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Expressions are derived describing nuclear spin relaxation in paramagnetic salt solutions under 
conditions where the electron spin Hamiltonian is dominated by a uniaxial quadratic zero-field 
splitting (zfs) interaction. In this situation, the electron spin vector is quantized along 
molecular axes rather than along the external magnetic field. By expressing the time 
dependence of the electron spin operators, written in the molecular coordinate frame, in the 
Heisenberg representation and then transforming these expressions to the laboratory 
coordinate system, simple closed form expressions for the paramagnetic nuclear relaxation 
increment have been derived. Electron-nuclear dipole-dipole and scalar relaxation 
mechanisms are considered. The resulting expressions parallel those of Solomon­
Bloembergen-Morgan theory, but are valid in the zfs limit rather than the Zeeman limit. 
Nuclear relaxation rates in the zfs and Zeeman limits exhibit characteristic qualitative 
differences, some of which have been noted in earlier studies. Of particular note is the fact that 
the scalar contribution to T 1-;; I is much larger in the zfs than in the Zeeman limit. In most 
circumstances, T 1-;; 1= T 2-;; I in the zfs limit, while in the Zeeman limit, scalar relaxation 
usually contributes significantly only to T 2-;; I. A vector model of this phenomenon is 
suggested. The results are valid for arbitrary values of the electron spin quantum number but 
they assume that electron spin relaxation is in the Redfield limit, i.e., that the correlation times 
of the coupling between electron spin and the lattice be short on the time scale of electron spin 
relaxation. This condition is probably satisfied widely when the static zfs is large. 

I. INTRODUCTION 

Spin relaxation of nuclei by paramagnetic metal ions in 
solution generally results from time-dependent electron-nu­
clear dipolar and scalar magnetic couplings as well as, in 
certain instances, fluctuations in the local magnetic field 
arising from the Curie spin magnetization. I The latter 
mechanism is expected to be significant only for macromole­
cules when molecular reorientation is slow and when the 
static magnetic field is large. The former two mechanisms 
usually dominate; these are described by the theory of Solo­
mon2 and Bloembergen and Morgan. 3 Limitations of the 
SBM theory have been discussed.4

•
5 Probably the most seri­

ous is its assumption that the electron spin Hamiltonian is 
dominated by the Zeeman interaction, that is, that zero-field 
splittings are negligible. This will normally be true for solu­
tions of spin doublet species (e.g., organic radicals) and, 
among transition metal ions, for Mn ( II) and Gd (III ), for 
which zero-field splittings (zfs) are frequently rather small 
due to the absence of first-order spin-orbit coupling between 
the ground electronic state [6A I for Mn(lI) and 8AI for 
Gd(III)] and low-lying excited states. For most other ions, 
the zfs arising from the electrostatic potential of the ligand 
field is much larger, and SBM theory must be applied with 
greater care. [The term "zero-field splitting" as used here 
includes level splittings that are caused by electrostatic and 
magnetic interactions which depend on even powers (bilin­
ear or higher) of the electronic spin operators. These in­
clude, in the terminology of Abragam and Bleaney,6 elec­
tronic quadrupole couplings as well as, for spin S;p2, 

higher-order electrostatic interactions of the spin with the 
lattice. It also includes magnetic dipole couplings between 
individual electron spins. It does not include electron-nu­
clear hyperfine couplings although these, strictly speaking, 
also contribute to the level splittings at zero field. ] 

A general theory of spin relaxation in paramagnetic so­
lutions has been developed? starting from the Liouville 
equation of motion 

~ p = - i[JIt",p] == - i.!f P 
dt 

of the density operator p. The stochastic Liouville equation 
has been applied to the calculation ofline shapes in esr spec­
tra8 and, more recently, to the analysis of nuclear spin relax­
ation in paramagnetic solutions. 5

•
9

-
15 The Liouville operator 

.!f describing an electron spin, a nuclear spin, and their cou­
plings with each other, with the static laboratory magnetic 
field, and with the lattice can be written 

.!f T = .!f IZ + .!f sz + .!f IS, dip + .!f IS,sc + .!f zfs + .!f IQ' 

Successive terms describe, respectively, the nuclear Zeeman 
interaction, the electronic Zeeman interaction, electron-nu­
clear dipolar and scalar hyperfine couplings, the zero-field 
interaction of the electron spin with the lattice, and the elec­
trical quadrupole interaction of the nucleus. The principal 
advantage of the Liouville formalism is its generality: the 
equations of motion can be formulated using an electron spin 
Hamiltonian that includes both Zeeman and zfs interac­
tions, and it can be solved numerically under conditions 
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where the electron spin system is not in the Redfield limit, 
i.e., when the electron spin relaxation time 7"s is comparable 
to or shorter than the characteristic correlation times of the 
coupling between the electron spin and the lattice. While it 
offers great generality, the Liouville approach has substan­
tial disadvantages. These reside in the relatively cumber­
some methodology needed and in the fact that the resulting 
solutions are obtained numerically. Lacking the closed form 
analytical expressions of SBM theory, the results are not 
very transparent with regard to underlying physical pro­
cesses. The Liouville approach has been used to analyze nu­
clear relaxation in model systems, particularly Ni (H20) ~ + , 

16-18 for which S = 1, and for tris- (acetylacetonato)chro­
mium (111),14.19 for which S = 3/2. 

