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The dispersion relation for circularly polarized electromagnetic waves in a warm two-component
plasma subject to parallel static electric and magnetic fields has been derived from the linearized
coupled Boltzmann—-Maxwell equations with the collision frequency assumed to be independent of
the particle velocity. The effect of a weak longitudinal electrostatic field, E,, on the propagation
characteristic of the right- and left-hand circularly polarized waves in an isothermal electron—proton
plasma is examined in detail and illustrated numerically for a conveniently chosen set of the system
parameters. For the right-hand polarized wave the electrostatic field effect is found to be significant
for a wave with frequency w in the vicinity of the electron cyclotron frequency ., = (eBqo/m). For
example, for a given » and § = (eEy/mcw) > 0 an increase in 3, or in Ey, leads to the increase or
decrease of the attenuation constant «, of the wave according to whether ¥ = (w./w) < lorY > 1.
Moreover, for ¥ = 1.10, when & < 0 (i.e., when E,; and the wave vector k are oppositely directed)
« increases with {8]. On the other hand, when § > 0 an increase in | 8| causes « to decrease and for a
sufficiently large value of §, « may become negative so that the wave may experience a spatial growth.
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1. INTRODUCTION

A theory of growing electromagnetic waves was
advanced some years ago by Bailey'™® in his electro-
magnetoionic theory, which is an extension of the
well-known magnetoionic theory of Appleton and
others. The basis of Bailey’s theory consists of the
following physical laws:

(1) Maxwell’s law governing the behavior of
electromagnetic fields.

(2) The conservation of electron and positive
ions.

(3) Maxwell’s law for the transfer of momentum
in a mixture of different kinds of particles.

The analysis of the dispersion relation for the
system, derived from the above macroscopic laws
under the small-amplitude condition, led Bailey'
to predict the amplification of a plane wave, within
a certain frequency band, in an ionized medium
pervaded by static electric and magnetic fields which
are both parallel to the direction of wave propaga-
tion. Bailey then applied his theory to explain the
excess noise radiation observed in sunspot.* How-
ever, Bailey’s® theory of amplified circularly polar-
ized waves in an ionized medium was first criticized
by Twiss® who argued that the growing wave, which
Bailey interprets as an amplified wave, can only
be excited by reflection at the boundary. A critical
analysis of Bailey’s theory was also given later by
Piddington,® who shows that the electromagneto-

1V. A. Bailey, Australian J. Sci. Res. Al, 351 (1948).

2 V. A. Bailey, Phys. Rev. 75, 1104 (1949).

3 V. A. Bailey, Phys. Rev. 78, 428 (1950).

4+ E. V. Appleton and J. S. Hey, Phil. Mag. 37, 73 (1946).
5 R. Q. Twiss, Phys. Rev. 84, 448 (1951).

¢ J. H. Piddington, Phys. Rev. 101, 9 (1956).

ionic theory predicts spurious growing waves which
do not correspond to any interchange of energy
between the gas and the field, but are attributed
to the movement of the observer and emitter relative
to the gas particles. Even with the additional ion
motion the mass drift of the electrons and ions to-
gether introduce no new wave form in the electro-
magnetoionic theory although drift does modify
the existing waves. While these authors are con-
cerned primarily with the amplification aspects, no
attention has been given to the other aspects of the
propagation characteristics. '

On the other hand, studies of electromagnetic
wave propagation based on a macroscopic small-
signal theory have been made by several authors
for a drifting cold magnetoplasma’™™'® and a sta-
tionary two-component warm plasma.**

Recently, in the course of examining the dispersion
relations for a finite temperature electromagneto-
plasma some interesting effects on the propagation
of circularly polarized electromagnetic waves due
to static electric fields have been observed.'? For
example, the presence of an applied transverse
static electric field causes the cutoff frequency to
shift" and in addition results in the coupling of the
longitudinal mode to a transverse circularly polar-

" H. Unz, IRE Trans. Antennas and Propagation AP-10,
459 (1962).

