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Energy-Dependent Boltzmann Equation in the Fast Domain* 
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!his work. presents some aspects ~f the static energy-depe~dent Boltzmann equation in plane geometry 
USIng a contInuous-energy formulation. In a first part, solutIons are found for a class of synthetic sepa­
rable (b~t non.degen~rate) energy-transfer kernels. Such kernels are representative, for instance. of 
neutron melastlc sloWIng down. In a second part, the same problem is considered with the addition of a 
projection kernel (typical of neutron fission); it is shown that the solutions split into space-energy 
separable components and nonseparable "slowing-down transients." 

I. INTRODUCTION 

Little progress has been made in the solution of the 
energy-dependent Boltzmann equation, as opposed to 
the status of the one-speed transport equation, where 
Case's method of singular normal modes 1 has yielded 
considerable success. 

For a long time, energy-dependent investigations 
were specialized to finding exact solutions to the 
spatially dependent neutron slowing-down problem, 
with elastic scattering and without fission. 2- 7 

More recent work has been applied to the neutron 
thermalization domain: The energy-transfer operator 
has been approximated by a sum of degenerate 
(projection) kernels, which, in turn, allows the re­
duction of the initial equation to a set of coupled one­
speed transport equations.8- 15 Also, some work has 
been done on themultigroup formulation,16-18 but the 
discretization of the energy variable distorts the spec­
trum of the Boltzmann operator: This is of prime 
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importance in the study of the time-dependent 
evolution.19 

Works trying to extend Case's method to the most 
general energy-dependent equation are somewhat 
limited in scope. 20 (The completeness theorem involved 
relies upon the Fredholm alternative for the inversion 
of operator equations, which is correct only when the 
energy-transfer kernel, or some iterate, is compact21; 
it fails for unbounded and noncompact kernels such as 
are found in neutron slowing-down theory.) 

This work presents some aspects of the energy­
dependent, static Boltzmann equation, in plane 
geometry, with a continuous energy formulation. In 
a first part, solutions are found for a class of synthetic, 
separable, but not degenerate, energy-transfer kernels: 
Such kernels are representative, for instance, of neu­
tron inelastic slowing down. A new energy transforma­
tion is developed, which reduces the initial equation to 
a simple form, and an asymptotic evaluation of the 
Green's function is given. 

In a second part, the same problem is considered 
with the addition of a projection kernel (typical 
of neutron fission); it is shown that the solutions 
split into (1) space-energy separable components, 
representative of the neutron regeneration, and 
asymptotically dominant; and (2) nonseparable, 
"slowing-down transients" solution of the initial equa­
tion without the fission-projection kernel. This gener­
alizes the results of a previous work22 : In order to 
achieve completeness for the normal modes of the 
Boltzmann equation with fission and slowing down, 
one must introduce auxiliary modes which are solu­
tions of the ordinary slowing-down equation. 

18 Proceedings of the International Symposium on Pulsed Neutron 
Research (IAEA, Vienna, 1965). 

20 R. J. Bednarz and J. R. Mika, J. Math. Phys. 4, 1285 (1963). 
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n. THE BOLTZMANN EQUATIONl WITH 
A CLASS OF SYNTHETIC ENERGY­

TRANSFER KERNELS 

A. Introduction of a Synthetic Scattering Kernel 

Many extensive solutions have been proposed to 
the problem of spatial neutron slowing down with· 
elastic scattering.2-7.23.24 Yet, little attention has been 
paid to the fast domain, where inelastic scattering is 
overwhelming dominant, especially for heavy nuclei: 
Most calculation schemes use the multi group (discrete 
energy) formulation. Such a multigroup formulation 
distorts the spectrum of the Boltzmann operator. The 
necessity for a continuous energy formulation has been 
widely recognized in the neutron thermalization 
domain, where a rigorous study of the spectrum of the 
Boltzmann operator is fundamental for the inter­
pretation of the time-dependent evolution of the 
neutron field.19 This is also valid for the fast domain. 

With the assumption of plane symmetry, we are 
interested in the following slowing-down transport 
equation: 

01p 
I-' - (x, 1-', E) + 1p(x, 1-', E) ox 

= S [+OOf+1 KinCE' -+ E)1p(x, 1-", E') dE' dl-" 
2 JE -1 
+ ~f+1 1jJ{x, 1-", E) dl-" + Sex, 1-', E), 

2 -1 
(1) 

where 1p(x, 1-', E) is the angular neutron density, Ci is 
the mean number of secondaries emitted after an 
inelastic scattering collision times the probability of 
inelastic scattering, Ce is the mean number of second­
aries emitted after an elastic scattering collision times 
the probability of elastic scattering, x is the position 
variable measured in optical units, E is the neutron 
energy, I-' is the cosine of the angle between the neutron 
velocity vector and the x axis, and Sex, 1-', E) is the 
source term. The kernel Kin(E' -+ E) gives the proba­
bility that a neutron of energy E' will be slowed down 
to a unit energy interval about the energy E by in­
elastic collision. Inelastic scattering is assumed iso­
tropic in the laboratory system. 

Equation (1) contains two simplifying assumptions: 

compared to the inelastic energy degradation (which 
is valid for heavy nuclei). 

