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An analytical method is developed to determine the gas temperature distribution and the electric field
strength-arc length characteristics of a rotationally stabilized long plasma arc in a cylindrical chamber.
The application of the method was demonstrated by numerical computations which were carried out
for a monatomic hydrogen arc stabilized in a very large chamber. The relationships among the electric
field strength, current, arc length, and arc-axis temperature are disclosed.

INTRODUCTION

The problems of arc plasma heat transfer are in
general complicated due to the temperature depend-
ency of physical properties, which introduces non-
linearity into the governing differential equations. As
a result, most of the theoretical works now available
deal with simplified cases such as the wall :stabilized
long arcs with negligible convective effects in which
temperature distribution may be considered to be de-
pendent only on radial distance. For these simplified
cases the principle of energy conservation may be ex-
pressed by the so called Elenbass-Heller equation

(V/r) (d/dr)[Mr(dT/dr) IHoE?=Q(T), (1)

where o is the electric conductivity, E the strength of
electric field, T the gas temperature, A the thermal
conductivity, and Q, the radiation losses per unit vol-
ume. In case of monatomic gases, one may assume
that Q. is proportional to (1/7) exp(—eV/kT) and
A=XoT®, where £ is the Boltzmann constant, V; the
effective energy level of the atom, e the electron charge,
Ao a reference value of A, and « a constant. With the
simplifying assumptions, the temperature distribution
of the gas was obtained by the numerical integration
of Eq. (1).*® However, for the case of molecular gases,
the dependency of A, Q,, and ¢ on the gas temperature
is generally more complicated than that for the mon-
atomic gas case. Nevertheless, Eq. (1) was numeri-
cally integrated for many instances in which the radia-
tion losses were considered negligible and the A-T
relationship was known.”® Analytical solution of Eq.
(1) was first obtained by Maecker through the use
of the thermal-conduction potential defined as S= fAdT
and the linearization of the function ¢(S). His results
agreed well with the experiments by Belousova and
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Gurevik! for a mercury arc. The similarity solution
of the energy equation for a two-dimensional drc was
obtained by Anderson and Eckert? under the assump-
tion that the axial velocity component of the gas for a
fully developed flow is a linear function of the axial
distance.

Generally speaking, one can create a long arc in a
small tube by virtue of the stabilizing effect of the
tube wall. When a large-diameter tube is used, a long
arc may be stabilized by the vortex flow around the
arc.®1 This vortex flow may be induced by rotating
a system of screens inside the arc chamber,” by a
rotor with an impeller mounted on the shaft,’® or by
a continuous stream of the gas tangentially blown into
the discharge chamber.”” An arc as long as 25 cm was
reported to have been produced with the use of needle
electrodes. It is the purpose of this paper to study
analytically the gas temperature distribution and the
arc length—electric field strength characteristics of the
rotationally stabilized long arc produced between two
needle electrodes in a cylindrical chamber.

ANALYSIS

The physical system to be investigated is shown in
Fig. 1. It consists of an arc (not shown) with length L
between two needle electrodes confined in a cylindrical
chamber in which a gas rotates around the arc. The
chamber has a radius R and its wall temperature is
maintained constant at Tb. The arc is comparatively
long and is stabilized by the rapid rotation of the gas.
Both the upper and lower electrodes are water cooled.
A cylindrical coordinate system (r, 2) is fixed at the
center of the arc between the electrodes. The coordi-
nate r measures the radial distance from the arc axis,
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while z measures the axial distance along the arc.
Because of the rapid rotation of the gas, free convection
induced by gravitation can be neglected. As a result,
the gas temperature in the chamber is distributed sym-
metrically with respect to a plane through the origin
and perpendicular to the arc axis. Since the flow of the
gas is tangential, the convective heat transfer in the
radial direction is negligible. Furthermore, since the
temperature distribution is axisymmetric, the convec-
tive heat transfer in the azimuthal direction is also
negligible. In other words, heat transfer performance
is independent of the velocity of the gas rotation. This
is evidenced by experiments®® which revealed that the
arc characteristics becomes independent of the gas ro-
tation when the latter exceeds 2500 rpm. As far as
radiation is concerned its effect is important only when
both the gas pressure and power input are high. For
the present analysis, which is concerned with low to
moderate pressure ranges, the radiation effect will be
ignored.
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Now, energy balance on the gas yields

ior oT ad oT
;5(*’67)%7(*5;)“”-0' )

where the first two terms represent the radial and axial
components of thermal conduction, respectively, and
the last term indicates the Joule heating. Before an
attempt is made to solve the energy equation, the
characteristic of E and ¢ will be examined

In general, both E and o are functions of » as well
as g. For a long arc, it is reasonable to assume that
the constant current-density lines in the arc column
are parallel to the axis except in the end regions near
the electrodes. From Ohm’s law j=¢E, it is obvious
that E is also parallel to the axis. Since the space
charge is zero except in the electrode falls, V-E=0,
which yields the fact that E is independent of z.
By application of the continuity equation for electric
charge V-j=0, Ohm’s law, and VxE=0 for steady
state, one arrives at the conclusion that E is also
independent of 7. '

Now, the thermal conduction potential is defined:

T
S= [ \T. 3)

T3

' T2 ($=0)

Fic. 4. Idealized

T2 model for gas tempera-

(s=0) ture distribution in an
arc chamber.




