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classes of photons having equal intensity and their
combined effect G;, showing the resulting 2 maxima
required for resolution, are plotted in Fig. 3. Also
plotted are the two limiting extremes by which the
relative intensity of the v; class may vary and still
show one peak conductance per class. As can be seen,
the intensity of v; in this example can range from 0.1
to 4 times the equal-intensity case.

CONCLUSIONS

It has been shown that by specifying the thickness
of each receiver in an array of photoconductors, the
magnitude of the photocurrent through each receiver
can be regulated. General equations relating receiver
conductance and the absorption coeflicient associated
with the radiation have been derived, together with
equations governing resolution.

The specific case analyzed, in which receiver thick-
nesses increase by an arithmetic progression, indicates
that a maximum current will occur uniquely in one of
the inner receivers as a function of the energy of
the incident photons. If the photon energies are not

too heterogeneous, it is possible to resolve the photons
into an energy spectrum.

Though it is beyond the purpose of this paper, it
can be pointed out that interesting differences in
receiver conductances exist in response to photon
influxes when receiver thicknesses are made to vary in
manners other than that shown in this paper. Constant
thickness receivers exhibit conductances which fall
off exponentially at a rate associated with the incident
photon energy, thus indicating in one display the
fall-off of photon intensity as depth penetrated. If the
receivers are arranged so that each shows identical
conductance to one class of photons, then other classes
indicate their presence by the nonidentical conductances
that occur. Interesting response differences to hetero-
geneous photon mixtures result when thicknesses are
made to vary by a prescribed d factor, and an occasional
receiver having an odd thickness is inserted between
the members of the regular array. In general, it is
possible, in this manner to enhance the resolution
between two known photon classes, or to make the
resulting conductance curves assume required shapes.
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The field configuration near the conductors of a helical wave guide is obtained from the solution of the
spatial-wave equation for a developed helix. This solution is first obtained for the case of tape conductors
and then adapted to elliptical (including circular) conductors by conformal transformation. By comparing
this solution with that of a developed-sheath helix, the impedance, attenuation, and other parameters of
a wire helix are deduced approximately. These are expressed as the product of the corresponding sheath-
helix parameter times a proper correction factor depending on frequency, conductor size, and shape. The
analysis is extended to the multifilar helix. The results of this analysis provide a means of calculating the
attenuation of wire helices and of choosing optithum wire configurations in the design of helical wave guides.

INTRODUCTION

HE extensive use of helix slow-wave structures

in traveling-wave tubes has prompted numerous
investigations of the properties of helical guides.
However, the only helical configuration for which a
rigorous solution has been obtained to date is the sheath-
helix model.! Helices of thin tapes have been studied by
Sensiper,? using approximate boundary conditions.

* This work was conducted by Project Michigan under Depart-
ment of the Army Contact DA-36-039 sc-52654, administered
by the U. S. Army Signal Corps, operating under a tri-service
charter.

1], R. Pierce, Traveling-Wave Tubes (D. Van Nostrand
Company, Inc., New York, 1950}, p. 229. . .

S, Sensiper, “Electromagnetic wave propagation on helical
conductors,” Report No. 194, Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Mass-
achusetts (May, 1954).

Sensiper’s results, so far as dispersion characteristics
are concerned, agree well with the results of experiment.?
But his calculations of the attenuation of helical
conductors are less defensible. Hosono* also attempted
to find the attenuation of wire helices, approximating
the current as a helical line element. Therefore, his
results are valid only for small wires.

In this paper an analysis is presented suitable for
determining the effects of wire size and shape on the
attenuation and harmonic fields of monofilar and
multifilar helices. The analysis is based on the devel-
oped helix model,’ to simplify the mathematical tasks
involved. A rigorous solution is presented for developed

3D. A. Watkins and A. E. Siegman, J. Appl. Phys. 24, 917
(1953).

4 T. Hosono, J. Elec. Commun. Eng. Japan 38, 974 (1955).
& See reference 1, p. 31.
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monofilar and multifilar thin tape conductors. A general
procedure is described for extending this solution,
by conformal mapping, to obtain a rigorous solution
for a wide variety of developed thick conductors.
This procedure is specifically applied to find the field
configuration when wires of elliptical (including
circular) cross section are used. The attenuation,
coupling impedance, and other parameters of elliptical-
wire helices are then calculated and are described in
some detail. The results presented are given with
reference to the properties of a true-sheath helix of
the same propagation constant.