The present work is concerned with the limiting situa­
tion in which a static zfs interaction dominates the Hamilto­
nian of the S spin so that 

Jf'zfs ~Jf'sz,Jf'/S.dip,Jf'/S.SC 

and 

.!f zfs ~ .!f sz,.!f IS.dip ,.!f IS,sc . 

In this case, the spin vector S is quantized along molecular 
axes. [S and S are spin quantum number and spin vector, 
respectively, so that [S [2 = S(S + 1)]. The natural basis 
system for writing the spin Hamiltonian of S is the molecular 
coordinate system which diagonalizes the zfs tensor. The use 
ofthis basis brings considerable simplification to the descrip­
tion of the time dependence of the electron spin operators. In 
particular, the time correlation functions of S which appear 
in the density matrix theory of nuclear spin relaxation, 
namely, (Sz(t)Sz(O» and (S± (t)S+, (0», can be ob­
tained directly from the equations of motion of the spin oper­
ators in the Heisenberg representation. The resulting func­
tions possess rather simple closed forms that are valid for 
geueral S. After averaging over molecular orientations, this 
approach leads to analytical expressions for the nuclear re­
laxation rates, T i; I and T 27, I (=RI,2p), that parallel the 
analogous results of SBM theory but are appropriate to the 
limit oflarge zfs (the zfs limit). Magnetic dipole--dipole and 
scalar relaxation mechanisms are considered. The approach 
follows that of Lindner,20 who derived limiting analytical 
expressions for dipole--dipole relaxation in the specific case 
of S = 1. A similar, though somewhat less detailed, treat­
ment of intermolecular (solute-solvent) nuclear spin relax­
ation in paramagnetic solutions has recently been givenY 

The present approach does not explicitly calculate the 
relaxation behavior of S through a detailed solution of the 
equation of motion for the coupled lattice and spin systems. 
Rather, as in SBM theory, the electron spin relaxation times 
enter as parameters of the theory. In this regard, it should be 
noted that the definitions of electron spin relaxation times 
differ markedly in the zfs and Zeeman limits. In the former, 
relaxation occurs with respect to molecular axes, in the lat­
ter, with respect to laboratory axes. This leads to interesting 
differences in relaxation behavior in the two limits. Of par­
ticular note is the fact that the scalar contribution to T 17, I is 
much larger in the zfs than in the Zeeman limit. In most 
circumstances, T 17, I = T 27, I in the zfs limit, while in the 
Zeeman limit, scalar relaxation usually contributes signifi-

cantly only to T 27, I. Also, in the zfs limit there are important 
characteristic differences in relaxation behavior produced 
by integer vs half-integer electron spin systems. The physical 
basis of these phenomena is discussed below. 

II. THEORETICAL 

A. Magnetic dipole relaxation 

Relaxation of the nuclear spin I is presumed to result 
from magnetic dipole coupling to the magnetic moment of 
an unpaired electron spin S in the same molecule. S is subject 
to a quadratic uniaxial zfs interaction, which is the dominant 
term of the electron spin Hamiltonian. 1 and S are separated 
by a vector 1', oriented at polar angles (e, rp) in the molecular 
coordinate system which diagonalizes the zfs tensor. The 
molecule containing 1 and S reorients rapidly on the time 
scale of nuclear, but not necessarily electron, spin relaxation. 
The electron spin system is assumed to remain at thermal 
equilibrium during the relaxation processes of I. 

The electron-nuclear dipolar Hamiltonian can be writ­
ten as a scalar product of two first-rank spherical tensors21 .22 

H· =fk7t", =fz"3- 112(-1)I- ql(I)F(I) (1) 
dIp dIp ~ q - q' 

q 

The 1 ~ I) are the components of the first-rank spherical ten­
sor formed by the nuclear spin operators 

1<.1:) = + 2 - 1121 ±' 

If/) = Iz' 

(2a) 

(2b) 

and F (I) is a first-rank spherical tensor formed from the 
direct product of spherical tensors of the electron spin and 
polar spatial variables, F (1) = Kr - 3{S (I) ® e (2) P. 