ROTATIONALLY STABILIZED LONG PLASMA ARCS

The cnergy equation may then be rewritten as
(1/ry(3/ar)[r(3aS/ar) I+ (82S/022) + e E*=0. (4)

It is desired to linearize the ¢(S) function shown in
Fig. 2 into the form

a*=B(S5—351), (3)

where o* is the linearized o function, B is the slope of
the straight line proposed to linearize the ¢ function,
and Sy is the reference value for S. Maecker'® has pro-
posed two methods for the determination of B and Si:
the integrated mean method and the minimum princi-
ple method. The former method gives

B=ay/(2S:f) and Si=So(1—2f), (6)

where

= f % 105/ (00S).

0
The latter method yields

B=(2f/%)ao/So and Si=S(1-3f) (7)

in which

fi= f:"/osads(zs/(sof:"ads).

The integrated mean method which gave good agree-
ment between the theoretical prediction and experi-
mental results for a mercury arc" is employed in the
present study.

With the linearized function ¢* available, the next
step is to integrate the energy equation. In reference
to Fig. 2 it is found that the solution may be easily
obtained if the gas is divided into two regions: inner
and outer regions. In the inner region where S> .5,
the conductivity ¢* is a finite value, while in the outer
region where S<.51, ¢* is identically zero. Since the
wall is maintained isothermal and the needle electrodes
are water cooled, our physical reasoning suggests that
the actual temperature distribution may fall into the
pattern shown in Fig. 3. The isothermal line through
the arc axis is at temperature T,. The corresponding
thermal conduction potential is Sy. If the applied elec-
tric. power is not too large there exists a region sur-
rounding the arc axis in which all isothermal lines are
parallel to the arc axis except at the arc column ends.
The gas inside this region enclosed by an isothermal
surface with temperature 77 and the thermal conduc-
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tion potential S; has the ¢*-S relationship as shown
by the straight-line portion Siee* in Fig. 2, that is,
the electric conductivity is directly proportional to
(S—S1). This region is referred to as the inner region.
The gas in the space outside the isothermal surface T}
has zero electric conductivity for all values of S in
S12>5>0 as shown by the S;0 line in Fig. 2 and is
referred to as the outer region. For convenience in anal-
ysis, the temperature distribution pattern in Fig 3 is
idealized as shown in Fig. 4. Now the isothermal sur-
face T, is not a cone shape but a cylindrical surface
with radius »1. Point P in Fig. 4 is a point discontinuity
from which all isothermal lines or surfaces are originat-
ing rather than from the electrode surface as shown
in Fig. 3.

With this idealization in the temperature distribu-
tion pattern of the gas, the energy equation (2) may
be rewritten as

(1/7) (d/dr)[r(dSw/dr) He*E2=0 (8)
for the inner region 71>7>0 and 5<L/2, and

1 a aSout) 82Sout
rér(r ar + 0z? =0 ©)

for the outer region r>7. The appropriate boundary
and matching conditions are

dSin(0)/dr=0,  Su(n)=5 (10a)
9Sout(r1, 2)/8r=dSin(r1) /dr (10b)
Sout(r1, 2=51 for 2<L/2
=51 for z>L/2 (10c)
Sout(R, 2) = Sout(r, ) =0 (10d)
0Sout(r, 0)/9:=0 (10e)

For a chamber of very large size, R— o and z;— o,
Equation (8) is integrated twice following the sub-
stitution of Eq. (5) for o*. It yields

Sin=S1+ (So— S) S E(B)2r], (11)

where Jy is the Bessel function of zeroth order. S, of
Eq. (11) satisfies

Sin(0) =S, and dSi(0, 5)/dr=0. (12)

Equation (9) is solved by the method of separation
of variables. The solution which satisfies the boundary
and matching conditions (10b)—~(10e) is

Sout= i 3 KO('Ymr) _IO('Ymr) KO('Ym’)/IO('Ymr)
" 52 Zo Ko(Ymrs) — Io(Ymr) Ko(¥mR) /To(YmR)

[/ F(Z") cos'y,,,Z’dZ'] COSYm2, (13)
0

where ym= (m+1/2)7/2, Io, and K, are the modified Bessel functions of the zeroth order of the first and second

kind, respectively, and the function F(z) is defined as
F (Z) = Sz

for 3<L/2
=8, for 2>L/2.