In no way does Eq. (1) assume constant cross 
sections throughout the whole energy range. Below the 
inelastic threshold energy Eo, the inelastic scattering 
term becomes a known isotropic source term; 

C f+1 lfXJ -2i dl-" Kin(E' -+ E)1p(x, 1-", E) dE', 
-1 Eo 

(2) 

and we are left with the solution of a classical spatial 
elastic slowing-down problem.2-7.23.24 Therefore, we 
are interested in solutions of Eq. (1) for energies 
greater than Eo. 

The exact shape of ~n(E' -+ E) is poorly known, 
and,as in thermalization theory, it is advantageous to 
introduce a synthetic kernel. The simplest approxima­
tion is to assume 

Kin(E' -+ E) = f(E')g(E) , for E' > E, 

= 0, for E' < E, (3) 

where fee) and gee) are a priori arbitrary functions. 
The synthetic kernel (3) was first introduced by 
Okrent et al.,25 in connection with Weisskopf's statis­
tical evaporation model. Recently, it was proposed as 
a synthetic kernel per se, by Cadilhac et al.,26 that is, 
a kernel adaptable to experimental data or more in­
volved nuclear theory. Such a kernel has, in fact, only 
one arbitrary function, namely gee); this stems from 
the requirement of the conservation of the total 
inelastic cross section: 

[E' [E' 
Jo Kin(E' -+ E) dE = feE') Jo geE) dE = 1. (4) 

Defining 

h(E) = 1If(E), (5) 
this yields 

d 
geE) = - h(E). 

dE 
(6) 

In Weisskopf's statistical evaporation model, geE) 
assumes the shape 25 

(a) The cross sections are supposed to be constant geE) = Ee-EfT, (7a) 
above the inelastic scattering threshold (first excited 
level ~30 keY for heavy fissionable nuclei); where T is the "nuclear temperature," and 

(b) Above the inelastic threshold, the energy trans- [E 
fer due to elastic scattering is considered as negligible h(E) = Jo E' exp (-E'IT) dE'. (7b) 

23 B. Davison, Neutron Transport Theory (Oxford University 
Press, London, 1957). 

•• M. M. R. Williams, The SlOWing-Down and Thermalization of 
Neutrons (Interscience Publishers, Inc., New York, 1966). 

•• S. Yiftah, D. Okrent, and P. Moldauer, Fast Reactor Cross­
Sections (Pergamon Press, Inc., New York, 1961), 

.6 M. Cadilhac and M. Pujol, J. Nucl. Energy 21, 58 (1967). 
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FIG.!' Typical shapes for (a) geE) and (b) h(E). 

Cadilhac's approach26 is more general; it consists in 
keeping geE) a priori arbitrary, and fitting it so that the 
approximate operator has the same action as the exact 
one on a particular reference energy spectrum. Mathe­
matically, we need only know that 

geE) -+ 0, for E -+ 0+ , 

E-+ +00, 
h(E) is bounded for E -+ + 00. 

The latter fact is not trivial, but holds for all suggested 
physical models (see Fig. 1). Similarly, one can assume 
that geE) is positive for VEE [0, + 00]. 

B. Reduction of the Boltzmann Equation Through 
a New Energy Transformation 

We consider Eq. (1) with a synthetic inelastic 
slowing-down kernel: 

a 
fl - tp(x, fl, E) + tp(x, fl, E) 

ax 

= ~ f+ldfl' g(E)f
oo 

tp(x, fl', E') dE' 
2 -1 E h(E') 

+ S. f+l tp(x, fl', E) dfl' + Sex, fl, E). (8) 
2 -1 

A classical method in elastic slowing-down problems 
consists of looking for energy eigenfunctions of the 
slowing-down operator (namely, exponentials of the 
lethargy variable) and making an expansion of 
the neutron density in this set of eigenfunctions (that 
is, a Fourier-Laplace transformation of the lethargy 
variable, or a Mellin transformation of the velocity 
variable).23 

In the present case, the inelastic slowing-down 
operator has no eigenfunctions; the following equa­
tion, 

).ep(E) = geE) [00 ep(E') dE' (9) 
JE h(E') , 

has no solutions [Volterra integral equation with a 
bounded kernel; h( 00) is finite, different from zero]. 

However, consider the adjoint to the inelastic 
slowing-down operator; the adjoint eigenfunction 
equation is 

ep+(E) = ~ [E g(E')ep+(E') dE' (10) 
h(E) Jo . 

Equation (10) admits the following solutions: 

ep+(E) = h(E»)'-I, V)', Re). ~ 1 (11) 

[keeping in mind that geE) = dh(E)/dE]. So, the ad­
joint operator (Volterra integral equation with an 
un~ounded kernel) admits the set of eigenfunctions 
{h(El-l}. Therefore, let us make the "scalar product" 
of Eq. (8) by h(E»).-I; multiply both sides of the trans­
port equation (8) by h(Ey-l and integrate over the 
whole energy range; defining 

ijJ(x, fl, ).) = loo tp(x, fl, E)h(E»)'-1 dE, 

one obtains 

o· 
fl ax ijJ(x, fl, ).) + ijJ(x, fl, ).) 

= ~ i:1ijJ
(X, fl', ).) dfl' + Sex, fl, ).) 

