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The variation of the conductivity of metal-particle-insulator systems with the volume percent of

metal is explained in terms of an “effective medium” theory.

Recently, Bueche'! suggested a polymer model to explain
the transition from insulating to metallic behavior of a
system of metal spheres embedded randomly in an insu-
lating medium. This topic is important because it is an
easily characterized system and bears a strong relation
to the processes thought to underly the variation of con~
ductivity in amorphous semiconducting alloys and other
microscopically random systems. Bueche’s model com-
pares favorably with the observed large variation in con-
ductivity; its two major shortcomings are a very steep
slope in the transition region and a discontinuity in the
slope of conductivity versus metal volume percent.

We suggest here an alternative, though similar, model
which removes the aforementioned discontinuity and les-
sens the steepness of the slope somewhat. We also point
out that the treatment of the system near the insulating
and metallic limits needs a more detailed approach than
the sort of macroscopic averaging so far adopted.

For purposes of illustration, we take the insulator to be
a continuous medium and the metal to be in the form of
spherical particles. These restrictions permit evalua-
tion of a simple example, but the model can be used to
accomodate various experimental configurations. We
know that spherical particles form a variety of lattices;
we choose here a simple cubic lattic. As more and more
metal is introduced, the lattice sites become occupied
in a random fashion. With each lattice site can be asso-
ciated a conductivity, o,, whose value depends on
whether the site is occupied by metal or insulator. In
this way we arrive at a network of conductances. The
probability, p, that a site is occupied by metal in this
picture is 4, /f, where y, is the volume fraction of metal
and f is the packing fraction, equal to 0. 52 for a simple
cubic lattice. A network such as this can be described?
by replacing each conductance by an average conductance
0. This average conductance is arrived at in the follow-
ing way. Assume that all conductances are the average,
0. Now let just one conductance be changed back to its
true value, g, and examine the voltage difference be-
tween V;, the voltage across o;, and the voltage across o
far from ¢, V. To calculate this difference we note first
that the conductance looking into adjacent nodes of a net-
work of conductances 7 is $z0, where z is the coordina-
tion number of the lattice. Now we fix our attention on
one such pair of nodes and consider the conductance
across it, replacing the rest of the network by a conduc-
tance o,. If the current flowing into the lattice is 4, the
voltage drop across the node is, when all conductances
equal G,

V=i/lo,+5)=7. @)

Therefore, 0,=(3z — 1)5. When G is replaced by a,, the
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voltage drop becomes

V,=i/(o,+0,)=V(0,+5)/(0,+0,). 2)
Substituting for o, we have,

V,~ V=V, ~5)/[o, + (32 -1)3]. (3)
By the definition of o, as all conductances are replaced
by their original values, V, -V should average to zero.

Thus, if p(o) is the probability distribution of conduc-
tances o, we have, for a cubic network,

[ doplo)o -5)/(o+25)=0. @)

If p(0} is a binary distribution, g, is the metallic con-
ductivity, and o, is the insulator conductivity, Eq. (4)
becomes

om/)@=7) (1 ~v, /o, =7) _
o, +27 + o, +27 =0. ®)

This is a quadratic equation for &, with the root given by

45=0,+ ot +[(0} + o) + 80,0, ]2, 6)

where
o=(2-3,/f)q,
and
o= 30,/f-1)a,.

The conductivity resulting from (6) is shown in Fig. 1,
as is the result of Bueche, The conditions are that the
ratio of the metallic conductivity, o,, to that of the in-
sulator, q,, is 10°, and the plot is of log(,/5) vs v,. Al-
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FIG. 1. Plot of the normalized conductivity of the network vs
metallic volume percent. The sharp drop occurs when roughly
every third site is occupied by metal. Solid line, present mod-
el; dashed line, Bueche’s model.
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though it is hard to discern from the figure, the present
model has a slope (in the coordinates of the graph) some
30 times less steep than the model of Bueche. In fact,
Bueche’s model is somewhat similar to the present one
in that it also is an averaging model. He considers only
those metallic particles which form a connected chain
through the whole sample. He uses a polymer theory to
obtain the condition for this. He then forms an average
conductance between the number of such chains and the
‘remaining matrix. One result of this approach is that
there is no increase in conductivity until a chain of the
same length as the sample is formed, which accounts
for the slope discontinuity exhibited in Fig. 1. An in-
teresting aspect of both theories and of experiment is
that in a certain region 7 is extremely sensitive to v,
Thus, for example, application of pressure could cause
large changes of conductivity,

The experimental results,® which deal mainly with
spheres of micron size, are quite similar to the solid
line in Fig. 1 save in the region where the conductivity
is slowly varying. A two-dimensional experiment by
Last and Thouless® shows similar discrepancies. It is
obvious that, in order to obtain meaningful comparisons
with theory, quite carefully controlled experiments are
necessary. But such experiments could prove exceed-
ingly useful in determining the relevance of percolation
theory? to the calculation of the conductivity in the re-
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gions where the metal particles first form small con-
nected, but tortuous, chains in the material, and where
there are no longer any continuous chains of the
insulator,

Another shortcoming of Bueche’s model is that it ignores
all metal particles not in a continuous chain. It is
worthy of note that measurements of the ac conductivity
can throw some light on the degree of clustering by com-
paring the measurements with a Maxwell-Wagner -
Sillars sort of theory.

As the number of nearest neighbors increases, both
curves in Fig. 1 shift to the left. When a variety of dif-
ferent-sized spheres is taken into account, the packing
fraction, which reflects the number of nearest neigh-
bors, will increase, These two effects can explain some
of the additional details of the experimental results to
date. They are susceptible of inclusion in the model via
the distribution function, p(c), and via the lattice coor-
dination number, z.
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