
JMAPA OONOV373 5 9 R 9: ~ 
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An alternative proof to that provided by Jaffe and Cannon of the self-adjointness of the local 
Lorentz generator for the (: op4 :)1 + 1 quantum field theory is given. The proof avoids the use of 
second-order estimates and a singular perturbation theory. 

In this brief note, we establish the self-adjointness 
of the local Lorentz generator for the two-dimensional 
: cp4: interaction by the method of Ref. 1. This result 
has been previously obtained by Cannon and Jaffe2 using 
first- and second-order estimates, and a singular per­
turbation theory. Here we avoid the use of second-order 
estimate and the Glimm-Jaffee singular perturbation 
theory. 3 It is hoped that a new proof may lead to some 
new results and insights. 

The (: cp4 :)1+1 quantum field theory has been brought to 
a very satisfactory stage mainly by the work of Glimm 
and Jaffe. 4 On the Fock space, they constructed a dense­
ly defined bilinear form cp(x, t), continuous in x and t, 
which gives rise to a unique self-adjoint operator 

cp(j)=J dxdtcp(x,t)j(x,t) (1) 

for a real function j E C~ (R2). The C* -algebra of local 
observables is defined as the norm closure 

= (~ (B»- . (2) 

Here the union is taken over bounded regions B of 
space -time and (B) is the weakly closed (von Neumann) 
algebra generated by 

{exp[iCP(j)J:j=! E C~(R)}. (S) 

The Poincare group P={a, A} is the semi direct pro­
duct of R2 with R1, 

{a,A}{a' ,A'}={a,Aa' ,AA'}, (4) 

where a E R2 is a space -time translation, a = (a , T), 
and A is the one-parameter Lorentz rotation 

As: (x, t) - (x cosh~ + t sinh~, x sinh~ + t coshm. (5) 

Poincare covariance means that there exists a 
representation 

O'{a. A }< (B»= ({a, AlB) (6) 

for all bounded open sets Band all {a,A}EP. The cova­
riance of the local algebras ensures the covariance of 
the field operators, namely 

O'{a. Al (cp(j» = cp(j{a. AI) 

with 

j la. AI (X, t) = j({a,A}-2(x, t». 

(7) 

(8) 

Space-time covariance was proven by Glimm and 
Jaffe. 5 The time translation is implemented locally by 
a unitary operator U(t;B), i.e., 

O't( (B»= U(t;B) (B)U(~;B) 

with 

U(t;B) = exp[itH( g) J , 
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(9) 

(10) 

where H(g) is the Hamiltonian with a space cutoff 
g(X)E C~(R), g(x) =1 on a sufficiently large set depending 
on B. The space translation is implemented by exp(-ixP, 
where P is the free field momentum operator. 

The pure Lorentz transformation is locally imple­
mented by a unitary operator U(Aa;B), i.e., 

0' Aa ( (B» = U(AB ;B) (B) U-1 (AB ;B). (11) 

The formal infinitesimal generator of Lorentz trans­
formations in a region B is 

M(g) =Mo + MI(g) 

=J xHo(x)dx+ J xHr(x)g(x}dx, (12) 

where the space cutoff function g = 1 on a sufficiently 
large interval. Here, H(x)=Ho(x) +HI(x) is the energy 
density. Using space-time covariance, Cannon and 
Jaffe showed that it suffices to consider region B of 
space-time in the domain x> 0. Also, it is technically 
convenient to use different spatial cutoffs in the free 
and the interaction part of M. Thus, for a region B in 
x> 0, we take 

Mo=aHo, 

M1 = HO(xg1) + HI (xg2 ) , 

(lSa) 

(13b) 

(13c) 

wherea>O, xg.(x), xg2 (x);;.0, go(x),g(x)EC~(R+), and 

a +xg1 (x)=X=xg2 (x) (14) 

for x in a sufficiently large interval of the positive x 
axis. Here we have defined go (x) =xg1(x) , and g(x=xg2 (x). 
The first step toward proving that M = M (go ,g) is the in­
finitesimal generator for local Lorentz rotations, is to 
prove the self-adjointness of M. 