(12) 

+ ~ dfl' geE) h(E)l-l tp x, fl ; dE' dE. c 1+1 i oo i oo ( , E') 
2 -1 0 E h(E) 

(13) 

In the last (inelastic scattering) term of Eq. (13), 
change the order of integrations, use relations (l0) and 
(11), and obtain 

a 
fJ, ox ijJ(x, fl, ).) + ijJ(x, fl, ).) 

(14) 

So, if one defines the transformation.At by 

.Attp(x, fl, E) = f'tp(X, fl, E)h(E»).-l dE, (15) 

this transformation reduces the initial Boltzmann 
equation (8) to a pseudomonokinetic equation (14), 
where). is only a parameter appearing in the "multi­
plication coefficient" {ce + (cdA)}-which can take 
complex values, as opposed to the classical one-speed 
situation. 
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The solutions of "one-speed" equations like (14) are 
perfectly well known. l The only problem is to find an 
inversion formula to the transformation .At,. 

.At, is always defined, provided that Re A > 1 and 
that "P(x, fl' E) is itself integrable over the whole 
energy range. Now define 

'rex, fl' E) = "P(x, fl, E)Jg(E). (16) 

Then .At, becQmes 

ip(x, fl, A) = Loo'r(X, fl, E)g(E)h(E)A-l dE. (17) 

Define the following change of variables: 

v = h(E). (18) 

Normalize h(E) such that h( (0) == 1. Then Eq. (18) 
defines a one-to-one mapping of 

E E [0, 00] onto V E [0, 1]. 

The mapping is one-to-one since the Jacobian of the 
transformation (18) is always different from zero: 

dh 
- = gee) 
dE 

=;f: 0 for E E ]0, 00[. 

In terms of the new variable V, the transformation 
.A(, can be rewritten as 

ip(X, fl, A) = f'r(X, fl, V)V.<-l dV. (19) 

This is similar to a classical Mellin transform in terms of 
the new variable V with the exception that the inte­
gration range over V is restricted to [0, 1], instead of 
[0, + 00]. The inversion formula is well known27 : 

'rex, fl, V) = -. ip(x, fl' A)V-A dA, (20a) 
1 iC+iOO 

21Tl c-ioo 

the integration path being to the right of all singulari­
ties of ip(x, fl, A). Also, 

"P(x, fl, E) = ~ ip(x, fl, A)h(E)-'< dA. (20b) (E)5.
C
+

iOO 

21Tl c-ioo 

We recall that, from the normalization of h(E), 

T(x, fl, V) == 0, for V> 1. 

This yields the following nontrivial property of the 

27 A, Erdelyi, Ed., Table of Integral Transforms, Vol. I (McGraw­
Hill Book Co., New York, 1954). 
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FIG. 2. The Bromwich contour in the complex;' plane. 

transformation .At" which is shown in Appendix A: 

Theorem I: ip(x, fl' A) defined by Eq. (19) is uni­
formly bounded in A, V A such that Re A ~ 1. As a 
consequence, the inversion formula (20a) yields an 
identically null function if V > 1. 

If V ~ 1, the integration path of the inversion 
formula (20a) can be shifted along a Bromwich con­
tour defined in Fig. 2, the first singularity on the real 
axis being A = O. [This can be deduced from careful 
inspection of Eq. (14) and its well-known solutions.] 

c. Green's Function: Asymptotic Expressions 

Through the use of the transformation.At, defined in 
Eq. (15), the slowing-down transport equation (8) has 
been reduced to a "one-speed" equation (14). The 
latter equation can be solved for a wide range of 
boundary conditions (full-space, half-space problems), 
using classical methods such as singular normal modes 
expansions; for calculational details, we refer to the 
literature'! Then one uses formula (20) to invert the 
.At, transformation and obtain the neutron distribution. 
As an example, we quote the exact expression for the 
full-space isotropic Green's function solution of Eq. 
(8), with the following source term: 

Sex, fl, E) = is(E) . b(x). (2la) 

The angle-integrated Green's function G(lxl, E) is 

G(lxl,E) = gee! rC+iOO{Ie-IXI/ViW} S(A). h(E)-'< dA 
2m JC-iOO +VI N ;(A) 2 

+ -. - h(ErA dA -- dv, 
g(E)lc+ioo SO.) 11 e-Ixl/v 

2m c-ioo 2 0 N(v, A) 

(2ib) 
where {ViA)} are the roots of 

1 = (c + S) . V.(A) . tanh-1 _I_ 
e A' Vj(A) 

(21c) 
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with 

N(v, A) = v{ (1 - (Ce + ~)V tanh-
1 vf 

+ :2 (ce + ifv2
}, (21e) 

SeA) = .A(,S(E). (21f) 

In Eq. (21 b), the second term ofthe right-hand side 
corresponds to transport transients, and the first one is 
the (spatially) asymptotic component of the solution. 
The next problem is to find an asymptotic evaluation of 
the cumbersome contour integral in the complex 
A plane. At first sight, use of the saddle-point method 
seems to be appropriate for the evaluation of such an 
integral; this is especially true if one introduces an 
auxiliary "lethargy" variable u associated with the 
inelastic slowing down and defined by 

u = -log [h(E»). (22a) 

This is a one-to-one mapping of E E [0, + (0) onto 
U E [+ 00,0]. Then, one gets contour integrals very 
similar to those encountered in spatially-dependent 
elastic slowing-down problems,3-6.28 and classically 
evaluated by saddle-point methods. The position of 
the saddle-point ,1.0 is given by the following equa­
tion28 : 

d(l/vo)(A) I u 
dA A=),O = j;j , (22b) 

where vo(A) is the solution of Eq. (2Ic) with the largest 
absolute value. Unfortunately, the solution of the set 
of coupled implicit equations (2Ic) and (22b) is 
impracticable, unless one resorts to numerical tabu­
lation. 