The errors involved in basing the theory on the
developed model arise mainly from: (a) neglecting
dispersion, and (b) neglecting the unequal distribution
of current on the parts of wire inside and outside of
the mean diameter. The net error should be negligible if :

(1) the circumference of the helix is several times the
guide wavelength, and

(2) the thickness of the wire is small compared to
the radius of the helix.

Subject to these restrictions, the results of the present
work should offer a reasonable criterion for the selection
of shape and size of conductors, and a means of calculat-
ing the power loss with reasonable accuracy.

WAVE EQUATION FOR A DEVELOPED HELIX

The helix to be investigated is assumed to have the
following dimensions (monofilar, for the moment):

mean radius: e,
pitch: 9, and
pitch angle:  @=tan™'(p/2xa).

By cutting an axial slit on the circumference of
the helix and flattening the wires into straight conduc-
tors, a system of parallel conductors is obtained as
shown in section ABCD of Fig. 1. The periodicity of

/
///

the wave function along the circumference of a helix
permits the extension of the conductors to infinity at
both ends. Thus, the problem of a helical wave guide is
reduced approximately to that of infinite wires support-
ing a periodic field. With a right-hand coordinate
system zx, v, 2 as shown in Fig. 1, the cross section of
the conductors in the x-y plane is given by Fig. 2.
(For conductors in other than tape form, x’ and '
are used.) For convenience, the coordinates are normal-
ized with respect to the period p cose/2r.

At a fixed frequency defined by a propagation
constant Bo=w/c=2x/v, the field around the infinite
system of straight parallel conductors may be generated
by the spatial-wave function®8

II=1II,(x,y) exp(— jBez). (1)
The electric and magnetic fields generated by I7 are
E,=0,
. 21!' 6IIl .
E.=— jBq — exp(— jBo2),
p cose ox
and
. 27!' 6III .
E,=— jBo———— exp(— jBe) ; )
p cose dy
and
H,=0,
. 21!' 3111 .
H.= joe———— exp(— jBe3),
pcose oy
. 2x Ol ]
H,=— jwe —— exp(— 7643). 3)
P cose dx

¢ Eq. (1) is valid if the conductors are of zero resistivity. It will
be assumed conductors of a small finite resistivity support
identical first-order fields.

7J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc., New York, 1941), p. 351.

8 A. Sommerfield, Elecirodynamics (Academic Press, Inc.,
New York, 1952), p. 159.
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(a)

'y
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F1c. 2. Cross section perpendicular to the wires of a developed helix showing one unit cell and its periodic extension.
{a) Tape of width A(# cosg/x). (b) Elliptic wire of dimension #{p cosp/r}-v(p cosp/r).

The net power flow will be in the direction along the
conductors.

Since II satisfies the wave equation, II; must
satisfy the Laplace equation

*RIl, &FUI,
9t 9y

which permits conformal transformation in the x-y
plane.

The solution I, in Eq. (4) must also satisfy the
periodicity condition inherited from the development
from a helix: the phase of the fields around adjacent
conductors must differ by a constant amount 2rs
in the x direction. Here s is related to the propagation
constant 8, or to the number of turns per guided
wavelength N, by?

s=cos’¢/N, (5a)
=S4 sing cose, {(5b)
=foa COSQ. (Sc)

If s#integer, any solution of Eq. (4) satisfying
the above requirement may be represented as:

neter Ay

II=
! ngw [n+s]

where the positive sign is used for ¥ <0, and the negative

exp[— j(n+s)xk|ntsly], (6)

¢ Equation (5¢) is exactly satisfied in a developed helix, but
only approximately in a real helix.

