equation, (2), and match the singularity at $\mathbf{r}_{2}=\mathbf{r}_{1}$ of the expression on the right-hand side of (28) with the amplitude of the delta function source term in (2). This is achieved by the requirement

$$
\begin{equation*}
G\left(\mathbf{r}_{2}, \mathbf{r}_{1}, \omega\right) \sim-1 / 4 \pi\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|, \quad\left(\mathbf{r}_{2} \rightarrow \mathbf{r}_{1}\right) . \tag{29}
\end{equation*}
$$

Now when \mathbf{r}_{2} approaches \mathbf{r}_{1}, u approaches v, and the determinant in (28) goes over into the Wronskian of the two functions W and M. This Wronskian has the value ${ }^{12} 1 / \Gamma(1-i v)$. Hence the missing numerical factor in (28) is $-\Gamma(1-i v) / 4 \pi$. Supplying (28) with
this factor gives the familiar closed form expression (4) for the coordinate space Coulomb Green's function.

ACKNOWLEDGMENTS

The author would like to thank Professor L. Brown for suggesting this problem and for a number of helpful discussions.

This research was supported in part by the United States Office of Naval Research and the United States Atomic Energy Commission.

Time-Dependent Green's Function for a Moving Isotropic Nondispersive Medium*

C. T. TAI
Radiation Laboratory, University of Michigan, Ann Arbor, Michigan

(Received 10 June 1966)

Abstract

The time-dependent Green's function for a moving isotropic nondispersive medium is hereby obtained by taking the ω-integration of the time-harmonic solution which was previously obtained by means of an operational method and by making use of the known result of the two-dimensional Klein-Gordon equation.

INTRODUCTION

THE time-dependent Green's function for a moving isotropic medium was recently found by Compton. ${ }^{1}$ He applied a four-fold Fourier transform to the pertinent differential equation to obtain the desired result. In evaluating the reciprocal Fourier transform, he considers the ω-integration first, followed by the k-integration. The steps involved in the calculation are rather long, comparable to those of Lee and Papas. ${ }^{2}$

In this paper, we show that the time-dependent solution can readily be obtained by taking the ω integration of the time-harmonic solution ${ }^{3}$ which was previously obtained by an operational method without a lengthy calculation.

[^0]THE BASIC EQUATION AND ITS SOLUTIONS
The time-dependent Green's function considered by Compton ${ }^{4}$ satisfies the differential equation

$$
\begin{align*}
& \begin{aligned}
{\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right.} & +\frac{1}{a} \frac{\partial^{2}}{\partial z^{2}}-\frac{2 \Omega}{a} \frac{\partial^{2}}{\partial z \partial t} \\
& \left.+\left(\frac{\Omega^{2}}{a}-\frac{n^{2} a}{c^{2}}\right) \frac{\partial^{2}}{\partial t^{2}}\right] G\left(\bar{R}, \bar{R}^{\prime} ; t, t^{\prime}\right) \\
& =-\delta\left(\bar{R}-\bar{R}^{\prime}\right) \delta\left(t-t^{\prime}\right)
\end{aligned} \\
& \text { where }
\end{align*}
$$

$$
\begin{gathered}
a=\frac{1-\beta^{2}}{1-n^{2} \beta^{2}}, \quad \Omega=\frac{\left(n^{2}-1\right) \beta}{\left(1-n^{2} \beta^{2}\right) c}, \\
n=\left(\frac{\mu \epsilon}{\mu_{0} \epsilon_{0}}\right)^{\frac{1}{2}}, \quad \beta=\frac{v}{c}, \quad c=\left(\mu_{0} \epsilon_{0}\right)^{\frac{1}{2}}, \quad \bar{v}=v a_{z} .
\end{gathered}
$$

We define the Fourier pair

$$
\begin{align*}
F(\omega) & =\int_{-\infty}^{\infty} G(t) e^{-j \omega t} d t, \tag{2}\\
G(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{j \omega t} d \omega . \tag{3}
\end{align*}
$$

[^1]Thus, if Eq. (1) is multiplied by $e^{-j o t}$ and integrated with respect to t, we obtain

$$
\begin{align*}
{\left[\frac{\partial^{2}}{\partial x^{2}}+\right.} & \frac{\partial^{2}}{\partial y^{2}}+\frac{1}{a} \frac{\partial^{2}}{\partial z^{2}}-\frac{2 j \omega \Omega}{a} \frac{\partial}{\partial z} \\
& \left.+\omega^{2}\left(\frac{n^{2} a}{c^{2}}-\frac{\Omega^{2}}{a}\right)\right] F(\omega)=-e^{-j \omega t^{\prime}} \delta\left(\bar{R}-\bar{R}^{\prime}\right) \tag{4}
\end{align*}
$$

If we introduce an auxiliary function $f(\omega)$ such that

$$
\begin{equation*}
F(\omega)=e^{j \omega \Omega z} f(\omega), \tag{5}
\end{equation*}
$$

then $f(\omega)$ satisfies the following equation:

$$
\begin{align*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{1}{a} \frac{\partial^{2}}{\partial z^{2}}+\right. & \left.\frac{\omega^{2} n^{2} a}{c^{2}}\right) f(\omega) \\
& =-e^{-j \omega\left(t^{\prime}+\Omega z^{\prime}\right)} \delta\left(\bar{R}-\bar{R}^{\prime}\right) . \tag{6}
\end{align*}
$$