(14)
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If the chamber is very large in size, i.e., R— @ and 2— «, Eq. (13) may be reduced to

Sout: g/m K(](wr) Coswz
0

Ko(wr)

[ / “F(Z) cost'dZ'] do.
0

(15)

The special case where Ty=1T, or S, =0 is treated in the following to demonstrate the method for quantitative
evaluation of the physical parameters such as the radius of the inner domain 7, the electric field strength E, the
current 7, and the electric power delivered per unit length of the arc defined as

For T,=T; and S,=0, Egs. (13) and (15) may be reduced to

Sout= Sl

for a finite chamber and

Y
P= f *E22mrdy. (16)
0
& 2 Ko(T'F) —Io(Twf) Ko(TnR) /Io(TnR) sinly cosI'mz (1)
m— 22 KO(Fm'Fl)'—IO<I‘mFI)KO(PmR)/IO(I‘mR) |
Soni 285 /00 Ko(QF) sinQ cosQz i (18)

™

o Ko(Qm) Q2

for a very large chamber, respectively. The dimensionless quantities are defined as 7=2r/L, R=2R/L, #,=2n/L,

3=23/L, Q=wL/2, and Tn="4mL/2.

Using Egs. (11), (17), and (18), the boundary condition (10b) yields the expression for 71 or r:

12.231(So— S1) _ 281 & TnKi(Tnft) +Tonl1 (Tot) Ko(TmBR) /To(TiR) sinTm cosTwmZ

for a finite chamber and

= = = 19

2 Zr a0 Ko(Twft) —Io(Twf) Ko(TwR) /Io(TwR) T, (19)
w Ko(QF) sinQ cosQZ ]

df/; QK (QF) a0 oty (20)

12.231(Se=S1) _ g@[ d

2l ™

for a very large chamber. Since the isothermal line at
the region interface is parallel to the arc axis, its
temperature gradient is independent of 2. As a result,
7, obtained from Eq. (19) or (20) is single valued.

The substitution of Eq. (11) into the second expres-
sion of the boundary condition (10a) leads to the rela-
tionship Jo[E(B)"?r,]=0 or E(B)2r,=2.405. Hence,
the electric field strength may be expressed as

E=2405/(B)Yn, (21)
The power delivered per unit length P can be deter-

mined either by Eq. (16) or by heat conduction from
the arc column. The latter gives

P=—2xn(dSia/dr) ren="T7.84(So—S1).  (22)
The current defined as P/E is obtained as
I= 3.1971(3)1/2(50— Sl). (23)

RESULTS AND DISCUSSION

The thermal conductivity for a monatomic gas may
be expressed as A= (3%/2V2Q4) (8T /wm.)"%, where m.
is the atomic mass, k is the Boltzmann constant, and
Q. is the effective cross section between atoms. Ac-
cording to the definition, the thermal conduction po-
tential is

§=2(kT)*2/Qsa. (24)

For weakly ionized gases, the electric conductivity is
o=[(2rkT)"m "/ F¥*Qas(3p) ] exp(—E./2T),

where m, is the electron mass, % is the Planck’s con-
stant, Qs 1s the effective cross section between atom
and electron, E; is the ionization energy, and p is the
pressure. The electric conductivity may be expressed
in term of S as

g= [ez (2mem,) Vag/ Q“halzj (QaaS/ 3p) 1z
X exp[— Ei/ (2rmaQad) V25%].

For hydrogen, it is known that® Qge=47(10"%) (cm?),
Qee=1.30(10) (cm?) and E;=2.18(10"1) (erg).

For strongly ionized gases, the thermal and electric
conductivities® are A= 6.28(10%) E(ET)%2/InA (erg/cm-
sec:°K) and ¢=0.865(10%)7%2/InA (1/sec) respec-
tively, where InA is the Coulomb logarithm, A=
kET/enM? according to Ref. 19, and #. is the electron
density.

Numerical computations were carried out for a mon-
atomic hydrogen arc contained in a very large chamber.

1o H) Maecker, Th. Peters, and H. Schenk, Z. Physik 140, 119
(1955).

21, Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc., New York, 1956), p. 136.
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The hydrogen gas is maintained at 1 atm pressure. So
and oy calculated for each specified 7y S; was then
determined using Eq. (6). Therefore, from Eq. (20)
it can be seen that 7; depends only on T, The 71— T,
relationship is graphically illustrated in Fig. 5. In order
that the analysis be valid, the assumption of small 7,
has to be satisfied. For the. value of 7=0.2, Fig. 5
shows that 7 is about 15 000°F. At this temperature
the hydrogen gas is still weakly ionized. The electric
power P calculated from Eq. (22) is superimposed in

12000

10000

Fig. 5. It indicates a direct proportionality between
P and T,

The distribution of the thermal conduction potential
was calculated for To=13 000°K and the arc length of
6 cm using Eqs. (11) and (18). Through the use of
Eq. (24), the distribution was reduced to the gas tem-
perature pattern as shown in Fig. 6. As a reference,
Maecker’s analytical result® for a constricted hydrogen
arc with the arc-axis temperature of 13 000°F confined
in an 1 cm radius tube is superimposed in the figure.

8000
F16.6.Hydrogen tem- T
perature distribution in
a very large chamber 6000
with a 6-cm long hydro-
gen arc. oK
4000
2000
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It is observed that the gas temperature gradients at
small distances from the arc axis are larger in the
present model than in Maecker’s solution, whereas the
temperature gradients become less steep away from
the arc. It is worth while discussing the striking differ-

ence in the temperature gradients which can be reduced,
eliminated, or even amplified depending on the geome-
try of an arc or a chamber. One may recall that 7 is
defined as the gas temperature at r=r, where the
value of n, is related to the geometry of an arc or a

Fic. 8. The relationship
among the electric field
strength, current, arc-axis tem-
Eerature, and arc length for a

ydrogen arc in a very large
chamber under 1-atm pressure.
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chamber. For the Maecker’s model, 71 is related to the
radius of arc chamber by

f1=R exp[— 51/1.2484(50— S])], (25)

while in the present model, r is related to the arc
length by

n=nL/2. (26)

Therefore, for a specified arc-axis temperature Ty one
can change R and/or L such that the gas temperatures
determined by the two models may become the same
at the same value of 7. In other words, if an arc with
the length of 12 ¢cm or an arc chamber with one-half
of its original radius were used in Fig. 6, then the gas
temperature gradients at small distances from the arc
axis would be very close for the two models.

Figure 7 shows the electric field strength—current
characteristics of the 6 cm long arc obtained from
Egs. (21) through (24). The Maecker’s result is
superimposed in the figure for reference. In the pres-
ent model, one can find E=4.81/(BY%,L) and I=
6.38rL(Sy— S1) BV from Egs. (21) and (23), respec-
tively. This indicates that E is inversely proportional
to L, while I is directly proportional to L. Therefore,
an increase in an arc length will cause a decrease in
the gradients of the E-I curve in Fig. 7. Similarly, in
the Maecker’s model, one finds in Ref. (10) that E
is inversely proportional to R; I is directly proportional
to R. Hence, an increase in the radius of an arc chamber
will result in a decrease in the gradients of the E-I
curve.

It is most interesting to examine the effects of the
arc length on the arc-axis temperature, electric field
strength, and current. The expression for the arc length
may be obtained by the substitution of E=P/I into
Eq. (21) as

L=4811/[(B)¥2P]. (27)

Since B, 71, and P are functions only of T, the current
required to produce an arc with length L and axis
temperature Ty may be calculated using Eq. (25). The
results are illustrated in Fig. 8. It is seen in the figure
that a short arc requires higher electric field strength
E. For the same current applied to a long arc the elec-
tric field strength will not change much with a change
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in the arc length. This is observed in experiments" if
the following two assumptions are imposed on the
interpretation of the results: (1) The electrode falls
do not change appreciably with the arc length and (2)
the arc length is sufficiently long that the electrode
falls do not interfere with each other. Figure 8 also
shows that for the same current, the arc-axis tempera-
ture decreases as the arc length is increased.

CONCLUDING REMARKS

An analysis was made for the gas temperature dis-
tribution in a long arc stabilized by vortex flow in a
cylindrical chamber. Through the linearization of the
electric conductivity-thermal conduction potential re-
lationship together with the use of thermal conduction
potential, analytical solutions were obtained for two
regions. In the inner region corresponding to the arc
core the gas temperature is independent of the dis-
tance along the core axis, while in the outer region the
effect of the Joule heating is negligible. The solution
thus obtained is valid for the case where the ratio of
the arc-core radius to the arc length is small or equiva-
lent for the case of relatively low arc-axis temperature.

A method was developed to determine the character-
istics of the arc, notably the relationship among the
electric field strength, arc length, current, and arc-axis
temperature. Numerical computations were carried out
for a monatomic hydrogen arc contained in a very
large chamber. The results indicate that a short arc
requires higher electric field strength, higher current,
and higher arc-axis temperature than a long one. For
the same current applied to a long arc, the electric field
strength will not change much with a change in the
arc length. The method developed in the study may
also be applied to determine the characteristics of a
rotationally stabilized long arc contained in a cylin-
drical chamber of finite size.
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