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The generalized phase-spa~e distributions, inc1udin.g t~e Wigner distribution, are presented in terms 
of expected valu~s of generatmg ~perator~. A generalIzatIOn of the Weyl correspondence is obtained to 
provIde expressIOns for generalIzed Wlgner equivalents. Finally, rather simple relationships are 
obta!ned ~onnecting t.he generalized pha~e-spac~ distribu~ions to the Wigner distribution; and similar 
relatIonshIps ~re obtamed ror the generalIzed Wlg~er ~qU!~alents. In particular, it appears that, among 
the c1as~ consIdered, there IS no reason to use any dIstrIbutIOn other than the Wigner for performing any 
calculatIons. 

I. INTRODUCTION 

In 1932, Wignerl introduced a method of perform­
ing quantum-mechanical ensemble averages in terms 
of phase-space integrations over c-number variables. 
Since that time, a number of extensions, modifications, 
discussions, derivations, applications, etc., have 
appeared in the literature. We refer the reader to a 
review2 in which further references can be found. 

Actually, there exist an infinite number of quasi­
distribution functions which can be used for the same 
purpose as the Wigner distribution function. In a 
recent paper,3 Cohen described one method for gener­
ating ~uch distributions, and showed how the Wigner 
function, the so-called "symmetric" function, and the 
Born-Jordan function could be generated. He also 
obtained equations of motion (quantum Liouville 
equations) for these distribution functions. 

In the present paper we present a particularly 
simple and elegant manner for generating an infinite 
class of distribution functions which include, as 
special cases, the Wigner, symmetric, and Born­
Jordan functions. We also show that all of these 
various distributions can be obtained from the Wigner 
distribution by a rather trivial transformation. 

For the purposes of our later discussion, it is con­
venient for us to point out several general properties 
that all of these distributions have in common. 

We represent the 6N-dimensional phase space by the 
3N-dimensional momentum and position vectors 
rand p. A generalized phase-space distribution is a 
function of the variables rand p and time, I(r, p, t). 
These functions satisfy the following conditions: . 

(A) Classical Limit: The function 

fc(r, p, t) = limf(r, p, t) (1) 
/1 .... 0 
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must be the "correct" classical phase-space distri­
bution. That is, !oCr, p, t) must satisfy the Liouville 
equation. 

(B) Marginal Distributions: The integral of lover 
one of the variables r or p must give the correct 
distribution in the other variable: 

J dr fer, p, t) = (b(P - p», 

J dp fer, p, t) = (b(R - r», 

(2) 

(3) 

where Rand P are the position and momentum oper­
ators. 

(C) Generalized Wigner Equivalents: For any given 
function A(R, P) of the position and momentum 
operators, we must be able to determine a generalized 
Wigner equivalent a(r, p) such that 

(A(R, P» = J dr dpf(r, p, t)a(r, p). (4) 

We might point out here that the distributions 
introduced by Cohen3 do not, in general, provide for 
a generalized Wigner equivalent. In particular for 
Cohen's distribution [Eq. (6.2) of Ref. 3], an operator 
of the form ACO . R + 'T • P) does not have a general­
ized Wigner equivalent. 

The most convenient way of finding generalized 
Wigner equivalents is by first finding the generalized 
Weyl correspondence. That is, we find the operator 
Ag(O, 'T, R, P) for which the generalized Wigner 
equivalent is 

(5) 

Then if the operators Ag are complete, we can expand 
any operator as 

A(R, P) = J dO d'T IX(O, 'T)Ag(O, 'T, R, P). (6) 

(We consider the completeness of the Au's when we 
specify the details of the distribution.) Clearly we can 
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determine the Wigner equivalent of A(R, P) by 
knowing the generalized Wigner equivalent of the 
right-hand side of (6), that is, using Eq. (6): 

(A(R, P» = f dO dT oc(O, T)(AuCO, T, R, P», 
or using (5) and (4): 

a(r, p) = f dO dT oc(O, T)ei(B'r+T·P). (7) 

we can write (12) as 

fw(r, p, t) 

= _1_ fdT' dO' e-i(8"r+T"P)(eiT"P/2eiB"ReiT"P/2) 
(27T)6N 

= _1_ fdT' e-T"P(eiT"P/2tJ(R - r)eiT"P/2) (15) 
(27T)3N 

or, alternatively, we can write 

It is easily shown that the expected values of the fw(r, p, t) 
following generating operator: 

D(R, P, r, p) 

= _1_ fdT' dO' e-i(8"r+T',p)A (0' T' R P) 
(27T)6N 11 , , , 

gives a distribution for which (4) and (5) hold: 

fir,p, t) = (D(R, P, r,p». 

(8) 

(9) 

We show that this distribution also satisfies the 
other conditions that we listed earlier. Our approach 
here is related to that followed by Cohen.3 

II. THE DISTRIBUTIONS 

We can specify a distribution by writing the 
operators Ag(O, T, R, P). We take, generally, 

AuCO, T, R, P) = g(1iO . T)ei(B'R+T'P), (10) 

where g(x) has a series expansion about zero of the 
form 

00 2n 

g(x) = 1 + ~ ~ g(2nJ(0). (11) 
n=1(2n)! 

Clearly we must take g to be an even function of 
liT . 0 to insure that D is Hermitian. 

The completeness of the operators ei(B'R+T'P) IS 

shown in Ref. 2. 
The Wigner distribution is obtained by taking 

g(x) = 1. 
Then, 

fw(r, p, t) 

Using (15) and (16), it is a straightforward matter to 
derive Eqs. (Sa) and (5b) of Ref. 2. 