Therefore, a mathematical method has been 
developed which yields an explicit asymptotic evalua­
tion of formula (2Ib) valid for large distances, and 
which is briefly outlined in the next paragraph. 

One can first simplify the Green's function through 
the following remark: Consider the full-space Green's 
function G(x, ft, E) solution of the (.A(,-transformed) 
equation 

a 
ft - C(x, ft, A) + G(x, ft, A) 

ax 

= !(ce + £1) i+1C
(X,ft" A) dft' + !S(A)b(x). (23a) 

2 ,t-1 

28 Ref. 24, p. 498ft'. 

Introduce the following associated equation, where the 
.A(, transform of the source is constant: 

a 
ft ax F(x, ft, A) + F(x, ft, A) 

= Hce + ~)L:1F(x,ft', A)dft' + b~). (23b) 

Then, in terms of the energy variable, one gets the 
following relation between G(x, ft, E), F(x, ft, E),and 
S(E)~ 

G(x,ft, E) = gee) r1{s/g}(~) . F(x,ft, w) dw, (24a) 
Jv w g(w) w 

where 

v: = h(E), 

w = hee'), (24b) 

and where {S/g}(V/w) is the value of the function 
S(E)/g(E) for E such that h(E) = V/w. Relation (24) 
is nothing but the "Faltung theorem" for the inverse 
Mellin transform,29 similar to the convolution theorem 
for Laplace and Fourier transforms. Such a theorem is 
immediately extended to the inverse .A(, transformation, 
which is closely related to Mellin transforms. In view 
of relation (24), it is sufficient to find an asymptotic 
evaluation of the energy Green's function F(x, ft, E) 
[Eq. (23b»). 

The crux of the method consists in considering the 
inelastic scattering term in Eq. (23b) as an auxiliary 
source term: 

a 
ft ax F(x, ft, A) + F(x, ft, J.) 

= C
e J+1 F(x, ft', J.) dft' 

2 -1 

+ ! {b(X) + Ci f+1 F(x, ft', A) dft/}. (25) 
2 2,1. -1 

Then one applies a spatial Fourier transformation to 
Eq. (25), and obtains a simple expression for the 
Fourier transform of F(x, ft, A) in terms of the well­
known solution of the one-speed Boltzmann equation 
associated to a multiplication' coefficient ce • At this 
stage, in contrast to the normal-modes approach, 
inverse .A(, transformation is immediate, and one is left 
with the asymptotic evaluation of F(x, ft, E) for large 
distances, knowing its x Fourier transform. Analytical 
details, being quite lengthy, are found in Appendix B, 
with the final asymptotic expression for the full-space, 
energy Green's-function solution of the inelastic 
slowing-down Boltzmann equation. 

21 Ref. 27, Vol. I, p. 308, relation 14. 
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m. ENERGY·DEPENDENT BOLTZMANN 
EQUATION WITH FISSION AND 

SLOWING·DOWN KERNELS 

The addition of a fission projection kernel to the 
transport equation is of prime importance when it 
comes to studying fast multiplying systems. Physically, 
the classical slowing-down problem of thermal reactor 
theory is changed to a situation with simultaneous 
neutron degradation and regeneration; this may allow 
self-sustaining modes. Mathematically, this implies 
that the sum of a fission and slowing-down operators is 
likely to have a discrete, regular eigenfunction, which 
is not true for the plain slowing-down kernel. 

Nevertheless, little work has been done up to now 
in studying simultaneous fission and slowing down in 
the transport equation. Diffusion approximations or 
multi group (discrete-energy) schemes have been the 
rule23-or the problem has been reduced to a plain 
slowing-down situation by assimilating the fission 
sources to a high-energy Dirac distribution.23 

We are interested in the following equation, where 
energy transfer occurs only through fission and in­
elastic scattering: 

a 
" - tp(x, ", E) + tp(x, ", E) ax 

c J+1 = ~ tp(x, ,,', E) d,,' 
2 -1 

~ J+1 d ' (E)J '" tp(x, Il', E') dE' 
+ 2 -1 "g E h(E') 

+ CF x(E) d,,' tp(x, ,,', E') dE' J
+l f'" 

2 -1 ° 
+ td(x - xo)S(E). (26) 

The notation is the same as in Eq. (1); X(E) is the 
fission spectrum, and CF is the mean number of second­
aries emitted after a fission collision times the 
probability of fission. In a previous work,22 we solved 
an identical problem with elastic slowing down. In this 
work, quite similar results will be found for Eq. (26). 
Define the global energy-transfer operator (') by 

(')ep(E) = cFx(E) LX) ep(E') dE' + ceep(E) 

+ C geE) roo c{>(E') dE' (27a) 
I JE h(E') 

Eigenfunctions of (') are such that 

(')ep.(E) = vepv(E). (27b) 

At this point, we note the conditions for a null integral. 