We write 

M =aHo + Ho.,,(go) + HI. ,,(g) + [Ho(go) -Ho.,,(go)] 

+ [Hr(g) -HI.K(g)], 
(15) 

where as usual K is an upper momentum cutoff. We first 
estimate each term in (15). By undoing the Wick order­
ing we obtain 

Ho.,,(go);;' - Cl~' 

HI •• {g);;. - c2(lnK)2, 

(16) 

(17) 

where C1 ,C2 are positive constants independent of K. By 
a standard NT estimate 6 

II (N + l)-l(Hl (g) - HI, ,,(g»(N + I)-111 >f C3K-1 /2, 
(18) 

To estimate the difference Ho(go) -Ho,,,(go), we write 
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Ho(go) =Hcill (go) + H~2) (go), 

with 

(19) 

(21) 

H~ll (go) is a sum of three terms having the form 
A*K(go}A in configuration space, where K(go) is a multi~ 
plication operator with a nonnegative kernel. Therefore, 
H~l) (go), and, similarly, H~l) (go) =H~~~(go) are nonnega~ 
tive operators. Jaffe and Cannon proved that H~) (go) has 
an L2 kernel and 

II (N + I)-I 12 (HJ2) (go) -H~~(go»(N + I)-1 /2/1.,; crl/4 , c4 > o. 
(22) 

Finally, we estimate the free term aHo by 

aHo~aJ.LoN. (23) 

Let P n be the projection onto states with numbers of 
particles lying in the range 

n8 .,; N< (n +2)8, .8~ 4. (24) 

We note 

~ P = ~ P =1. 
n= ev en n "-odd n 

(24') 

Picking K"=exp [(1/c2 )nBI2 ], and using (16), (17), (18), 
(22) and (23), we quickly obtain 

P"aHoP" ~ afJ.oP ~p":;, afJ.onB , 

Pflo'~n(go)p"~ -C, exp(2/cz), nB12
, 

P"Hr'K"(g)P":;' -nB, 
p"(Hcil

) (go) - Hci~~(go» p":;, 0, 

II Pn(H/(g) -H1,.(g»p" II.,; d1 exp(- d~NlIZ, du d~ > 0, 

(25) 

(26) 

(27) 

(28) 

II p"(Hci2) (go) -Hci~~(go» p"/I"; ~ exp(- ~Nl/2), (29) 

~,d!a >0. (30) 

Using (25) through (30) and choosing an appropriate a, 
we get 

(31) 

where d is a positive constant. For d large enough we 
get 

(32) 

Let M' be obtained from M by replacing aHa by aN, a 
multiple of the particle number operator. Then 

By a standard NT estimate 

II b + M~ II .,; d' NZB (34) 

for some constant d' . 

Following Ref. 7, we define p. and Pd as the projec~ 
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tion operators onto states with number of particles in 
the ranges 

and 

n.~d(n8 - 4.,; N.,; nB + 4), 

respectively. We define M.and Md by 

M.= ~ M"=aHo + L; P~lP", 
"=IVIII. n=eve& 

Md= L; M"=aHo + L; P ~lP", 
nllodd n-odd 

We write M in two different forms 

M=M. +L.=Md +Ld, 

L.,=M1 - ~ P"M1P", 
n=even 

Ld=Ml - L; P~lPn' 
"..,dd 

(35) 

(36) 

(37) 

(38) 

(39a) 

(39b) 

(39c) 

where the ranges (35) and (36) have been chosen so that 

P"L"P. =L"P. =P.L.=L., 

PdLdPd =L~d =PdLd=Ld, 

Federbush's expansion of the resolvent is 

R(- b;M) =R(- b;M.) 

