithmic derivative gives, using (6.1)+6.5), the
Korteweg—de Vries solution
ulx,t)
= — 4877~ T cos[2m{x — (~ 4n?)t }]
+de~ Tt Tucos[2m{2x — (— 47" — 2877) t }]).
(6.6)

The second term in (6.6) travels at a phase velocity of
— 1677; it is just the expected second harmonic with k, = 2.
In the [1,1] representation, this term appears in disguise as
cos(27[X + Y1) [as opposed to cos (27Y) in the physical
[1,2]° representation], but this disguise cannot change its
physical nature.

In the limit of small amplitude, the N = 2 Fourier series
for u(x,t) is always dominated by just two terms, but the
terms wear different disguises in different representations.
The second harmonic is cos (27X + Y]} in the [1,1] repre-
sentation, cos (27Y ) in the [1,2)7, cos 27{ — X + Y}) in the
[1,3], and so on.

The moral of the story is that while one can legitimately
solve the dispersion relation using any of the infinite number
of disguises for a mode which are allowed by the special
modular transformation, there is in general only one repre-
sentation for which the ¢, and ¢, are the actual rates at which
components of the 2-polycnoidal wave are traveling. Identi-
fying this “natural” or “physical” representation is clearly
an important issue and is therefore the theme of the next
section. Table II also shows that the {1,1} and [1,2] modes
are indeed the same, but the equivalence of these two differ-
ent disguises of the gravest mode of the 2-polycnoidal wave is
obvious only through the modular transformation.
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Vii. THE CANONICAL OR “PHYSICAL”
REPRESENTATION

Because of the freedom provided by the special modular
transform, each N-polycnoidal wave for N>2 can wear a
countable infinity of diguises. It follows that a major issue is
to identify what representation, i.e., what set of wavenum-
bers k, and k,, give the “physical” representation in which
the wavenumbers and phase speeds directly describe the
wave.

We will assert, and then demonstrate below, that the
following descriptions of the “physical” or canonical repre-
sentation are equivalent.

(i) It is the representation in which the phase speeds c,
and ¢, give the actual average rates of travel of the solitons or
sine waves.

(ii) It is the representation which the perturbation series
of Boyd' calculate in, i.e., the perturbation methods auto-
matically give phase speeds which are the true average rates
at which the wave crests move. )

(iii) It is the representation in which (small amplitude)
the off-diagonal matrix elements ¢; (i# j) are very small in
absolute value in comparison to the diagonal elements ¢, or
equivalently (large amplitude) the off-diagonal elements R, ;
are small in comparison to the diagonal elements of the in-
verse theta matrix R ;.

The first description is simply a definition of what we
mean by a “physical” representation. For sufficiently large
or small amplitude, the N-polycnoidal wave reduces to the
usual N-soliton solution or to a sum of N sine waves, so this
definition of a canonical representation is always unambigu-
ous if we are sufficiently close to one or the other of these
limiting cases.

The second description is an obvious consequence of
the first because the zeroth-order solutions of the perturba-
tion theory are the limits of infinitely large or small ampli-
tude. Thus, the wavenumbers that appear in the zeroth-or-
der solution always count the number of solitons on the
interval or are the actual wavenumbers of the sine waves,
and this is not changed by adding the higher-order correc-
tions.

The third description is consequence of the following
theorem proved in Rauch and Farkas.’

Theorem: When the theta matrix is diagonal, i.e.,
t;; = 0ifi# j, then the N-dimensional theta function may be
written as the product of N one-dimensional theta functions

05 1,62-6nT) = H.e(gl’tii)' (7.1)

The significance of the theorem is that since u(x,t) is
proportional to the logarithm of the theta function, each
term in the product in (7.1) will contribute additively to the
solution of the Korteweg—de Vries equation:

N d 2

ulx,t)=12 ,-;1 s In 6(S;.2;). (7.2)
This is precisely the situation which occurs in the limits of
very large or very small amplitude: the N-polycnoidal wave
reduces to a sum of NV solitons or sine waves each with its own
wavenumber, phase speed, and amplitude. Equation (7.2)
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and definition (iii) of the “physical” representation are also
consistent with the perturbation theory of Boyd': in the limit
that the diagonal theta matrix elements (or inverse theta ma-
trix elements) become very large, the off-diagonal elements,
which have finite zeroth-order values, necessarily become
small relative to the diagonal elements. Thus, both the limit-
ing behavior of the N-polycnoidal wave together with (7.2)
and the perturbation theory show that (iii) is true in the phys-
ical representation at least for sufficiently large or small di-
agonal theta matrix elements.