Lemma: The necessary and sufficient condition for a 
function epeE) E £1[0, 00] to have a null integral, 

50 CX) ep(E') dE' = 0, 

is that 

¢(l) == 0, 

where ¢().) is the .At, transform of epeE). [This stems 
from the set of IeciprocaJ formulas (IS) and (20b) for 
the .At, tIansform; ¢().) = s: ep(E)h(E»).-1 dE.] 

Coming back to Eq. (27b), its .At, transform is 

v¢v().) = (ce + ¥) ¢vC).) + cFX().)q;v(l). (28) 

Solutions of Eq. (28) belong to two categories: 

l. For solutions such that epv{l) :;I: 0, or 

L'" ep.(E) dE :;I: 0, 

there is a unique eigenvalue, 

(29a) 

to which corresponds a single regular eigenfunction of 
the operator (') : 

Je()') = cFX().) j[CF + CI( 1 -1) ] (29b) 

[keeping in mind that x(1) = S;' x(E) dE = I]. 
From Eq. (29), or from direct solution of Eq. (27b) 

(by reduction to a differential equation), one gets the 
following expression for Je(E): 

Je(E) = ~ X(E) + _C_I - g(E)h(E)-c;I(cF+CII 
CF + ci CF + Cj 

X f"'~ X(E') dE' (30) 
JE CF + Cj h(E')"F/(cF+c11 . 

The regular eigenfunction Je(E) of the energy-transfer 
operator in Eq. (26) corresponds to the asymptotic 
neutron energy spectrum. 

2. For solutions of Eq. (28) such that q;v(1) = ° or 
S: epv(E) dE = 0, then Eq. (28) reduces to 

1JQ;v().) = (ce + ¥) ¢v().), (31a) 

the solutions of which are singularSo: 

(Pv().) = d()' - ).0)' with ).0:;1: I, (31 b) 

(31c) 

30 L. Schwartz, TMorie des distributions (Hermann & Cie, Paris, 
1966). 
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These distributions correspond to the ordinary slowing­
down operator. 

The regular eigenfunction :Ie(E), Eq. (30), and the 
continuum of eigendistributions defined in Eq. (31) 
form a complete set in V[O, 00]; this is expressed by 
the following theorem. 

Theorem II: Vep(E) E V[O, 00] has the unique decom­
position 

epeE) = g . :Ie(E) + geE! rC

+
ioo 

A(J.)h(E)-i. dJ. 
27T1 )C-iOO 

with A(l) == O. 

Proof: Since S: Je(E) dE = 1, one must have 

g = Loo epeE) dE. 

Then, defining r(E), 

f(E) = epeE) - g. Je(E), 
one has 

ro.) = Looh(E)Hf(E) dE, (32d) 

r(t) = L'Xl feE) dE = O. (32e) 

Since the transport equation (26) is linear, its 
solution can be expressed as the one-speed solution 
due to g . Je(E) plus the solution due to a source r(E) 
of null integral. Call the former solution Je(E)' 
epE(X, /1,) and the latter eptAx, 1', E): 

'1j!(x, fl' E) = Je(E)epE(X, 1') + eptr(x, 1', E). (33) 

Explicitly, epE(X, fl) is the solution of 

o 
fl ox epE(X, fl) + epE(X, fl) 

= Ce + Ci + CFf+1 epE(X, 1") dfl' + ibex - xo) . g. 
2 -1 

(34) 
As to eptr(x, 1', E), 

LOO reB) dE = 0; o 
I' ox ept.(x, fl, E) + ept.(x, fl, E) 

and one must prove that reEl admits the representa-
tion 

feE) = geE! ("+iOOA(J.)h(Er). dJ.. 
27T1 )C-iOO 

The existence and uniqueness of such a representation 
is immediate, since reEl is ..At transformable: 

A(J.) = Loo f(E)h(E)"-l dE. 

Finally, from the lemma, 

A(l) == O. Q.E.D. 

Coming back to the transport equation (26), we see 
that if the source term were of the form 

See) = Je(E), 

then Eq. (26) would reduce to a one-speed equation, 
with a multiplication coefficient CF + Ce + cj , since 
the solution is separable into a function of space and 
angle times :Ie(E). 

For a general source term, the method consists in 
applying the expansion of theorem II to S(E): 

SeE) = g . Je(E) + feE), (32a) 
where 

g = LOO SeE) dE, (32b) 

feE) = geE! (c+ioor(A.)h(E)-i. dJ., 
27T1 )C-iOO 

(32c) 

= Cef+1eptr(X,I", E) dl" 
2 -1 

+ Sf+1dfllg(E)foo eptlX,fl', E') dE' 
2 -1 E heE') 

+ feE) o(x - xo). (35) 
2 

The crucial point is that eptr(x, fl' E) is the solution of a 
plain slowing-down equation without any fission term; 
since the integral of r(E) over the whole energy range 
is null, the same follows for eptr(x, fl' E). To prove it, 
take the ..At transform of Eq. (35): 

0-.1 
I' ox eptr(x, fl, J.) + 'f'tr(x, fl, J.) 