8 M. Epstein, IEEE Trans. Antennas and Propagation
AP-11, 193 (1963).

9 C. T. Tai, Radio Sci. 69D, 401 (1965).

1 H. Unz, IEEE Trans. Antennas and Propagation AP-13,
595 (1965).

11 8, R. Seshadri, Radio Sci. 69D, 579 (1965).

2 H. C. Hsieh, The University of Michigan, Technical
Report No. 95 (1966).

13 H. C. Hsieh, J. Atmos. Terres. Phys. 29, 1219 (1967).
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ized mode; these are discussed elsewhere. On the
other hand, when the applied static electric field
is directed parallel to the static magnetic field, the
presence of a static electric field may significantly
affect the amplitude and phase of the electromag-
netic wave.

The purpose of this paper, therefore, is to discuss
in detail the effect of an applied longitudinal static
electric field upon the propagation characteristics
of a transverse circularly polarized wave which
travels along the static magnetic field in a finite
temperature unbounded two-component plasma. In
the present discussion the coupled Boltzmann-
Maxwell equation is used.

II. BASIC EQUATION

The electron distribution function f(r, v, {) and
the ion distribution function F(r, v, t) for this plasma
are governed by the Boltzmann equation

of
at

and

+v-Vf = = (E + vxB):V.f = »lfo = /) (Ia)

oF e
a0 + v.VF + M(E + vxB):V,F =y, (F, — F),
(1b)

where m and M denote the electron and ion masses,
respectively, and e is the electronic charge which is
taken as a positive quantity. », and v, are the fre-
quencies of collision of electrons with positive ions
and of ions with electrons, respectively. These
collision frequencies are assumed to be independent
of the particle velocity. f, and F, are the equilibrium
distribution functions of the electron and ion,
respectively.
The electromagnetic fields in the plasma are
governed by the Maxwell equations
éB

V xE = YR

V:D = p,

The electric displacement vector D and the magnetic
flux density B are, respectively, related to the
electric field intensity E and the magnetic field
intensity H in the following manner:

D=¢E and B = yH, (3)

aD

VxH =T+ 9

2
and V-B =0.

where ¢ and p, denote the dielectric constant and
the permeability of vacua.

The convection current density J and the charge
density p may be written in terms of the distribution
function as
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Jzefv(F—f)dsvandp:ef(F—f)d3v. 4)

Consider all quantities of interest to be composed
of two parts, a time-independent part and a time-
varying part, which are denoted by the subscripts
0 and 1, respectively,

B = B,(r) + B(r, 1), E
J = JO(r) + Jl(r) t)) P
f=fl,v) + L, v, 0, F

In the present paper the following assumptions
are made:

(1) Small-amplitude conditions are satisfied so
that the terms involving the product of time-
dependent quantities are negligible.

(2) A one-dimensional analysis is applicable, i.e.,
all quantities vary only with one spatial variable,
and 4/0z = 8/dy = 0 in a rectangular Cartesian
coordinates system.

(3) All time-varying quantities have harmonic
dependence of the form exp [j(wt — kz)], where w
and k are the angular frequency and the propagation
constant, respectively.

Based on the above assumptions, the substitution
of Eq. (5) into Egs. (1)-(4) results in two sets of
differential equations, one of which governs the
time-independent quantities and the other governs
the time-varying quantities. The former is given by

of

E r) + E(r, 1);
po(®) + pl(r7 £); (5)
Folr,v) + Fi(r,v, t).

Il

0.2 L (E, 4 uxB)Vh =0, ()
oF, e
v 50+ 37 @0+ vxB)-V.F, =0, (6b)
oB,. OB, _ 0E,, _ pol@) .
dr 0, y 0, %z & (6¢)
OB M aB z aB z
6—2,‘0 = —MOJOI} a; = ”OJOyy "FZO_ = 0’ (Gd)
o= f v(Fy — fo) d%, (6e)
and
o= ¢ f (Fo — fo) d, (61)

where d®v = dv, dv, dv, denotes the volume element
in velocity space. On the other hand, in discussing
the set of equations relating the time-varying quanti-
ties it is convenient to consider the following trans-
formation of variables:

v, = 0,008 ¢ and v, = v, sin g, (7a)
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and
E, = }(E,. + jE,,) and B, = §(B;. & jBy). (7b)