F(1) -3112'5-112Kr-3[(6-112)S(1) e(2) 
+1 - +1 0 

+ (_2-112)S~I)e<.;\ +s~\e<';)d, (3a) 

F~I) = 3112 '5 -1I2Kr -3[ (- 2 -112) (S~\ e~)1 

+ S~)I e<.;\) + (2/3)1I2s~l)e~2)], (3b) 

F(1) = 31/2'5-112Kr-3[6-112S(1) e(2) 
-I -I 0 

with 

K = 30
1/2

YIgPo (:;) . 

These equations are in SI units; YI is the magnetogyric ratio 
of spin I, g is the electron g factor, Po the Bohr magneton, flo 
is the magnetic permeability of free space, and r is the I-S 
inters pin distance. The S ~ I) are defined 

S<.1:\ = +2- 112S±, 

S~I) =Sz' 

(4a) 

(4b) 

and the e <,:;) (e,cp) are Racah's normalized spherical har­
monics, 

(5) 

of rank 2 and order m. F (I) constitutes the lattice portion of 
the dipolar coupling Hamiltonian. The electron spin vari-

J. Chern. Phys., Vol. 93, No. 10, 15 November 1990 



Robert R. Sharp: Spin relaxation in paramagnetic solutions 6923 

abIes S ~ \) and the spatial variables both are assumed to re­
main at thermal equilibrium during the relaxation of 1. 

Using Eq. (1) for the dipolar Hamiltonian, the longitu­
dinal nuclear relaxation rate can be written, using results of 
density matrix theory:23 

- 2 - t. 3 - I f: 00 dt [ (F~\ (t)F<J-\ (0) )ei"'ll 

(6) 

This result assumes that Redfield theory provides a valid 
description of nuclear spin relaxation but not necessarily of 
electron spin relaxation (or more specifically, that the corre­
lation times of the interactions responsible for nuclear spin 
relaxation are short compared to TI,l' while those responsi­
ble for electron spin relaxation are not necessarily short com­
pared to 7 1,S)' In Eq. (6), the tensor components of the 
F ~ t 1 (t) are written in the laboratory coordinate frame. The 
following physical situations can be distinguished: 

( 1) The Zeeman limit. Both I and S are quantized in the 
laboratory frame by a dominant Zeeman interaction. A ver­
aging over molecular orientations in an isotropic liquid cor­
responds to averaging the functions C ~l (O,<p) over the 
Euler angles. When the the spin and spatial variables are 
uncorrelated in time, the averages can be computed analyti­
cally, giving the results ofSBM theory. 

(2) The zjs limit. I is quantized by the laboratory field 
and S is quantized in the molecular coordinate frame. In this 
situation, it is most convenient to transform the components 
of S [given in the laboratory frame by Eq. (4) ] to the molec­
ular coordinate system using the Wigner rotational matrix 
elements, 

S~\) = LS~,\)g;~,~(a,fJ,y;t). (7) 
q' 

(The karat superindex denotes vector and tensor compo­
nents defined in the molecular coordinate system which dia­
gonalizes the zfs tensor.) 

(2a) Intermolecular relaxation in the zjs limit. In this 
situation, the spatial coupling of S and I [described by the 
tensor C (2l (O,r/J) and the interspin distance r] fluctuates in 
the laboratory frame due to molecular translational diffu­
sion. Mathematically, the fluctuation is described by the 
time correlation functions 

C(2l(0 A.·O) C(2l (0 A.·t) q ,~, -q t'f" 

?o X ~ , 

where (O,r/J) are polar coordinates in the laboratory frame, 
andro is the value ofratt = O. Calculation of these functions 
requires an appropriate physical model of translational dif­
fusion. In addition to its time dependence due to transla­
tional motions, the local dipolar field of the spin S fluctuates 
due to molecular reorientation of the molecular axes, as de­
scribed by time dependence in the Wigner matrix elements 
g; ~~ (a,fJ,y;t) in Eq. (7). And finally, a third source of time 
dependence arises from the motion of S, due both to spin 
precession and relaxation. This time dependence is described 
by the time correlation fu~ctions (S <J-lq (O)S ~lq (t», in 
which the spin components S ~Il(t) are expressed in the mo-

lecular coordinate system. The forms of these correlation 
functions are discussed in greater detail below. 

(2b) Intramolecular relaxation of S in the zjs limit. In 
this situation also, S is quantized in the molecular frame. 
Thus the first-rank tensor F~\) in Eq. (6) is most conve­
niently expressed in molecular coordinates, using the 
Wigner matrices: 

F(ll(t) =" F(ll(t)g;(ll(afJy·t) q L q' q'q' , , • (8) 
q' 

The functions C ~2l (O,r/J) , which describe the relative spatial 
orientation of the nuclear and electronic spins, are fixed in 

"'-
the molecular frame. Thus the time dependence of F ~,I 1 (t) is 
due solely to electron spin relaxation and is contained in the 
time correlation functions (S ~\) (O)S ~lq (t». The transfor­
mation matrix elements g;~,ld(a,fJ,y;t) are time dependent 
due to molecular reorientation. 