1( Ci)f+l J: ( '~) d' ro.)~· ) = - Ce + - 't'tr x, fl , I\. fl + - u{x - Xo • 
2 l ~ 2 

(36) 

Keeping in mind that r(I) == 0 and that the .A(,­

transformed Eq. (36) is homogeneous in l, it follows 
that 

€Ptr(X, fl, l) == 0 for A = 1. 

The success of the decomposition of Eq. (26) into 
the associated Eqs. (34) and (35) had to be expected, 
since one has in fact made an expansion of the source 
See) with the set of "eigenfunctions" of the global 
energy-transfer operator. 
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The solutions of the one-speed equation (34) are 
well known1 ; Eq. (35) is a plain slowing-down equa­
tion solved in Sec. II. Thus, the present problem is 
completely solved. 

The Milne problem and criticality problems involve 
only Eq. (34). But the full-space and half-space Green's 
functions involve both solutions of Eq. (34) (space­
energy separable modes) and Eq. (35) (nonseparable 
transients). The space-energy separable components 
are proportional to the characteristic energy-mode 
Je(E); they are representative of self-sustaining 
modes in the fast-multiplying medium, and are as­
ymptotically dominant. The nonseparable modes are 
"slowing down transient," solutions of an ordinary 
slowing-down equation; they are not classical one­
speed "singular transport transients" (they may decay 
more slowly than e-'a:', as shown in Appendix B on 
the asymptotic evaluation of the slowing-down Green's 
function), and they represent the adjustment of the 
neutron field from the initial source-energy distri­
bution to the final self-sustaining asymptotic spectrum. 
They are likely to delay the approach to equilibrium in 
integral experiments on fast systems (for instance, 
exponential experiments). The relative importance of 
space-energy separable modes and "slowing-down 
transients" is quite sensitive to the degree of criticality 
of the fast system. This, in turn, limits the validity of 
asymptotic transport theory for the energy-dependent 
Boltzmann equation, since its basic assumption is 
space-energy separability, which leads to the omission 
of all "slowing-down transients." 

Similar results have been found for the case of 
fission with anisotropic elastic slowing down.22 In 
conclusion, in order to achieve completeness for the 
normal-modes solution of the Boltzmann equation 
with fission and slowing down, one must consider 
fundamental separable modes reflecting the multi­
plicative process, together with "slowing-down tran­
sients," solution of an ordinary slowing-down equation. 
In a further paper, numerical results will be presented 
on the relative importance of asymptotic separable 
modes and "slowing-down transients," in the ap­
proach to equilibrium in exponential experiments on 
fast-neutron-multiplying media. 

APPENDIX A: PROOF OF THEOREM I 

This theorem (Sec. 1I.B) states that iji(x, fl, J.), the 
.At, transform of 1fJ(x, fl, E), is uniformly bounded in 

A, for VA such that Re A ;;;:: I. 

Proof: 

iji(x, fl, A.) = 50
1 

\f(x, fl, V) V!Re).)-1 viIm). dV (Al) 

[cf. Eqs. (16)-(19)]; 

l¥i(x.,u, 04)1 ~ L11'¥(x.,u. V)I·\V(Re}.)-l1 dV, (A2) 

but 

o ~ V ~ l} => \V(Re).l-11 ~ 1. (A3) 
(ReA) - 1 ~ 0 

So 

l¥i(x,fl, A)I ~ f''¥(X,fl. V)I dV ~ M, (A4) 

where 

M = L''''1fJ(X,fl, E)I dE. (Q.E.D.) (AS) 

APPENDIX B: ASYMPTOTIC EVALUATION OF 
THE FULL-SPACE GREEN'S FUNCTION 

Using the notation of Sec. II.C, the full-space, 
energy Green's function F(x, fl, E) obeys the following 
.At,-transformed equation: 

o 
fl - F(x, fl, A) + F(x, fl, A) 

ox 

J
+l 

= ~ F(x, ,u', A) dfl' 
2 -1 

+ ! {o(X) + S J+1 F(x,,u', A) d,u'}, (25) 
2 A -1 

where the inelastic scattering term is considered as an 
extraneous source. Define 

J
+1 

F(/xl, A) = -1 F(x, fl', A) dfl'· (Bl) 

Then call Ge(lxl) the Green's function corresponding 
to the one-speed transport equation with the "multi­
plication coefficient" ce (elastic scattering): 

o 'G ( ) + G ( ) Ce ~I+1G ( ') d' o(x) fl ;- e x, fl e x, fl = - e x,,u ,u + - . 
[IX 2 -1 2 

(B2) 
where 

(B3) 

The exact expression of Ge{lxl) is well known: 

1 dK 2 e-Ke 
''''' 1 11 e-,a:l/v Ge(lxl) = - _e __ + - dv, (B4a) 

2 dC e Ke 2 0 vN(ce , v) 

where Ke is the root of 

1 = ~ tanh-1 K K e· 
e 

(B4b) 
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and 

N(c e , ,,2) = {(1 - Ce" tanh-1 ,,)2 + 712;2C!}- (B4c) 

Now, apply a Fourier spatial transformation to 
Eq. (2S): 

(Bll) corresponds to the elastic scattering of the 
source. 