Strictly speaking, of course, no theta matrix for a
Korteweg—de Vries solution is ever exactly diagonal; as
shown in Appendix B of Ref. 1, the off-diagonal theta matrix
elements are responsible for the phase shifts that occur
whenever solitons collide. Still, the basic argument is cor-
rect, and it can be reversed to justify definition (ii) from (iii).
The implicit assumption of the perturbation series of Boyd'
is that the order of magnitude of different terms in the series
can be determined solely from the diagonal theta matrix ele-
ments, which is sensible only if the off-diagonal theta matrix
elements are small in comparison as required by (iii). Appen-
dix A of the companion paper' on perturbation theory is able
to calculate perturbation series in an “‘unphysical”’ represen-
tation only by assuming the diagonal and off-diagonal ma-
trix elements are of the same magnitude. Although no rigor-
ous proof will be given, the fact that the elements of the
special modular transformation are always integers strongly
suggest that such a transformation will invariably destroy
the smallness of the off-diagonal theta matrix elements rela-
tive to the diagonal elements at it does in {6.5) so that this
smallness is a unique property of the physical representation.

The only flaw with these three equivalent descriptions
of the “physical” representation is that they are all in some
way tied to the limiting cases of extremes of amplitude or
equivalently, of diagonal theta matrix element size. What
does one do for intermediate amplitude?

The mathematical response is to use analytic continu-
ation in the parameters: If a given intermediate amplitude
solution is the smooth continuation as the parameters are
slowly varied of an infinitesimally small amplitude solution
whose physical representation is [1,2]°, then this same de-
scription is the physical representation of the intermediate
amplitude solution, too. Since there is no ambiguity in the
limit, there is no ambiguity in this extended definition either
as long as the solution branches are continuous with either
infinitesimal or infinite amplitude. Note that we use a super-
script “P” to denote that the physical representation of a
mode is meant, and not one of the infinite number of other
representations allowed by the special modular transforma-
tion.

There is a remaining physical ambiguity in that Table II
shows that the [1,2]” and {1,1}” representations both de-
scribe the same continuous mode: For intermediate ampli-
tude, is it better to describe the polycnoidal wave as a sum of
sine waves or of solitons? The answer is given in Ref. 2: For
intermediate values of amplitude or of theta matrix ele-
ments, both descriptions, as solitons and as sine waves, are
qualitatively and even quantitatively correct, and which is
better is a matter of individual preference.
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Viil. SUMMARY

Mathematicians have known for at least half a century
that the theta functions could be expressed in an infinite
number of ways via the so-called “modular transformation.”
The general modular transformation, however, usually gives
complex results even though only real values of the space
and time variables x and ¢ are relevant to the theory of the
Korteweg-de Vries equation. For the ordinary cnoidal
wave, which was discovered eighty years ago, the only non-
complex modular transformation is that single transforma-
tion which can alternatively be obtained by taking the Pois-
son sum of the Fourier series of the theta function. Boyd® has
already discussed the usefulness of this Poisson sum.

It is shown in this paper, however, that for the N-poly-
cnoidal wave with N>2, where N is the number of arguments
of the theta function, there exists a subgroup of the general
transformation which does yield nontrivial real results. This
subgroup is labeled the “special” modular transformation
and is defined to specifically exclude the Poisson sum, which
also gives real-valued results but multiplies the theta func-
tion by a Gaussian factor. Only the “special”’modular trans-
formation and the Poisson sum are useful in the physics of
the Korteweg—de Vries equation.