- R(- b;Md)LeR(- b;M.) 

+R(- b;Me)L~(- b;Md)LeR(- b;Me) 

(40) 

(41) 

(42a) 

=R(- b;M.) 

-R(- b;Md)P.L.P.R(- b;Me) 

+ R(- b; Me)PdLdPdR(- b ; Md)P.L.P. 

XR(-b;Md ) 

_ .. '. (42b) 

Our main result is the following theorem. 

Theorem 1: Let go,g satiSfy (14), with go,g:;' 0, 
go,gE C~(R+). Then there is a finite constant 0 such that 
(42) converges in the uniform operator topology for b> O. 
The limit R(- b) is the resolvent of a self~adjoint opera~ 
tor M such that M > 0 . 

The proof of this theorem follows from the following 
three lemmas: 

Lemma 1: For n large enough, there exist positive 
constants Cu Cz independent of n such that 

II PeP"R(- b;Mn)Pd II.,; c1 exp(- cznB/z). (43) 

Proof: Since aHo"?- ftfJ.oN, it is enough to prove (43) 
with M~ replacing M". Estimates (32) and (34) permit us 
to apply Theorem 2.4 of Ref. 1, with. \ a,,) == P "P d \ a), 1.8,,) 
P"P.I b), fJ.,,==dn8, A=b+M~-dnBD,,=d'n2.8 (this corre~ 
sponds to M in the notation of Ref. 1), and N < {[ (n + 1)B 
- 41- (n8 + 4)}/4. Thus we obtain (43). 

Lemma 2: Let e > 0 be smal enough. Then there exist 
constant c(e) such that 
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II R(- b;M) II, II R(- b;Ma) II.,,; lib, 

II LePaR(- b;Ma)Pe II, II LeP"R(- b;Me)Pd II < ~, 

II R(- b;Ma)L"R(- b;Me) II ~ c(e)b-1
-., 

II LaR(- b;Ma)LR(- b;Me) II.,,; c(e)2b-1
-

1
• 

(44) 

(45) 

(46) 

(47) 

Proof: Inequality (44) is an easy consequence of esti­
mate (31). Let I a) and I b) be two normalized states in 
the Fock space. To prove (45), we consider 

<al LaPaR(- b;Ma)Pe I b) = :0 <al LaPaR(- b;Mc)P"Pnl b) 
n::odd 

= :0 (al LaPaPnR(- b;Mn)P,, 1 b) 
n=odd 

= :0 {al (l-Pn)MIP~aPn 
n=odd 

.,,; :0 c (n +2)2a exp(- c nB /2) < 1-
n=odd 1 2 2' 

In the last step above, we have used estimate (43) and a 
standard NT estimate. Similar arguments establish esti­
mated (46) and (47). 

Lemma 3: For b large enough, the series (42) con­
verges uniformily to an operator R(- b) which is a 
pseudoresolvent and satisfies 

lim(- b)R(- b) =1 (48) 
~+ .. 

in the norm operator topology. 

Proof: Estimates (44) through (47) imply that the nth 
term in (42) is bounded by c(e)nb-1- ne . Therefore, the 
series converges for b> c(e)l/e to an operator R(- b). 
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Clearly, 

limb[llR(-b;Ma)L"R(-b;M.)II +---]=0. (49) 
~+ .. 

This implies (48). It is not hard to prove that R(- b) is 
a pseudoresolvent. 

Proof of Theorem 1: We follow the proof of Theorem 
2.2 in Ref. 1 Equality (48) implies that R(- b) is an in­
versible operator. Then - b - (R(- b)-l defines M whose 
domain is independent of b because of the pseudore­
solvent property of R(- b). The self-adjointness follows 
from the next lemma. 8 

Lemm a 4: If T: JC - JC is an operator with dense domain 
on the Hilbert space JC, and if T-l exists and has a dense 
domain, then (1'*)-1 = (T-1)*. 
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