The next step is to find an asymptotic expression 
for the spatial behavior of FOxl, E). Apply an inverse 
Fourier transformation tel Eq. (BII): 

F(lxl, E) = Gllxl) . !5(u) + Ct • geE) 
(BSa) 271 

(BSb) 

We get 

(iKp + l)P(K,p, A) 

= ~ r+F(K, 1", A) dp' +! {I + ~ F(K2
, A)}. (BSc) 

2 )-1 2 A 

Since Eq. (BSc) is homogeneous in both variables K and 
A, this yields 

F(K2
, A) = GeCK2){1 + ~ F(K2

, A)} (B6) 

and 

FrK2 ),) = Ge(K2) (B7) 
\, 1 - (ci/),)Ge(K2) 

In Eq. (7), let us isolate the term Ge(K2): 

F(K2,),) = G
e
(K2) + cl{GeCK~}2 CBS) 

A - CtGe(K2) 
Recall that2S 

GeCK2) = dK! 1 + {I dv • 
dCe K; + K2 Jo (1 + K2v2)N(ce, ,,2) 

(B9) 

At this stage, the inverse .A(, transformation of Eq. 
(BS) is immediate; keeping in mind that 

.A(,{g(E)h(E)-P} = roo g(E)h(E»).-P-l dE = _1_ , 
Jo ), - p 

(BI0) 
we obtain 

F(K2, E) = GeCK2)!5(U) 
+ clg(E){Oe(K2Wh(E)-C10e(K\ (Bll) 

where ~(u) is a Dirac distribution, and u is the 
"lethargy" defined in Eq.(22a), 

u == -log [heEl]. (22 a) 

In relation (BIl), the exact inverse .A(, transforma­
tion has been successfully performed for the energy 
Green's function of the infinite medium; this expres­
sion is valid for all energies. The first term in Eq. 

X L+ooOO {Ge(K2WeUCiOe(KI)e+lKZ dK. (B12) 

In Eq. (BI2), the first term Ge(ixl) • b(u) is perfectly 
well known [Eq. (B4)]. One is left with the evaluation 
of 

R(lxl, E) = Ci

2

g(E) r+oo {Ge(K2)}2e{UCI0e(KIl+iKzl dK. 
71 J-oo 

(BB) 
Make the fOllowing change of variable: 

ik = K. (B14) 

Equation (BI3) becomes 

R(lxl,E) = Cig(~) f+iOO{GeCk2)}2e{UCiOe(l:')-kZ} dk, 
2m J-iOO 

(B1S) 
where [see Eq. (B4) and (B9)] 

Ge(k?) = dK: 1 + e d" 
dCe K; - k2 Jo (1 - k2,,2)N(ce , ,,2) 

= dK: 1 + Q(k2). (B16) 
dCe K: - k2 

Equation (BIS) involves a contour integral along the 
imaginary axis for a function of the complex variable 
k; the latter is analytic everywhere, except for 

(1) the cuts [+1, +00] and [-00, -1] on the real 
axis, since these are cuts for Q(k2) in Eq. (B16); 

(2) the essential singularities k == ±Ke on the real 
axis; this is due to the exponential blowup of the term 

exp uciGe(k
2
), 

which behaves as e1/HKe in the neighborhood of the 
essential singularities ±Ke. 

Let us now shift the integration contour in Eq. (BIS) 
from the imaginary axis to the real one. For positive 
values of x, the corresponding Bromwich contour lies 
in the positive half-plane, since for Re (k) > 0 and 
x > 0, one has I e-k '" I -+ O. Then, for x > 0, 

R(x, E) = Cig(~) {r + r {Ge(k2We{UCiOe(kt>-l:Z} dkl 
2m JD Jo J 

(B17) 
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+ix. 

c D 

-I +ke 
o 

-ke +1 

-ix 
FIG. 3. The Bromwich contour for R(x, E) - x> O-in the k 

complex plane. 

(see Fig. 3). It is clear that the contribution of the 
contour D along the cut [+ 1, + 00] involves modes 
all decaying faster than e-a:; these are transport-spatial 
transients. All modes decaying more slowly than 
e-1a:1 are yielded by the contour integral C around the 
essential singularity + Ke; this is indeed the spatial 
asymptotic component one is looking for. 

So, define 

Ras(x, E) = Ci2g(~) 1. {G ik2We{UCiOeCk21-ka:) dk. (BI8) 
m X 

From Eq. (B16), 

is 

{Ge(k2W 
= (dK!)2 1 + dK!. 2Q(k2) {O(k2)}2. 

dc (K2 - k2)2 dc K2 _ k2 + e e e e 

(BI9) 

O(K2) is an analytic function on the contour C and 
within the domain surrounded by C. Using the three 
components of {Ge(k2)}2 in Eq. (B19), we can split 
Ras{x, E) into three parts: 

Raix, E) = R~~{x, E) + R~2~(X, E) + R~3~(X, E). 