It is clear that the generating operator for the 
generalized distribution is related to the generating 
operator for the Wigner distribution by commutators 
of Rand P, since 

g(IiT' 0) = g(-i[O . R, T • Pl). (17) 

As an example, let us consider the symmetric 
distribution introduced by Margenau and HilI.5 
As discussed by Cohen,3 the appropriate g(x) for this 
case is 

g(x) = cos (x/2). 

In this case the distribution is 

f.er, p, t) = ~ fdO' dT' cos (liT' . 0'/2) 
(27T) 

When we note that 
(18) 

cos (liT' . 0'/2) = H e![8"R,T"Pl + e-![6'·R,T'.Pl} (19) 

and use (13), we can write (18) as 

= _1_ fdT' dO' e-i(8"T+T"P)(ei(O"R+T"P». 
(27T)6N 

!.(r p t) = _1_ f dO' dT' e-i (8"r+T"p) 
(12) ." (27T)6N 

This form was obtained by Moya1.' If we recall that 

(13) 
for 

[A, [B, An = [B, [B, An = 0, 

and 
[0· R, T' P] = iliO· T, (14) 

'J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 99 (1949). 

x (t{ei6"ReiT"P + eiT"PeiB"R}) 

= i(b(R - r)b(P - p) + b(P - p)b(R - r». 

(20) 

The remaining distributions commonly found in the 
literature can also be generated by an appropriate 
choice of g(x). 

• H. Margena'u and R. N. Hill, Progr. Theoret. Phys. (Kyoto) 16, 
722 (1961). 



PHASE-SPACE DISTRIBUTIONS 

m. CONNECflONS AMONG THE 
DISTRIBUTIONS 

A form somewhat similar to this was used by VOi) 

Roos6 to obtain a distribution function for a molecub 

First let us show that the three properties of gas. 
generalized phase-space distributions listed in Sec. I Now let us consider the generalized Wigner equiv-
hold for the distributions generated by (8), (9), and alent 

(10). ag(r, p) =fdO dT ocg{O, T)ei(o'r+T'f», 
Of course, our choice was made to provide a simple 

(27) 

means of determining the generalized Wigner equiv- where OC
g 

is obtained from 
alents. Therefore we need not discuss this point further. 

To find the classical limit we note2 that (ei(O'R+r'P» 
has a series expansion in Ii and 

lim (ei(O'R+T'P» =fdr' dp' fo(r', p', t)ei(o'r'+T'f)'). (21) 
11 .... 0 

Also, we note from (11) that 

lim g(/j() . T) = 1. (22) 
n .... o 

Then, 

lim fir, p, t) 
11 .... 0 

= _1_ fdT' dO' dr' dp'f. (r' p' t)ei[O"(r'-r)+T"(f)'-f»] 
(27T)6N 0 , , 

= fo(r, p, t). 

Now let us consider the marginal distributions 

f dr fg{r, p, t) 

(23) 

= _1_ fdT' dO' dr e-i(O"r+T'·f»g(hO'· T')(ei(O"R+T"P» 
(27T)6N 

= ~ JdT' dO' tJ(O')e-iT"f)(eiT"P), 
(27T) 

where we have taken 0' = 0 and noted that g(O) = 1. 
The remaining integrations give Eq. (2) for !u. It 
is obviously just as easy to show that Eq. (3) holds 
for!u . 

To establish the equivalence of the various distri­
butions, we explicitly insert (8) and (10) in (9): 

fg{r, p, t) 

= _1_ JdT' dO' g(IiO' . T')e-i(6"r+T'·f»(ei (O'·R+T"P». 
(27T)6N 

Using the property 
(24) 

g(x) = g( -x), 
we note that 

g(/j()' . T)e-i(O"r+T"f» = g(IiVr • Vf»e-i(O'.r+T"f)~ (25) 

Recalling Eq. (12), we see that 

(26) 

A(R, P) = f dO dT ocg{O, T)g(/j() . T)ei(o·R+T'P). 

Since g = 1 for the Wigner distribution, we must haw 

ocw(O, T) = ocg(O, T)g(/j() . T). (28) 

Applying (28) and (25) in (27), we have 

aw(r,p) = g(IiVr • Vf»ag(r,p). 

IV. DISCUSSION 

Clearly, the generalized phase-space distribution,; 
and the generalized Wigner equivalents are different 
for different choices of g(x). However, the important 
conclusions regarding these distributions must be 
concerned with their connections with experiments in 
terms of Eq. (4). Consider, then, 

(F(R, P» = f dr dp ff/(r, p, t)air, p, t). (.:iC • 

Using (26) we have 

(F(R, P» = J dr dp air, p, t)g(IiVr • Vf»fw(r, p, t). 

Integrating by parts gives 

(F(R, P» =f dr dpfw(r, p, t)g(IiVr • Vf»air, p, t) 

and, using (29), 

(F(R, P» = J dr dp fw(r, p, t)aw(r, p, t). (31) 

It is not surprising that both (30) and (31) hold, 
since we constructed the generalized phase-space 
distributions to satisfy just these equations. However, 
the rather trivial connections among the various 
distributions does not seem to have been pointed out 
in the literature, and leads one to wonder why more 
than the Wigner distribution need be considered for 
any calculations. 

Using Eqs. (26) and (29), we can immediately relate 
the results already obtained for the Wigner distribution 
(as for example in Ref. 2) to the corresponding results 
for a generalized phase-space distribution. 

6 O. von Roos, J. Chern. Phys. 31, 1415 (1959). 