By specializing the rules for the general transformation
given in Rauch and Farkas,® the generators of the “special”
modular transformation are explicitly constructed for arbi-
trary N. The two generators and their inverses for N = 2 are
given in Table I above, which also shows the effects of the
transformation on the phase speeds and wavenumbers which
appear in the “phase’ variable that are the arguments of the
theta functions.

Since the “special” modular transformation allows
each polycnoidal wave to be expressed in an infinite number
of ways, a “physical” representation is defined to be that in
which the wavenumbers and phase speeds of the theta func-
tion match those of the peaks and troughs of the actual wave.
Since different polycnoidal waves are obtained for different
(physical) wavenumbers, it is helpful to introduce the nota-
tion of writing the wavenumbersin [ ]{when 8is represented
by a Fourier series) or { } (Gaussian series) and adding a
superscript P when the physical representation is meant.

The importance of the special modular transformation
in physical applications of the Korteweg—de Vries equations
and its cousins is twofold.

First, it shows that the implicit dispersion relation of
Boyd' for the phase speeds of the polycnoidal wave has an
infinite number of solution branches for a given set of param-
eters (including a fixed set of wavenumbers) even though
there is only a single branch for which the wavenumbers are
those of the wave’s physical representation. Perturbation
theory and the “continuation” method are offered as useful
ways of computing the physical branch rather than one of
the infinite number of other real solutions permitted by the

mathematics.
Second, the branch which is the sum of a simple linear

sine wave and its second harmonic, [1,2]° in the notation
introduced here, is the sum of one tall solitary wave and one
shorter solitary wave on each periodicity interval in the op-
posite limit of large wave amplitude. This solitary wave limit
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is written {1,1}7; a large amplitude polycnoidal wave for
which the wavenumbers k, = 1 and k, = 2 are the physical
ones is a solution with three solitary waves on each periodic-
ity interval—two of one height and one of a different size.
Thus,

[1,217={1,1}" (8.1)

in the sense that this single branch must be expressed using a
different set of wavenumbers in different amplitude limits if
the phase speeds that appear in its theta function are to
match those of the actual troughs and crests of the wave.

The special modular transformation is thus essential to
understanding the polycnoidal wave because it allows us to
change wavenumbers and phase speeds at will so that for any
amplitude, we can make the mathematics reflect the physics.
Numerically solving the residual equations for fixed wave-
numbers, for example, k; = 1 and &, = 2, will always give us
phase speeds to insert into the theta functions. When we
have passed from small wave amplitude to large, however,
the phase speeds of the theta functions have only mathemat-
ical significance, and differ radically from the actual rates at
which the two solitary waves of the branch indicated in (8.1)
are traveling, unless we use the special modular transforma-
tion to alter the second wavenumber to k, = 1.

For the Korteweg—de Vries equation and many other
soliton equations which are real valued, the special modular
transformation (and the Poisson sum discussed in Refs. 1
and 2) are the whole story. Other soliton equations like the
cubic Schrodinger equation, however, are intrinsically com-
plex. It is no longer obvious that we should reject the com-
plex-valued transformations which belong to the general
modular group but not to the special subgroup defined and
constructed here. Future work should explore the physical
significance of the general modular transformation for the
cubic Schrodinger equation and its complex-valued cousins.

Note added in proof: H. Segur and A. Finkel (unpub-
lished preprint) have applied two-dimensional theta func-
tions and the modular transformation to the Kadomtsev--
Petviashvili equation (two space dimensions but only a single
phase speed). Their concept of a “basic” theta matrix is an
attempt to remove the ambiguity allowed by the modular
transformation; in the limits of large and small amplitude, at
least, their “basic> matrix is that of the “physical” represen-
tation defined here. An earlier work on this same equation
(with H. Philander) is “Nonlinear Phenomena” in Lecture
Notes in Physics, No. 189, edited by K. B. Wolf (Springer-
Verlag, Berlin, 1983).
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