1 The condition s=an integer is excluded, since it leads to
lateral radiation. In an end-fed true helix, this condition implies
that no propagating mode can be supported.

sign for y>0. The 4,’s are constants determined by
the boundary conditions on the surface of the con-
ductors. For operation of a helix as a slow-wave
structure, 0<s<1, and Eq. (6) may be written as
{y>0):

v B,
=3 TGXPE‘*i("'*‘S)(x—iy)]

n=d 9+ 3

@ Oy

+ 2

nel) ¥

exp[j(n+1—s5)(x+79] ()

-3

For y<0, z= jy should be replaced by their complex
conjugates. For s>1, s should be replaced by s—[N,]
where [V, ] is the greatest integer less than s.

TAPE HELIX®:

For a tape helix, the boundary conditions determining
B, and C, are noted from Fig. 2(a). At y=0, E, must
vanish on the tape and E, must be continuous at the
gap. From Egs. (2) and (7) these conditions can be
written as,

¥ B.exp(—jnx)~ ¥ Coexpli(nt1)x]=0
nd) Rl

(A>|x|>0), (8a)

11 The solution for tape conductors, expressed in integral form,
has been obtained independently by P. N. Butcher. See P. N.
Butcher, “On the coupling impedance of tape structures,”
Memo No. 1253, Radar Research Establishment, Malvern,
England (1956).
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and

> Buexp(— jma)+ z_o Co explj(n+1)2]=0
(> [xl>A). (80)

The solution for B, and C, from Eq. (8) is not
obvious. The usual technique of approximate solution
would lead to an attempt at solution of an infinite set
of simultaneous equations very difficult to handle.
Fortunately, an exact and convenient solution can
be obtained by inspection, by use of Legendre poly-
nomials. The following identity is known to exist??;

i P, (cosA) cos(n-+31)8
N (cos@—cosA)~}/VZ (A>|6] >0)

0 (7r> lal >A)’
SO

i P,(cosA) exp(— jnf)
+ i P,(cosA) exp[ j{n+1)0]
0 (x> 6] >4)

)lm(é) @a>lo)>0). %

Similarly, if, A is replaced by #— A and 8 is replaced by
=+ (v—0) in Eq. (9),

cosf— cosA

f P,(cosA) exp(— jnb)
- f: P.(cosd) exp[ j(n+1)8]

0 (A>6>0)

4 _j((_cos_Ai—(;oS)}exp(jg) (#>0>4)
= (10b)

. 2 s
(cosA—co ¢ 2
() (%)
L (=A>0>—m).

Comparing Eq. (8) with Eq. (10) shows the former
satisfied by

E p cose
Q=EF(——P

ﬂo 2r

)P,. (cosd), (11)

B A, Edelyi and others, Higher Transcendental Functions
{McGraw-Hill Book Company, Inc., 1953), Vol. I, p. 166.

where E is a constant, the amplitude of the “funda-
mental” electric field. For y>0, the exact solution is

E p cose ) o P,(cosA)
II=—— exp(—jfw){ > ————
Bo 2x n=d  ft-s
. . © P,(cosA)
Xexp[—j(nts)(x— ) ]+ X ———
n=0 p+1—s

><exp[j(n+1—s)(x+jy)1}. (12)

The fields around a tape in the cell (2¢+1)w>=x
> (2¢—1)x differ only by a factor exp(— j2xs-¢) from
those in w>x> —m, as required. From Eq. (12), the
power, circuit voltage, current density, and wire
current can be calculated easily.

The power flowing axially along the helix, which
equals the power flowing along the strip ABCD in
Fig. 1, is expressed by:

1 i o
=—(f) (b cosg)? 55, P (cosd)
x B =)

1 1
— ) (13)
n+s nts—1

or, in closed form,

1 ] 1
W) B cospp——P_(cost)P(eost), (19
2 ] sinsw

where A'=7— A1

A “circuit voltage,” independent of the path of
integration, is easily fround from the endpoint values
of II, or, alternatively, from

p cose p*
Zm0 ™= f Ey(y,0)dy,
21!" 0
__pcose . ©
=—~jE exp(—jBoz) . Pa(cosd)
2r n=0

(15)

1 1
Lyt
nts nt+l1—s

P co

S
——P_,(cosA’).
sinsz

.E -
==75 exp(— jBo3)