Except for the factor $e^{-j \omega\left(t^{\prime}+\Omega z^{\prime}\right)}$, Eq. (6) is the same as Eq. (26) considered in Ref. 3. Hence, its solution is given by the following:

Case I: $n \beta<1$

$$
\begin{equation*}
f(\omega)=\frac{a^{\frac{1}{2}} \exp \left\{-j \omega\left[t^{\prime}+\Omega z^{\prime}+(n / c) a^{\frac{1}{2}} R_{a}\right]\right\}}{4 \pi R_{a}}, \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{a}=\left(a \xi^{2}+r^{2}\right)^{\frac{1}{2}}, \quad r^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2} \\
& \xi=\left(z-z^{\prime}\right) .
\end{aligned}
$$

Case II: $n \beta>1$
$f(\omega)=\left\{\begin{array}{l}\begin{array}{l}0, \quad|a|^{\frac{1}{2}} \xi<r \\ |a|^{\frac{1}{2}} \exp \left[-j \omega\left(t^{\prime}+\Omega z^{\prime}\right)\right] \cos (\omega n / c)|a|^{\frac{1}{2}} R_{a}^{\prime} \\ 2 \pi R_{a}^{\prime}\end{array} \\ |a|^{\frac{1}{2}} \xi>r\end{array}\right\}$,
where

$$
\begin{equation*}
R_{a}^{\prime}=\left(|a| \xi^{2}-r^{2}\right)^{\frac{1}{2}} \tag{8}
\end{equation*}
$$

In view of Eqs. (3) and (5), we can obtain readily the solutions for $G(t)$; they are the following:

Case I: $n \beta<1$

$$
\begin{align*}
& \begin{aligned}
G(t) & =\frac{a^{\frac{1}{2}}}{8 \pi^{2} R_{a}} \int_{-\infty}^{\infty} \exp \left[j \omega\left(\tau+\Omega \xi-\frac{n}{c} a^{\frac{1}{2}} R_{a}\right)\right] d \omega \\
& =\frac{a^{\frac{1}{2}}}{4 \pi R_{a}} \delta\left(\tau+\Omega \xi-\frac{n}{c} a^{\frac{1}{2}} R_{a}\right)
\end{aligned} \\
& \text { where } \tau=t-t^{\prime} . \tag{9}
\end{align*}
$$

Case II: $n \beta>1$

$$
\begin{align*}
G(t) & =\frac{|a|^{\frac{1}{2}}}{4 \pi^{2} R_{a}^{\prime}} \int_{-\infty}^{\infty} \exp [j \omega(\tau+\Omega \xi)] \cos \frac{n}{c}|a|^{\frac{1}{2}} R_{a}^{\prime} d \omega \\
& =\frac{|a|^{\frac{1}{2}}}{4 \pi R_{a}^{\prime}} \delta\left(\tau+\Omega \xi-\frac{n}{c}|a|^{\frac{1}{2}} R_{a}^{\prime}\right), \quad|a|^{\frac{1}{2}} \xi>r, \tag{10}
\end{align*}
$$

$G(t)=0, \quad|a|^{\frac{1}{2}} \xi<r$.
Our expressions for $G(t)$ appear to be of slightly different form as compared to Compton's, but they are equivalent. In fact, the present ones are simpler in form and also put the time-dependent part explicitly in the delta function.

To discuss the locus of the wave front, we consider, for example, the case corresponding to $n \beta<1$. The impulsive wave front is described by

$$
\begin{equation*}
\tau+\Omega \xi-(n / c) a^{\frac{1}{2}} R_{a}=0 \tag{12}
\end{equation*}
$$

The above equation can be written in the form
where

$$
\begin{equation*}
\left[\left(\xi-\xi_{c}\right)^{2} / A^{2}\right]+\left(r^{2} / B^{2}\right)=1, \tag{13}
\end{equation*}
$$

$$
\begin{gathered}
\xi_{c}=\frac{\left(n^{2}-1\right) \beta c \tau}{n^{2}-\beta^{2}}, \quad A=\frac{n\left(1-\beta^{2}\right) c \tau}{n^{2}-\beta^{2}} \\
B=\left(\frac{1-\beta^{2}}{n^{2}-\beta^{2}}\right)^{\frac{1}{2}} c \tau
\end{gathered}
$$

Equation (13) defines the same ellipsoid discussed by Compton. It can be shown that the same algebraic equation applies to the case $n \beta>1$. For the latter case, ξ_{c} is numerically smaller than A. The detached ellipsoidal wave front is therefore confined within the Mach cone defined by $|a|^{\frac{1}{2}} \xi-r=0$.

[^0]: * The research reported here was sponsored by the National Aeronautics and Space Administration under Grant NGR-23-005107 with the Langley Research Center, Hampton, Virginia.
 ${ }^{1}$ R. T. Compton, Jr., J. Math. Phys. 7, 2145 (1966).
 ${ }^{2}$ K. S. H. Lee and C. H. Papas, J. Math. Phys. 5, 1668 (1964).
 ${ }^{3}$ C. T. Tai, Trans. IEEE Antennas Propagation, AP13, 322 (1965).

[^1]: ${ }^{4}$ Compton defines the Green's function with a positive sign attached to the delta function.