Then, by introducing the following parameters:

(@), ). e
W, = (m 1] a m ’ Qc - M ¥

_ —eEO)
A= (TR,

the time-varying parts of Eqgs. (2)-(4) can be com-
bined to give

2
25— #)r.
© o« 27 i
— joue f f fo R, — )02 dg do, db,
-0 [

and

© «© 27
_ e f f f (F, — 10w, do du. dbv..
weo J_w Jo Jo

Moreover, the time-varying parts of Eq. (1a), with
the aid of Eqgs. (7), can be written as follows:

Il

(8a)

(8b)

[](w - kl)) + v, +w, :lfl — Q. afl

v,
ofy | i of v, afl
- [a_<61), - v, 6<p> to T, 0 + Joo- D(fl):l
oh l a_fl (3 afl . e
B [a+<6v, T, 8<p> To "o, do - Jos D(fl):le

= _'?_ ie n Bk K l afo
= mM (JE_e —I— M (JoEe ' + — EI, a0,
€ n 9o
- Blz agp (934)

where the differential operator D is defined by
9 _, 9 )
v, * v,

= }(a. % ja,),
L 2k) +1c&_a_f_o]. (9h)

v, do w 0v,

() = v
and

Wy = %(wcz =+ jwcu)y @y

= [ 2)

On the other hand, the time-varying part of Eq.
(1b) which governs the F, function, is easily ob-
tained by replacing a,, a., w., w,, v., fi, and f, with
A, A, Q., Q,, v, F,, and F,, respectively, in Egs.
9).

It should be noted that E_ and E. in Eq. (9a)
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are the left- and right-hand ecircularly polarized
components of electric field, respectively.

III. DISPERSION RELATIONS

Suppose that the positive 2 direction is taken in
the direction of the magnetostatic field B,, i.e.,
B,, = By, = 050 that w, = 0. Since VB = 0, B,,
must be independent of 2, and it is taken to be zero
in the present discussion (which is reasonable for a
longitudinal propagation). Moreover, consider that
the time-varying electron distribution function f,
is composed of three parts and may be written as

fl = f—(zv tr U,, vz)e”’ + f+(z; t; Ur, 1),)6—“’
+ g(zy t; Uy vz)-

Since Eq. (9a) must be valid for an arbitrary value
of ¢, the substitution of Eq. (10) into Eq. (9a) yields
the following system of equations:

o — p. — kv, + w)f-

(10)

. % _ e
e o M-(F)E-,  (l1a)
j({}) - ]Ve — KU, — wz)f+
g e 09 _ e
a, a0, a, 0, mM+(f0)E+, (11b)
and
j(w - jVe - kvz)g
_ g9 20, 20, _ e g
a, avz f+ 0, f—- - mavz Elz (110)

which clearly suggests the possibility of coupling
between the transverse mode and the longitudinal
mode when a, and a. are nonzero, which is the
case when the transverse electrostatic field is present.
This case has been examined and discussed else-
where.**

In the present investigation it is assumed that
a, = 0, 1ie., E,, = E,, = 0, since the effect of the
longitudinal electrostatic field is of primary concern.
Suppose that f_, f., and g have the v, dependence of
the form exp (—a»?), in which a, = m/(2KT.);
then f_, f., and ¢ can be explicitly expressed in terms
of E_, II,, and E,,, respectively, from Eqs. (11) as

_ (e/m)M =(fo)E+ _ (e/m)(3fo/ v )E,,
S b)) M ITT ’
(12)

I+

where

51 = (‘51 - Elv,), @ = (w - jVe); El = (k + jKl)!
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and
_ eE0>'
K = (i
K and T, denote the Boltzmann constant and the

electron temperature, respectively. Thus combining
Eqgs. (10) and (12) the distribution function f,
is expressed in terms of £, and F,,. Similarly the
time-varying ion distribution function F, can be
written as

F,=F_(z,t,v,,0)° + F.(z, t,0,,0)e "