13 See reference 12, p. 167.

U A tabulation of Legendre functions of fractional order
P_,(cos), for 0°<0<x/2 only, is available in “Tables des
Fonctions de Legendré Associtées,” published by Service de
Documentation Interministerielle, de Centre National D’Etudes
des Telecommunications, Paris (1952). Values of P_,(cosd)
for #/2<6<w as needed in the numerical calculations of this
paper were computed by Mr. J. Riordan of the Eugineering
Research Institute, University of Michigan, Ann Arbor, Michigan.
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The current flows in the 2 direction, and the current
density on the surface (whose center is at x=0) is,

e\} 2 }
7=-38(°) exp(— o) (———)
1 cosx—cosA

Xexp[—j(s—H=] (|21 <a). (16)
The total current is obtained by integrating J over
both sides,
€

$
I= —j2E( ) exp(— jB2) (p cosp) P_,(coshr). (17)

u

The transverse or circuit impedance is therefore,

l(u)* 1 P_,(cosa’)

==

(18)
4

¢/ sinsr P_,(cosA)

The current density at the edges of the tapes is
infinitely large. Since the square of the current density
is mot integrable over the tape, neither this nor
any tepe model is satisfactory for investigating the
loss of helical structures. A means for extending the
above analysis to wires of finite thickness is seen to
be necessary.

SOLUTION FOR WIDE HELICES BY
CONFORMAL MAPPING

Solution 17, may be adapted to other wire configura-
tions by conformal transformation. In Fig. 2(a) and
2(b), for wire cross sections symmetrical with the
x’ axis, a conformal transformation that maps the
cell AszCzDzEzeGz in x'-y’ plane onto A1B1C1D1E1
F\G, in x-y plane provides the correct field behavior
for the developed-wire helix., Representing this trans-
formation by:

£=&(n), (19)
where
t=2x+7jy,
and
n=x'+3y,

then Eq. (12), expressed in 5 and its complex conjugate
n*, is the solution for the developed-wire helix, satisfying
all the boundary conditions.

Although the power W, voltage V, current I, and
hence transverse impedance K, are invariant through
such a transformation, the distribution of fields is
changed. To find the actual field configuration, it is
necessary to express Eq. (12) in the form,

E pcose
II=—— exp(— jBoz)
ﬂo 2r
® b, _
X{ X —— exp[~ j(s+n)n*]
n=0 45 .
oo Cn
+ X exp[—j(n+1-5)q]}. (20)
n=0 1 -5

Implicitly from Eq. (19),
exp(— 7£*) = ao exp(— jn*)

X[+ 3 enexp(—jmr™], (1)
and
exp(j) =as* exp(inli+ 2 an* exp(m)], (2)

where the ¢,’s are determined by the size and shape
of the helix wire. Introducing these equations into
Eq. (12) yields,

bo=Py(cosA)ay?,
b1=P1(cosA)agt+*+ Po(cosA) (14 5)ao'ay,
ba=P,(cosA)aet*+ P1(cosA) (2+s)asta;

s—1
+ Po(cosA) (2+s)ao‘[a2+—2——af],

(23)
co=Py(cosA)a* ),

¢1= P1(cosA)ag* @+ Py (cosA) (2—s)ag*Par*,

c2= Py(cosA)ag*@ 4 Py (cosA) (3—5)ag*@a*
s
+ Py(cosA) (3~—s)ag*t—* [az* - -2-a1*°"], etc.

The coefficients &o, b1, b, etc., are the relative
amplitudes of the fundamental and space-harmonic
field components with positive phase velocity (forward
waves) along the axis of the developed helix, and
Co, €1, C3 are the relative amplitudes of the components
with negative phase velocity (backward waves). In
tape helices, each harmonic field contributes to the
total power independently. However, in thick-wire
helices the harmonic fields interact in contributing
to the total power. Therefore, the term ‘harmonic
power” is less meaningful when applied to wire helices.

