On the self-adjointness of the Lorentz generator for

\((: \phi^4 :)_1 + 1 \)

Basilis Gidas*

Department of Physics, Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48104

Received 26 September 1972

An alternative proof to that provided by Jaffe and Cannon of the self-adjointness of the local Lorentz generator for the \((: \phi^4 :)_1 \) quantum field theory is given. The proof avoids the use of second-order estimates and a singular perturbation theory.

In this brief note, we establish the self-adjointness of the local Lorentz generator for the two-dimensional \(\phi^4 \) interaction by the method of Ref. 1. This result has been previously obtained by Cannon and Jaffe\(^3\) using first- and second-order estimates, and a singular perturbation theory. Here we avoid the use of second-order estimate and the Glimm–Jaffe singular perturbation theory.\(^2\) It is hoped that a new proof may lead to some new results and insights.

The \((: \phi^4 :)_1 \) quantum field theory has been brought to a very satisfactory stage mainly by the work of Glimm and Jaffe.\(^4\) On the Fock space, they constructed a densely defined bilinear form \(\varphi(x, t) \), continuous in \(x \) and \(t \), which gives rise to a unique self-adjoint operator

\[
\varphi(f) = \int dx dt \varphi(x, t) f(x, t)
\]

for a real function \(f \in C^\infty_0(R^4) \). The \(C^* \)-algebra of local observables is defined as the norm closure

\[
= \{ (\cdot) (B) \}^*.
\]

Here the union is taken over bounded regions \(B \) of space–time and \((\cdot) \) is the weakly closed \(\mathcal{A} \) product of free field operators. The \(C^* \)-algebra of local observables is defined as the norm closure

\[
\mathcal{A} = \{ (\cdot) (B) \}^*.
\]

Poincaré covariance means that there exists a representation

\[
\sigma_{\{a, \Lambda\}}(\cdot)(B) = \{ (a, \Lambda)(B) \}
\]

for all bounded open sets \(B \) and all \(\{ a, \Lambda \} \in P \). The covariance of the local algebras ensures the covariance of the field operators, namely

\[
\sigma_{\{a, \Lambda\}}(\varphi(f)) = \varphi(f_{\{a, \Lambda\}})
\]

with

\[
f_{\{a, \Lambda\}}(x, t) = f((a, \Lambda)x, t).
\]

where \(H(g) \) is the Hamiltonian with a space cutoff \(g(x) \in C^\infty_0(R) \), \(g(x) = 1 \) on a sufficiently large set depending on \(B \). The space translation is implemented by \(\exp(-ixP) \), where \(P \) is the free field momentum operator.

The pure Lorentz transformation is locally implemented by a unitary operator \(U(\Lambda_2; B) \), i.e.,

\[
\sigma_{\Lambda_2}(\cdot)(B) = U(\Lambda_2; B)(\cdot)U^{-1}(\Lambda_2; B).
\]

The formal infinitesimal generator of Lorentz transformations in a region \(B \) is

\[
M(g) = M_0 + M_1(g)
\]

where the space cutoff function \(g \) is 1 on a sufficiently large interval. Here, \(H(x) = H_0(x) + H_1(x) \) is the energy density. Using space–time covariance, Cannon and Jaffe showed that it suffices to consider region \(B \) of space–time in the domain \(x > 0 \). Also, it is technically convenient to use different spatial cutoffs in the free and the interaction part of \(M \). Thus, for a region \(B \) in \(x > 0 \), we take

\[
M = M_0 + M_1(g)
\]

where \(M_0 = \sigma H_0, \) and \(M_1 = \sigma H_1(xg_2) + H_1(xg_2), \)

\[
[\sigma, \zeta(x)g(x)g(x_1)] = \alpha x g_1(x) - \alpha x g_2(x)
\]

for \(x \) in a sufficiently large interval of the positive \(x \) axis. Here we have defined \(g_1(x) = xg_1(x), \) and \(g_2(x) = xg_2(x). \)

The first step toward proving that \(M = M_0 + M_1(g) \) is the infinitesimal generator for local Lorentz rotations, is to prove the self-adjointness of \(M \).