+ G(Z, t; Uy, vz)y (13)
where
P _ —(e/M)M(Fy)E~
: by + 2.)
and
(= —(e/M)(8F /v, )E,Z (14)
762
m which
b = (@2 — ka.), @ = (0 — jvi), ko = (k + jKo),

and

. —ell,
K. = (KTi >
M and T'; denote the mass and temperature of the
ion, respectively,
Upon substituting F, and f,, given by Egs. (13)
and (10), respectively, into Eqs. (8) the following
set of equations is obtained:

_mlwe/e) _
LT =
(e/m)M =(f,) (e/M)M;(FO)] —
/—m [ [ (b, + w.) TG, oy [ ded=0
(15a)
and
1+ @
[ / (;5 61)0 ]&%;gfo)vrvz dv, dv,=0. (15b)

Equation (15a) represents the dispersion relation
for the transverse circularly polarized modes; the
upper sign is to be taken for the left-hand circularly
polarized mode and the lower sign is for the right-
hand circularly polarized mode. Equation (15b)
is the dispersion relation for the longitudinal mode.
In the following discussion, Eq. (15a) is examined
in detail.
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It should be noted that when E,=0, K,=K,=0,
and when v, = », = 0,&, = @ = w, so that b, =
b, = (@ — kv.), then Eq. (15a) is reduced to those
given by Montgomery and Tidman."

For a one-dimensional analysis in a Maxwellian
plasma, f, and F, can be written as

fo = n(%‘)i exp [~a1(vf + ) + e;%j] (16a)
and
F, = N<%) exp[ — a4 ) — ‘;’fj)] . (16b)

in which the electric scalar potential ®(2) is related
to static electric field by E,, = —d®/dz. n and N are
the electron and positive ion concentrations, re-
spectively. It is easily verified that f, and F, given
by Egs. (16) satisfy Eqs. (6a) and (b), respectively.
Furthermore, they yield that J,, = J,, = J,, = 0
which implies that the static magnetic field is inde-
pendent of z. The space-charge density p, is given by

ed
po(2) = eN exp (KT > — en exp (KTG). a7
Suppose that & is sufficiently small so that
ed | ed
ﬁ‘ <1 and KT, <1 (18)

and the condition of electrical neutrality is also
satisfied, i.e., n = N. Then p, vanishes and from
Eq. (6¢), E,, will be independent of 2.

In the present discussion F,, is assumed to be
constant and denoted by E,,.

Having assumed the form of the functions f, and
F,, the indicated integration in Eq. (15a) can be
carried out to give

i’i_£< Yi:i_L)
1-Z 1+

W, 20” ;
X, Viks 1 )

where
= [ x7Y) —iZ],
= (k + jK)), k. = (k+ jK)),

ky
. 2 w
ol neg)
() w
12 . eEo)
(w) ’ Ky = (KTG !

¥ D. C. Montgomery and D. A. Tidman, Plasma Kinetic
Theory (McGraw-Hill Book Company, Inc.,, New York,
1964), Chap. 10.

W, = [(1 =+ Y2) - ]Zz]y
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2 .
G =) 2=0)
w

_ (= _ (@Eo_z> _ <e2i>
K, = (KT¢> » w, = m ]’ W, = meo)

. _CB(),> - <62N)%
Q; - ( M y Qp - MEO .

It should be pointed out that the derivation of
Eq. (19) involves an evaluation of an integral of
the form

>
I

exp (—a})

GO(X) = ;‘7—% f_“; m dv,, (20&)

where x may take on the value of (w/%, 2)(1 — jZ,.5)
or (w/%. )W, . This integral has been discussed in
detail by Stix'* and his results are used here. When
the term representing the Landau or cyclotron
damping is neglected and taking only the first two
terms of its asymptotic expansion, Go(x) can be
given by

G0 = 2 1+ 554)
provided that |a*x[* 3> 1 is satisfied. It is of interest
to note that when V, = V, = 0, Eq. (19) is reduced
to the familiar dispersion equation in the cold-
plasma magnetoionic theory. On the other hand,
when E, = 0, K, = K, = 0O,sothat &, = k. = k,
and when », = v, = 0, &, = @ = wso that Eq. (19)
is reduced to those given by Heald and Wharton.'’