In the transformation of Eq. (19), a scale factor
indicating the length of arc in the «’-y’ plane trans-
formed from an arc of unit-length in the x-y plane is
defined by

h(x,y)=|dn/dE]. (24)

Using Eqs. (24) and (16), the current density on
the surface of a wire conductor may be expressed as a
function of x:

e\} 2 1
J=— j(—) E exp(— jBoz) (—————)
i COSx— COSA

exp[ — j(s—$)x]

h(x,0) @)
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Then, the total effective value of |J|* may be
integrated around the surface of the conductor:

Zl]e(f|2=%f | J |2h(2,0)dx,

Qver the periphery
of a conductor

(26)
2¢
=——Ep coseL,
Tu
where
a dx
L= f . @)
o h(x,0){cosx—cosA)

Thus, if Rois the resistance of the wire per unit-linear
length per unit-surface width,® then the loss per
unit-length of the helix wire is,

W i/Length=Roy_ | Jest|2 (28)

If the transformation given by Eq. (19) is deter-
minable, the properties of a developed-wire helix
can be derived from the tape solution. The pertinent
parameters of the transformation are (a) the value of
4, (b) the values aq, a1, @2, etc., and (c) the function
h(x,0).

TRANSFORMATION FOR ELLIPTIC WIRES

Although an exact transformation for circular wire
cross sections has been derived by Love!® in connection
with electrostatic problems, his method is too com-
plicated to apply to the present problem. An approxi-
mate transformation suggested by Richmond is used
to map the nearly elliptical, oval-shaped boundaries
into straight lines," since, if the dimension of wire is
less than 0.7 of the pitch, the oval shape is within 10
percent of the radius vector of an ellipse. Then Eq. (19)
takes the form,

cosé+sin?zA
n=jM cosh‘l(———————) +(1-M)¢, (29)
cos*
where the multi-valued function cosh™z is restricted by
Re[cosh™2]>0, (30a)
and
— 7 <Im[coshz] <. (30b)

The values M and A are determined from the dimen-
sions of the elliptic wire. If the normalized dimensions
are represented by u and v, then:

u=(1—M)A, (312)

and

v=2M cosh™(seciA). (31b)

16 Neglecting the surface conditions, Ry may be expressed in
terms of resistivity p, angular frequency w, and permeability u:
Ro= (pwp/2)}

A E. H Love, Quart. J. Math., Oxford Series 9, 246 (1938).
(1;72% W. Richmond, Proc. London Math. Soc. Ser. 2, 22, 389
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F16. 3. Curves for reducing an elliptic wire to the equivalent tape.

Solving Eq. (31) for the values of M and A produces
values for # and ». In Fig. 3, loci of constant M and A
are plotted in the #-v plane. The straight line u=v in
Fig. 3 gives the value of M and A for essentially round
wires.

From Eq. (29), with some algebraic manipulation,
one obtains

1—cos¢
—=(1— M):l:]M( ) . (32)
cosf— cosA
Therefore,
M—(1—M)? cosA— (2M—1) cosx*
h(x,0) =[ ] . (33
cosx— cosA

The coefficients @, @1, etc. can be obtained by
expressing Eq. (29) in series form of Eq. (21), yielding:

1 2M
()"
cos3A

a:=2Ma, sin}A,

(39

as=M sin?3A(6M sin?3A— 3 sin?3A+2)aqk

Substituting Eq. (33) into Eq. (27) yields the value
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dx

x (cosz— cosA) [ M2~ (1—M)2 cosA(2M ~1) cosx]*.
(35)

This integration can be expressed in terms of complete
elliptic integrals of the first kind, F[(x/2), k]. The
result is:

cosiA
(a) if M>—,
M sinjA
1 T
S A
sin}
where :
1
k1=1‘—l[M2 —(1—M)?cos?3A],
and .
CcoszA
(b) if M<—"
1+cosiA
L ! F (T k ) (36b)
N B (1— M) sin}A cosiA 2 ’
where

[(1—M)? costA— M?]
(1—M) coska

With these expressions for L in Egs. (26) and (28),
the attenuation of developed-wire helices can be
calculated.

DEVELOPED VS TRUE HELIX

The properties and parameters of the true helix
differ somewhat from those of the developed model.
For example, (K;)a.w. for the developed wire (d.w.)
model presumably will differ slightly from (K)a.w.
for a true, undeveloped wire (t.w.) helix. The extent
of such error can be estimated from the comparable
error between (K;)a... and (K)s. for a developed
sheath (d.s.) and a true sheath (t.s.) helix. Furthermore,
assuming that the process of development affects both
wire or tape and sheath helices similarly, then the
ratios (Kt)d.w./(Kt)t.w. and (Kt)d.s./(Kt)t.s. should be
equal, and

(Kt)d.w.