We write

\[
M = \sigma H_0 + H_0\zeta(g) + \alpha H_1 - H_1,\zeta(g) + \sigma H_0 - H_0\zeta(g)
\]

\[
+ [\sigma H_1, \zeta(g)]
\]

where as usual \(\zeta \) is an upper momentum cutoff. We first estimate each term in (15). By undoing the Wick ordering we obtain

\[
H_0\zeta(g) \geq -c_1 \zeta^2;
\]

\[
H_1,\zeta(g) \geq -c_2 \zeta^2
\]

where \(c_1, c_2 \) are positive constants independent of \(\zeta \). By a standard \(N_\zeta \) estimate

\[
\| (N + 1)^{\zeta} (H_0(g) - H_1,\zeta(g))(N + 1)^{\zeta} \| \leq c_3 \zeta^{1/2},
\]

\[
XC_3 > 0.
\]

To estimate the difference \(H_0(g) - H_0\zeta(g) \), we write
with
\[H_0^{(1)}(g_0) = \frac{1}{2(2\pi)} \int \, dk_1, dk_2, n_0 |k_1, k_2, n_0 - k_1, k_2, n_0 - k_1| \frac{\mu(k_1)\mu(k_2) + K_1k_1 + K_2k_2 + n_0^2}{\mu(k_1)\mu(k_2)} \frac{d_1 d_2}{d_{12}} \times \alpha(k) \alpha(k). \]
(20)

Similarly, for some constant \(\alpha^{*} \), we quickly obtain
\[\alpha^{*}(k) a^{*}(-k) \alpha(k). \]
(21)

The limit
\[\lim_{(N+1)^{-1/2}} H^{(1)}(g_0) = H^{(1)}(g_0) \]
(22)

Finally, we estimate the free term \(\alpha H_0 \) by
\[\alpha H_0 \Rightarrow \alpha n_N. \]
(23)

Let \(P_n \) be the projection onto states with numbers of particles in the range
\[n^6 < N < (n + 2)^6, \quad \beta > 4. \]
(24)

We note
\[\sum_{n=\text{odd}} P_n = \sum_{n=\text{even}} P_n = I. \]
(24')

Picking \(\kappa = \text{exp} \left([1/c_1] n^3/2 \right) \), and using (16), (17), (18), (22) and (23), we quickly obtain
\[P_n \alpha H_0 P_n \to \alpha n_N n N P_n \to \alpha n_N, \]
(25)

\[P_n H_0^{(1)}(g_0) P_n \to -C \exp(2/c_1), \quad n^6/2, \]
(26)

\[P_n H_1^{(1)}(g_0) P_n \to -n^6, \]
(27)

\[P_n H_0^{(1)}(g_0) - H^{(1)}(g_0) P_n \to 0, \]
(28)

\[|| P_n H_1^{(1)}(g_0) - H_1^{(1)}(g) P_n || \leq d_1 \exp(-d_1 n^6/2), \quad d_1, d_1 > 0, \]
(29)

\[|| P_n H_0^{(1)}(g_0) - H_0^{(1)}(g_0) || \leq d_2 \exp(-d_2 n^6/2), \quad d_2 > 0. \]
(30)

Using (25) through (30) and choosing an appropriate \(\alpha \), we get
\[M_n = P_n M P_n \geq d \beta n^6, \]
(31)

where \(d \) is a positive constant. For \(d \) large enough we get
\[b + M_n \geq d \beta n^6. \]
(32)

Let \(M' \) be obtained from \(M \) by replacing \(\alpha H_0 \) by \(\alpha n_N \), a multiple of the particle number operator. Then
\[b + M_n \geq b + M_n = b + P_n \alpha n_N + H_0^{(1)}(g_0) + H_1^{(1)}(g) P_n. \]
(33)

By a standard \(N \), estimate
\[|| b + M_n || \leq d N^{28} \]
(34)

for some constant \(d' \).

Following Ref. 7, we define \(P_n \) and \(P_d \) as the projection operators onto states with number of particles in the ranges
\[\sum_{n=\text{even, even}} (\beta^6 - 4 < N < \beta^6 + 4), \]
(35)

and
\[\sum_{n=\text{odd, odd}} (\beta^6 - 4 < N < \beta^6 + 4), \]
(36)

respectively. We define \(M_n \) and \(M_d \) by
\[M_n = \sum_{n=\text{even}} M_n, \]
(37)

\[M_d = \sum_{n=\text{odd}} M_n. \]
(38)

We write \(M \) in two different forms
\[M = M_n + L_n = M_d + L_d, \]
(39a)

\[L_n = M_n - \sum_{n=\text{odd}} P_n M P_n. \]
(39b)

\[L_d = M_d - \sum_{n=\text{odd}} P_n M P_n, \]
(39c)

where the ranges (35) and (36) have been chosen so that
\[P_n L_n P_n = L_n P_n = P_L P_n = L_n, \]
(40)

\[P_n L_n P_n = L_n P_n = P_L P_n = L_n. \]
(41)

Theorem 1: Let \(g_0, g \) satisfy (14), with \(\varepsilon_0, \varepsilon > 0 \), \(\varepsilon_0, \varepsilon \in C_0^\infty (R^7) \). Then there is a finite constant \(C \) such that (42) converges in the uniform operator topology for \(\beta > 0 \). The limit \(R(-b) \) is the resolvent of a self-adjoint operator \(M \) such that \(M > \delta \).