Since the procedure of next calculations is quite 
similar for these three parts, we outline them for 
R~I(x, E): 

R ClI(x E) = clg(E) 
as' 27Ti 

this can be rewritten as 

RCll(x E) = cig(E) 1. L(k, u} 
as. 27Ti X (Ke _ k)2 

X exp --'--- - kx , 
{ 

UCj dK~ 1 } dk 
2Ke dCe Ke - k 

(B21) 

where we have defined 

L(k. u) = {dK!}2 1 
dCe (Ke + k)2 

x exp [(uci/2Ke)(dK!/dce) 

x (lIKe + k) + uc i O(k2»). (B22) 

L(k, u) is an analytic function of k on the contour C 
and within the domain surrounded by C. This analyti­
city of L(k, u) enables us to replace it by L(Ke • u) in 
the contour integral (B21), and obtain an asymptotic 
evaluation of R(~~lx, E) in the same way, valid for 
large x: 

L(K u) = _1_ {dK!}2 eUC!{(1{4Kel)(dKel{dcel+Q(Kezl} • 

e. 4K! dCe 

(B23) 

R~;(x, E) '"" Ci2g(~) L(Ke, u) 
7Tl 

f, 
e{UCi'CdKe2/dcel'1/CKe-kl-ko:l 

x 2 dk. (B24) 
C (Ke - k) 

The idea is then to reduce the contour integral in 
(B24) to a classical inverse Laplace transform in x; for 
this purpose, put 

Ke - k = p, 

UCi dK! ot=_·-
2Ke dCe 

Then Eq. (B24) reduces to 

(B25) 

(B26) 

R(I)(x E) '"" e-Kea: • L(K2 u)· cjg(E) f ert
/

p 

ePa: dp 
as , e' 2' 2 m - p 

(B27) 

(with counterclockwise integration, this time). 
In Eq. (B27), one recognizes the following inverse 

Laplace transform: 

1 ~ ert
/

p 1 iC+iOO ert
/

p 

-. -2 ePa: dp = -. -2 ePa: dp. (B28) 
2m C p 2m c-ioo p 

But, from Bateman's Table of Integral Transforms,31 

-. p-V-lert/PePO: dp = ot-V,2x+v/2Iv[2(otx}Z], 1 iC+iOO ~ 

27Tl c-ioo 

(B29) 

where Iv is the hyperbolic Bessel function of order 
V.27 One then obtains the final expression for R~~I(x, E), 
for large x > 0: 

R~~(x, E) '"" cjg(E)L(K!, u)· e-Kea:(xlot)!Il[2(otx)~1 
(B30) 

31 Ref. 27, Vol. I, p. 245, relation 35. 
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A similar procedure can be applied to R~;)(x, E) and 
R~~)Cx, E); one uses the following set of inverse 
Laplace transforms: 

(B31a) 

So, omitting the detailed calculations, one can 
write the final expression for FasC/xl, E), the spatially 
asymptotic part of the infinite-space, energy Green's 
function, as 

Fas(lx/, E) 

1 dK
2 

e-
Ke ''''' = - _0 • __ • o(u) + cig(E) 

2 dCe Ke 

X exp {uci[(1/4K!)(dK!/dce) + O(K!)J}e-Ke ''''' 

x {!(l. dK:)2(~)! I 1[2( IX I x /)!] 
4 Ke dCe a 

1 dK 2 

+ _ . _e. O(K!)Io[2(alxl)!] 
Ke dCe 

! 
+ (O(K;»2 C:J I1[2(alx/)!]}. (B32) 

Q(K2) is defined in Eq. (BI6), Ke in Eq. (B4), a Cwhich 
is a function of u) in Eq. CB26). The expression (B32) 
holds for intermediate and large distances; numerical 
calculations have shown it to be quite accurate at 
distances beyond 2-3 mean free paths, in typical fast 
systems. It is readily seen that Fas(/xl, E) is split into 
two parts: one which decays as e-Ke''''1 and corresponds 
to plain elastic scattering of the source term; the 
second one, Ras(ixl, E), which includes an inelastic 
scattering effects. Recalling that 

loCO) = 1, hCO) = 0, 

and that hyperbolic Bessel functions are monotonically 
increasing, we see that Ras{/xl, E) decays more slowly 

than exp C - Ke Ixl). More precisely, making an asymp­
totic expansion of the hyperbolic Bessel functions,21 

we obtain the following expression for Ras(/xl, E): 

Ras(lxl, E),,,,,-+oo 
""' cig(E)eUCI{(1/~Ke 2) (dKe 2/dce )+fI(Ke 2») 

X 1/C41T)!(alxl)te-Ke '''''+2(<% ,,,,p! 

X {!(l. dK~)2. (~)! + 1- dK; Q(K;) 
4 Ke dCe a Ke dCe 

+ {Q(K:WC:I)!}' (B34) 

In Eq. (B34), the leading term is 

exp [-Ke Ixl + 2(1X Ixl)!]. (B35) 

Since a is linearly increasing with the "lethargy" 
U [see Eq. (B26)], FasClxl, E) will decay with space 
more slowly for low energies than for high energies. 
This has been verified by numerical calculations, 
which agrees also with the measurements of apparent 
relaxation lengths in the natural uranium exponential 
experiment32

; in this case, one has nearly a pure 
slowing-down situation, and apparent relaxation 
lengths for high-energy neutrons (~1.0 MeV) are 
systematically smaller than for low-energy neutrons 
(~O.5 MeV). 
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