) EDn =Rl

Thus, if the developed-wire results are normalized in
terms of the developed-sheath value, then each property
of a wire helix can be obtained by determining the
true-sheath value from existing theory, then multiply-
ing this value by the normalizing ratio R.!8

18 Reference 1, p. 39.

The solution of a developed sheath helix is simply
the first term of Eq. (12). With a subscript (0) to
indicate developed sheath values,

e\ 1
Wo=lE2(—) (b cosey—, (37)
m s
e\t
®an=1(2) =, (38)
u/ sw
and
5| Jet| #=—E2p cose. (39)

1l

Comparing these equations with the corresponding
values for the developed-wire helix yields

(a) characteristic impedance
K= (K.)oR,, (40)
where
st P_g(cosA’)
= (41)
sinsx P_,(cosA)
(b) attenuation
a= (a)oR., (42)
where
2 L
R.== ;W)
sw
—P_,(cosA) P_,(cosA’)
sinsx
(c) beam-coupling impedance
B
K=——=K 0Rk) (44)
280W

where, for zeroth mode operation and if the interaction
field E is taken at the center of the helix,

1 \2¥ 1
()
cos?iA sx ’

P_,(cosA) P_,(cosA”)
sinsx

(45)

or, if the maximum available field at the edge of the
conductors is used,

1 \M exp(—2sv)
Rk(a) = ( )
cos®3A ST

P_,(cosA)P_,(cosA")
sinsw

(46)

For any other mode of operation, it is evident from
Eqs. (20) and (22) that Ry, should be multiplied by
the factor |b.s/bo(n+s5)|? for any forward wave, and
by |¢ns/bo(n—1+5)|? for any backward wave opera-
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tion.® Similar multipliers for Ry can be obtained
easily.

The normalizing ratios so obtained are functions of
three variables: s, A, and M. The variables M and A
are wire size and shape parameters. The variable s is
essentially the frequency parameter. In the developed
model, s is linearly proportional to frequency (devoid
of phase dispersion). For a true helix, a reasonable
value of s should be calculated from the value of 8 for
the sheath helix of the same pitch and pitch angle.

MULTIFILAR HELICES

The generating section of a developed wuniform,
m-filar helix can be considered as a cascade of m
identical sections of some monofilar helix; so the
parameters can be directly evaluated by monofilar
analysis. As shown in Fig. 4, the one-to-one corre-
spondence of the dimensions of an m-filar developed
helix with that of its generating monofilar section
leads to the following relations:

[m-filar developed helix] [m-filar generating section ]

Pitch angle @ @
Pitch ? p/m
Normalized

wire size u,v mu,my
Constants for

transformation

to equivalent

tape M,A M. A
Frequency

parameter s Sm

where M,A are obtained from Eq. (31) using % and v,
M., A, are similarly obtained for mu and mv, and s,, is
obtained from

[eiom]m=¢i, 47
or
s s+1 s+2 st+m—1
Sm =, y y 0 . (48)
m m m m

In other words, in an m-filar helix there are m-independ-
ent modes corresponding to the m values of s,. Using
the values of s, and the reduced pitch in Eq. (12)

1l

F16. 4. Developed m-filar helix and its generating monofilar section.

DEVELOPED
w-FILAR
HELIX

GENENATING
MONC FILAR
SECTION

1 In particular, the backward wave corresponding to ¢ is
most widely used. See D. A. Watkins and E. A. Ash, J. Appl.
Phys. 25, 782 (1954).
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one obtains the well-known properties of a multifilar
helix:

(a) the space harmonics are spread m-time apart as
compared to a single-filar helix, and

(b) only the symmetric mode, sn=s/m, produces
the fundamental field of a single-filar helix.