IV. PROPAGATION CONSTANT

(20b)

Equation (19) is a quadratic in & and can con-
veniently be written as

() + (%) - o
A(— Bl=—] — C = 21
8,) T8\, 0, (212)

where

. X, TzX?)

4= (1 Tt )

5 — 8%y _5_22(_2)

5= (% + %) (21b)

5 _é_&>

¢ < W, W)
in which

_ (ﬁ’_) _ (ﬂ-) 5. — <6_EL>
= \mé) T2 = \Mc?) YT \iew/ !

—ekl, )
8, = (MCw) and  f, = <c>

& T, H. Stix, The Theory of Plasma Waves (McGraw-Hill
Book Company, Inc., New York, 1962), Chap. 8.

18 M. A. Heald and C. B. Wharton, Plasma Diagnostics
8ﬁh Zl/gicrmvaves (John Wiley & Sons, Ine., New York, 1965),

ap. 3.
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The symbol ~ appearing in Egs. (21) is introduced
to emphasize the fact that the quantity under
consideration is a complex quantity. In the present
discussion the wave angular frequency w is regarded
as real and the propagation constant £ is regarded
as a complex quantity which can be written as
where « and 8 are the amplitude and phase constants,
respectively. Since the time and spatial dependence
is assumed to be in the form exp [j(wt — k2)] =
exp [—az 4+ j{wt — B2)], the forward and backward
waves are represented by positive and negative
values of B, respectively. On the other hand, the
attenuation and amplification of the wave are
represented by a positive and negative value of «,
respectively. Once the system parameters are
specified, Eq. (21a) can be solved for (£/8,) =
(8/8, — ja/Bo) and the propagation characteristics
can be examined.

It should be noted that for an electrically neutral
plasma the electronic and ionic parameters are
related by X, = £¢X,, Y, = —¢£Y,, 7. = (£/0)r,
and 8, = —3é,/¢, where £ = (m/M)and 8 = (T,/T,).
Furthermore, the collision frequeéncies v, and »; are,
in general, dependent on the density and tempera-
ture. For a fully ionized gas », is determined by the
electron—ion encounter, while for a partially ionized
gas v, is determined by electron-neutral encounter
and electron—ion encounter.”” For the purpose of
illustration, a fully ionized gas, consisting of electrons
and protons, is considered here. For a Maxwellian
isothermal plasma (i.e., T, = T,)v.; can be given
byls

ve: = 3.63 X 10‘6(%) In A, (23)

Te

where

. 3\ ¥
A =124 X 107(&) ,
n

in which 7 is the electron conecentration in mks units.
On the other hand, the effective collision frequency
for proton-electron encounters can be given by

Y 1
Vp = W V,Q[l—éy“

(191672])3' S. Tanenbaum and D. Mintzer, Phys. Fluids 5, 1226
(19261;21. P. Bachynski and B. W. Gibbs, Phys. Fluids 9, 520

vy, C. Ferraro and C. Plumpton, An Introduction to
Magneto-Fluid Mechanics (Clarendon Press, Oxford, England,
1961), Chap. 8.

(24)
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(8/8,) vs X FOR 3=0, £10™*, £10™®

3=-10"* 12

(B/Bo) vs X FOR 820, %107, 107

818,

-0.4

-08

02 04 X 08 10 12"

X
(b)

! | 1 1 5
i) 0z 04 06 c8 10 2
X
(a)

a/ag

l ! | | |

-20 810"
_30._.‘
1 | { 1
0 0.2 04 06 08 1.0 1.2
X
(e)

02 03 08 o8 10 1.2
X

(d)