The proof of this theorem follows from the following three lemmas:

Lemma 1: For \(n \) large enough, there exist positive constants \(c_1, c_2 \), independent of \(n \) such that
\[|| P_n P_n R(-b; M_n) P_n || \leq c_1 \exp(-c_2 \beta^6/2). \]
(43)

Proof: Since \(\alpha H_0 \to \alpha n_N \), it is enough to prove (43) with \(M_n \) replacing \(M_n \). Estimates (32) and (34) permit us to apply Theorem 2.4 of Ref. 1, with \(|a| = P_n P_n |a|, |b| = P_n P_n |b|, \mu_0 = d \beta n^6, \beta = b + M_n - d \beta n^6 \) (this corresponds to \(M \) in the notation of Ref. 1), and \(N \leq [(n + 1)^6 - 4 - (\beta^6 + 4)]/4 \). Thus we obtain (43).

Lemma 2: Let \(\epsilon > 0 \) be small enough. Then there exist constant \(c(\epsilon) \) such that

\[|| P_n P_n R(-b; M_n) P_n || \leq c(\epsilon) \exp(-c(\epsilon) \beta^6/2). \]
(43)
\[\begin{align*}
\| R(-b;M_2) \|, \| R(-b;M_4) \| & \leq 1/b, \quad (44) \\
\| L_4 P_4 R(-b;M_2) P_4 \|, \| L_4 P_4 R(-b;M_4) P_4 \| & \leq \frac{1}{2}, \quad (45) \\
\| R(-b;M_2) L_4 R(-b;M_4) \| & \leq c\psi b^{1-\alpha}, \quad (46) \\
\| L_4 R(-b;M_2) L_4 R(-b;M_4) \| & \leq c\psi b^{1-\alpha}. \quad (47)
\end{align*} \]

Proof: Inequality (44) is an easy consequence of estimate (31). Let \(|a \rangle \) and \(|b \rangle \) be two normalized states in the Fock space. To prove (45), we consider
\[
\langle a | L_4 P_4 R(-b;M_2) P_4 | b \rangle = \sum_{n=\text{odd}} \langle a | L_4 P_4 R(-b;M_2) P_4 | b \rangle \\
= \sum_{n=\text{odd}} \langle a | L_4 P_4 R(-b;M_4) P_4 | b \rangle \\
= \sum_{n=\text{odd}} \langle a | (1-P_4)M_2 P_4 \rangle P_n \times R(-b;M_4) P_4 | b \rangle \\
\leq \sum_{n=\text{odd}} c_{\psi} (n+2)^{2\alpha} \exp(-c_{\psi} b^{\alpha/2}) < \frac{1}{2}.
\]

In the last step above, we have used estimate (43) and a standard \(N_\psi \) estimate. Similar arguments establish estimate (46) and (47).

Lemma 3: For \(b \) large enough, the series (42) converges uniformly to an operator \(R(-b) \) which is a pseudoresolvent and satisfies
\[
\lim_{b \to \infty} (-b) R(-b) = I \quad (48)
\]
in the norm operator topology.

Proof: Estimates (44) through (47) imply that the \(n \)th term in (42) is bounded by \(c\psi b^{1-\alpha} \). Therefore, the series converges for \(b > c\psi b^{1/4} \) to an operator \(R(-b) \).

Clearly,
\[
\lim_{b \to \infty} \prod_{i=1}^\infty \| R(-b;M_i) L_i R(-b;M_i) \| = 0. \quad (49)
\]
This implies (48). It is not hard to prove that \(R(-b) \) is a pseudoresolvent.

Proof of Theorem 1: We follow the proof of Theorem 2.2 in Ref. 1. Equality (48) implies that \(R(-b) \) is a non-negative operator. Then \(-b - (R(-b))^{-1}\) defines \(M \) whose domain is independent of \(b \) because of the pseudoresolvent property of \(R(-b) \). The self-adjointness follows from the next lemma.

Lemma 4: If \(T : \mathcal{X} \to \mathcal{X} \) is an operator with dense domain on the Hilbert space \(\mathcal{X} \), and if \(T^{-1} \) exists and has a dense domain, then \((T^*)^{-1} = (T^{-1})^*\).

\[\text{Present address: Department of Mathematics, University of Washington, Seattle, Washington 98195} \]

3. While this paper was in preparation, a set of notes by J. Glimm and A. Jaffe, “Boson Quantum Fields” came out, in which they treat the self-adjointness of the local Lorentz generator without using second-order estimates.