For the symmetric mode, the power propagated
along a developed m-filar helix is:

1 7e\} 1
Wm=——(—) Ed(p cose)*
2m\u ST
sin—
m
X P_yym(c08Am) P_yym(cosAn’), (49)
and the loss per unit-length of the helix wire:
2€¢1
(Wi/length)m=Re — —E*(p cosg) L(Mm,Am). (50)
Tum
Therefore, the following relation is obtained:
s
Ra(M my Am, “‘)
() m-silar m
= . (51)
()single-filar R.(M,A,5)
Similarly, for the coupling impedance:
s
# (e 0 2)
(K)m-ﬁlar m
= . (52)
(K)amgle-ﬁlar Rk (MIA!S)
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One can generalize Eqs. (52) and (53) and obtain
the ratio of the value of attenuation or coupling
impedance of an m-filar helix of normalized conductor
size v,u to the corresponding value of an » filar one of
normalized size v, #'. The ratios resulting are:

s
R.,[mu, mo, —]
QAm-filar (u,9) m.
= (53)
an-filar (u'y") [ ., s]
o 0, nv', —
”
and
s
Rk[mu, mo, ——]
Kom-filar (u,9) m
= (54)

s
nw', o', —

Kafitar (w,o)
Ry
7

Graphical data illustrating the above comparisons
are presented in the following section.

NUMERICAL RESULTS

The effects of wire size and shape on the helix
parameters are presented in graphs of the various
correction factors R,, R;, and R; as functions of the
several parameters connected with wire size for several
selected values of the phase parameter s.

In Fig. 5, the transverse-impedance factor R, is
plotted s the transformed-wire parameter A. This

factor is independent of M. (Values A and M corre-
sponding to specified # and v are given in Fig. 3.)
For round wires R; is replotted »s wire-diameter-to-
helix-pitch ratio #/7 in Fig. 6. These curves agree very
well with the analysis given by Pierce® for s=0.25
for a wide range of diameter-to-pitch ratio.

A A=
\ 30°
. (b) INCREASING
\ WIRE DIAMETER /
T 45°
4
Ra (0) INCREASING /
3 < WIRE WIDTH “
60°
\\\ ~— %;/W A
\ ] -~
-\..
., N \\ M L 90
y — 120°
b— 150°_|
—
e SR ,70‘

o 0.2 04 [ 0.8 Lo

L]
Fic. 7. Effect of wire size and shape on the attenuation of a helix.

(s=0.4) (a) Elliptic wire of fixed thickness (b) circular wire.

® See reference 1, p. 40.
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The typical variation of the attenuation factor
R, vs the wire parameters A and M is shown in Fig. 7
(s=0.4). The locus of R, for wires of constant radial
thickness but with varying width is shown as a super-
imposed curve (a). For a fixed thickness of wire, there
is a critical width that gives least attenuation. Similarly,
the locus of R, for round wires vs M is shown in curve
(b). This indicates a critical diameter-to-pitch ratio
for least attenuation. In Fig. 8 the variation of R, vs
u/% for circular wires is shown for several values of s.
These results, as far as variation of attenuation with
wire size is concerned, agree remarkably well with the
experimental results given by Peter.? The exact value
of attenuation was not calculated, because the exact
resistivity of the wire used is not known.

One is tempted to use the above curves to determine
an optimized wire cross section for minimum attenua-
tion. But direct use of the curves is not meaningful;
for, as indicated by Fig. 7, R, is minimized if M—1.0
and A—180°; that is, on use of a thin tape of infinite
width in the radial direction. This physically impossible
result is a consequence of the use of the developed
model as opposed to a true-helix model. In a true helix,
as the radial thickness becomes comparable to the
mean-helix radius, the proximity of current between
opposite sides of a turn of the helix would introduce
more and more unaccounted-for coupling, and thus
nullify the validity of deductions from the developed
model.

% Peter, Ruetz, and Olson, R.C.A. Rev. 13, 558 (1952).