Fic. 1. (a) Variation of the amplitude coefficient (a/8,) and
the phase coefficient (8/8,) with electron density (X) for
right-hand circularly polarized wave in an isothermal electron-
proton plasma, with ¥=1.10, r=2 X 1075, and o=2» X 10°
rad/sec. (b) Variation of the amplitude coefficient (a/8y) and
the phase coefficient (8/80) with electron density (X) for
left-hand circularly polarized wave in an isothermal electron—
proton plasma, with ¥
X 109 rad/sec. (¢) Variation of the normalized amplitude con-
stant (a/ao) with the normalized electron density (X) for
right-hand cireularly polarized wave in an isothermal electron-
proton plasma with ¥ = 1.10, r = 2 X 1075, and » = 27 X 10°

=110, 7 = 2 X 1075, and w = 2r

} rad/sec. (d) Variation of the normalized amplitude constant

(/o) with the normalized electron density (X) for left-hand

circularly polarized wave in an isothermal electron—proton
plasmawith ¥ = 1.10,7 = 2 X 1075, and & = 27 X 10° rad /sec.
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where m, is the proton mass, therefore, Z, = £Z,.
The variations of (a/8,) and (8/8,) are illustrated
numerically in Figs. 1-3 for an isothermal electron—
proton plasma (i.e., £ = 1/1836 and § = 1) with
the aid of Eqs. (23) and (24).

' In these illustrations the frequency of the wave

2,000

P

a/B,

o5

Y130,3+0
o mp———= A\
\_T./(\' =130, 84107
Y1110, 8107

0 02 0.4 06 08 10 12
X
(a)
4
3} Y=110,8=10°*
o
9
Y=130,3:i0"*
2 L
| ! 1 i | I
0 0.2 04 06 0.8 10 12
X
(b)

F Fig. 2. (a) Variation of the amplitude coefficient (a/Bo)
with electron density (X) for right-hand circularly polarized
wave with Y >1, r=2 X 107% and w=2x X 10° rad/sec. (b)
Variation of the phase coefficient (8/8,) with electron density
(X) for right-hand circularly polarized wave with ¥ > 1
7 =2 X 107% and w = 27 X 10%rad/sec.

2
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under consideration is taken as 1 GHz. The plots
of amplitude coefficient («/8,) and phase coefficient
(B/8,) versus the electron density (X) for different
values of the parameter § = (eE;/mcw), in the case
Y = 1.10, are shown in Figs. 1. Figure 1(a) deals
with the right-hand ecircularly polarized wave,
while Fig. 1(b) is for the left-hand circularly polarized
wave. From both Figs. 1(a) and 1(b), it is observed,
that for a given set of system parameters a change
in & has a profound effect on the amplitude, but it
has practically no effect on the phase of the cir-
cularly polarized wave. Furthermore, when § < 0
(i.e., when the longitudinal electrostatic field E, is
directed opposite to the wave vector, k) an increase
in || leads to an increase in the attenuation of the
wave. On the other hand, when § > 0 (i.e., when
E; and k are in the same direction) an increase in
|8] leads to the reduction of the wave attenuation.
In this case if § is sufliciently large, « may become
negative so that the wave may experience an ampli-
fication rather than an attenuation. However, it is
difficult to give a comprehensive physical interpreta-
tion for gain in wave amplitude when § > 0, without
a detailed analysis of the dynamic behavior of the
charged particles or the studies of the energy con-
version process between the particles and the electro-
magnetic wave. This is not done in the present
paper; however, the question of energy conversion
process will be considered in a future paper. The
result of the present simple-minded theory appears
to suggest that the effect of electrostatic field on
the amplitude of the electromagnetic wave is evi-
dent. While the collision process in the plasma tends
to randomize the order motion, the introduction of
electrostatic field in the wave direction tends to
reorganize the motion of the particle in such a way as
to make the exchange of energy between the particles
and the wave easier. In other words, it makes the
extraction of particle energy in the plasma easier.
Comparison of Figs. 1(a) and (b) shows that the
amplitude coefficient for the right-hand circularly
polarized wave is three orders of magnitude greater
than that of the left-hand circularly polarized wave.