0.3 0.4 as 0.6 0.7 X
X, WIRE DIAMETER
L PITCH

ll

™
Similar curves for the coupling impedance R; are
presented in Fig. 9and Fig. 10. In Fig. 9, R;. is evaluated
with reference to the field at the center of the helix;
in Fig. 10, with reference to the field at the edge of the
wire (maximum available field). With reference to
the field at the center of the helix, optimizing of the

AT
T f
/
1 r / 2120°
A
. 1T
WAV e
/ ) 1
1 A
- L w
1| St ‘re wioTH

F16. 9. Effect of wire size and shape on the coupling impedance
of a helix. Comparison based on field at center of helix. (s=0.4)
(a) Elliptic wire of fixed thickness (b) circular wire.
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Fic. 10. Effect of wire size and shape on the coupling impedance
of a helix, Comparison based on the field at the edge of the wire
(s=0.4). (a) Elliptic wire of fixed thickness (b) circular wire.

wire configuration for highest K leads to the same
impossible result as that for optimizing R.. However,
with reference to the maximum-available field, R,
is highest for thin tapes occupying half the pitch width,
as indicated by Fig. 10.

For round wires, the effect of wire size on the
coupling-impedance factor R, is shown by Fig. 11
and Fig. 12. The curves for §=0.25, corresponding to
approximately four turns per wavelength, agree well
with the result given by Pierce” in the range of wire
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Fic. 11, Effect of wire diameter on the coupling impedance of a
helix. (Comparison based on the field at center.)

# See reference 1, p. 39.

size at which the transformation is accurate. Again
critical sizes of wire are indicated for maximum R;.

A comparison between the parameters of any specified
multifilar helix and those of a monofilar one can be
obtained from Egs. (53) and (54).

Two particular cases of interest are: (a) comparison
of helices utilizing identically-shaped conductors and
identical conductor-width-to-gap-width ratios, and
(b) alternatively, comparison of helices utilizing
identically-shaped conductors and identical conductor
widths. In the former case, the width/pitch ratio of
the equivalent generating section of the multifilar
helix is the same as that of the monofilar reference of
the same pitch. Any change of R, and R, hence is due
only to the change of the phase parameters from s in
the reference to s, in the generating section.

Therefore one can see from Figs. 8, 11, and 12, that,
for circular wires of specified dia/gap ratio, the attenua-
tion, and the coupling impedance based on the field
at the edge of wire, always tncrease as the number of
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F1c. 12. Effect of wire diameter on the coupling impedance of a
helix. (Comparison based on the field at the edge of the wire.)

files of the helix is increased; the coupling impedance
based on the field at the center of helix will increase
as the number of files is increased only if the dia/gap
ratio is less than unity.

For the second case mentioned, the results of com-
parison are more involved, and are shown in Figs. 13
and 14. In Fig. 13, the ratio of attenuation of an
m-filar helix to that of a monofilar helix of the same
wire size is plotted as a function of wire dia/pitch ratio.
In Fig. 14, the ratio of coupling impedance K (same for
K. and K,) is similarly plotted. One may see from
these figures that the attenuation of a multifilar helix
is not lower, and the coupling impedance is not higher,
than the corresponding values for a monofilar helix
except for very small wire diameters.

This comparison between a multifilar and a monofilar
helix is based on the assumption that only the sym-
metric mode of propagation is excited in the multifilar
helix. Partial excitation of asymmetric modes would
Invariably increase the attenuation and decrease the
coupling impedances.
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CONCLUSIONS

This analysis makes possible the calculation of the
parameters of wire helices with reasonable accuracy.
In particular, it provides a sound basis for calculating
the attenuation, for which no adequate theoretical
analysis has been available previously.

Inaccuracies introduced into the analysis in approxi-
mating the true helix with a developed model are
partially compensated by expressing all results as
the product of a proper correction factor times the
corresponding known value for a sheath helix, The
residual inaccuracy should be slight as long as the
thickness and width of the conductor are negligible in
comparison with the diameter of helix.

The effect of wire size and shape on the attenuation
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FiG. 13. Ratio of the attenuation of a m-filar helix to that of a
single filar helix with same wire diameter and pitch angle (s =0.45).

and other helix propagation parameters for both
monofilar and multifilar helices has been clarified and
quantitatively calculated.

It is shown that for round wires there are critical
values of dia/pitch ratio for minimum attenuation and
for highest coupling impedance. The calculated attenua-
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F16. 14. Ratio of coupling impedance of a m-filar helix to that of a
monofilar helix with same wire diameter and pitch angle (s=0.45).

tion characteristics agree well with experimental data
obtained by others.

It is also seen that multifilar helices of circular wires
have little or no advantage over monofilar ones so far
as attenuation is concerned. '
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