In the interest of emphasizing the change in the
amplitude constant caused by the electrostatic field,
the plots of a/a, vs X for the right-hand circularly
polarized and the left-hand circularly polarized
waves are shown in Fig. 1(c) and Fig. 1(d), respect-
ively, where «, denotes the amplitude constant for
the case of zero static electric field and also repre-
sents the rate of collision damping. In these figures,
it is observed that for a given X, |a/a,| increases
as |6, which suggests that the effect of E, on the
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3.0

Y=09,8:=10"

a/B,
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35x107

3.0

25—

Y:07,8:0

Y=07, 3=10"

(b)

F1a. 3. (a) Variation of the amplitude coefficient (a/B,) with electron density (X) for right-hand circularly polarized wave
with Y < 1,7 = 2 X 107% and @ = 27 X 10° rad/sec. (b) Variation of the phase coeflicient (8/8,) with electron density
(X) for right-hand circularly polarized wave with ¥ < 1,7 = 2 X 1075, and » = 27 X 10° rad/sec.

amplitude constant « increases as |E,|. On the other
hand, the change in the amplitude constant « is
more drastic in the range of small X than in the
range of large X; i.e., the effect of £, on the change
in amplitude of the electromagnetic wave is greater
in the region of low electron number density than in
the region of high number density.

The effects of change in the strength of magneto-
static field B, upon the plots of (a/8,) and (8/8,)
vs X, for the right-hand circularly polarized wave,
are illustrated in Figs. 2 for the case ¥ > 1 and in
Figs. 3 for the case ¥ < 1. It is observed that in
the case Y > 1 [see Figs. 2(a) and (b)], for a given
value of X, and 6 = 0 an increase in ¥ = (eB,/mw)
causes both « and 8 to decrease, which suggests that
an increase in |B,| reduces the attenuation and in-
creases the phase velocity of the wave. On the other
hand, in the case ¥ < 1 [see Figs. 3(a) and (b)] for
X > 0.4 an increase in Y causes both « and 8 to
increase so that an increase in [B,| leads to an in-
crease of attenuation and reduction of phase velocity
of the wave.

It is also of interest to note, by comparing Figs.

2(a) and 3(a), that when 8§ > 0 an increase in &
decreases « for the case ¥ > 1, whereas it increases
a for the case ¥ < 1. On the other hand, compari-
son of Figs. 2(b) and 3(b) suggests that the presence
of E, does modify the phase of the wave somewhat
for the case ¥ < 1, but it has no effect on the phase
for the case ¥ > 1.

V. CONCLUDING REMARKS

In the present discussion the electrostatic electric
field E, is assumed to be sufficiently weak and the
drift velocity of the plasma is much smaller than the
phase velocity of the wave under consideration.
Thus, it is assumed that the medium through which
the electromagnetic wave propagates is essentially
stationary rather than drifting.

It is shown that the effect of a weak static electric
field, directed along the direction of wave propaga-
tion, on the amplitude and phase of the right-hand
circularly polarized wave is most significant when
the wave frequency is in the vicinity of the electron
cyclotron frequency, e.g., for cases ¥ = 1.1 or 0.9.

A constant collision frequency model has been
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used in the present discussion. For the system param-
eters chosen for illustration this assumption is
reasonable. The effect of a velocity-dependent
collision frequency on the Appleton—Hartree equa-
tion of magnetoionic theory has been discussed by
Shkarofsky.*

It should be pointed out that in the present dis-
cussion a Maxwellian plasma has been considered,
i.e., the time-independent distribution functions of
electron and positive ions are assumed to be a
Maxwellian. Furthermore, it is also assumed that the
time-varying distribution function of electron and
positive ions has a Maxwellian distribution in the
direction of wave propagation. It should be noted
that the latter assumption may not in general be

20 T, P, Shkarofsky, Proc. IRE 49, 1857 (1961).
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valid. The reasonableness of this assumption might
be tested by an experimental investigation which is
to be considered in the future. However, if this as-
sumption is not too unreasonable, then the result
of the present theory suggests that the introduction
of an electrostatic field in the direction of wave
propagation may reduce the attenuation of the
wave. It is of interest to note that with a proper
strength of E, it may also lead to an amplification
of the circularly polarized electromagnetic wave in a
warm collisional two-component magnetoplasma.
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