An explicit expression for T l-:d!p can be derived from 
Eqs. (1 )-( 8). In the following, the Euler angles {which are 
the arguments of the Wigner transformation matrix ele­
ments [Eqs. (7) and (8) ]} and the polar angles {which are 
the arguments of the spherical harmonics [Eq. (5)]} are 
omitted for the sake of brevity. Writing the functions 
(F<J-li (t)F~\ (0) )/"'11 in the molecular frame gives 

(F<J-li (t)F~\ (O»ei"'ll 

= eicd1t (~F~,\)(t)g;~.t~ I (t) ~ F~!l(O)g;~!l_1 (0») 

= eild1t L (F~\)(t)F~)q (0» g;~lll (t)g;~)q_1 (0), 
q 

(9) 

where the orthogonality properties of the Wigner rotational 
matrix elements have been used to contract the double sum­
mation. Equation (9) assumes that spin and spatial func­
tions are uncorrelated in time and that the averages can be 
taken separately. 

The quantities g; ~ lJ- I (t) g; ~ ~ I (0) describe reorienta­
tion of the molecular axes with respect to the laboratory 
frame. If the reorientational motion of the I-S vector is de­
scribed by the classical diffusion equation, these functions 
decay exponentially with respect to time, with three reorien­
tational correlation times required in general for a complete 
description of a rigid molecule (corresponding to three rota­
tional degrees of freedom of a rigid molecule). 24 For simpli­
city, we assume that molecular reorientation is isotropic, so 
that 

g;~lJ-I (t)g;~)q-I (0) 

= ( - 1) q + I [g; ~ III (0) [2 exp ( - t /'T~\) 

= ( _ 1) q + 13 - I exp ( - t /'T~I ) ) . ( 10) 

It should be noted in Eq. (10) that the reorientational corre­
lation time 7~1) describes the motion of a first-rank tensor 
and thus is not the same as that which appears in formulas 
for dipole-dipole relaxation in the Zeeman limit, which is 
7<;). From classical diffusion theory, 24 
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where DR is the trace of the rotational diffusion tensor, so 
that rkl) hk2

) = 3. 
With these assumptions, the integrand ofEq. (6) can be 

written 

exp( - t Irk
l
» (eiW/' + e - iW/,) 

3 

X I( -1) -q+ I(F~I)(t)F~)q(O». 
q 

Using Eqs. (3a)-(3c), 

(11 ) 

I( - l)q-I(F~I)(t)F~)q(O» = (F<.1.)1 (t)F~)1 (0» + (F~)I (t)F<.1.)1 (0» - (F61)(t)F~/)(0» 
q 

= 31. 5 - l,rr- 6{ (S61)(t)ST)(0» [ - ( ~ )C62)C 62) + C<':)I C<;)I ]} 

+ {«S<.1.\ (t)S~\ (0» + (S~\ (t)S<.1.)1 (0») 

X[6- I -"C(2)-"C(2)-2- I C(2) C(2) +-"C(2) C(2)]} 
o 0 -I +1 +2 -2 . (12) 

The form of the time correlation functions 
(S~I)(t)S~)q(O» and the significance of electron spin re­
laxation times in the zfs limit vs those in the Zeeman limit 
deserves some comment. In the Zeeman limit, S is quantized 
along laboratory axes, and its relaxation times, r s I and r S2' 

are defined with respect to these axes. Both quantities are (at 
least in principle) measurable by esr spectroscopy. For tran­
sition metal ions with electron spins S> 1, relaxation results 
from thermal modulation of the zfs tensor, which provides a 
time-dependent perturbation to the Zeeman energy. The 
time dependence of the zfs results from both molecular reor­
ientation and from vibrational relaxation of the coordination 
sphere of the metal ion. 

In the zfs limit, S is quantized along molecular axes and 
undergoes its precessional motion with respect to these axes. 
In a uniaxial zfs, the spin Hamiltonian is 

JY = D [(S )2 - IS(S + 1)] = (2) 1/2DS (2) =(J) S (2) zfs z) ) O-mO' 

(13) 

where D = 21TcD is the zfs in rad s - 1. The time dependence 
of the precessional motion of S can be written in the Heisen­
berg representation, for arbitrary S, in analytical form21 : 

(S,mIS 61)(t)S61)(0) IS,m) = m2 exp( - t h!.:», 

A 'S(2)A ·s,Z" A 

S (I)(t) - 10) 0 'S(1) -IW 0 -S(1) o -e 0 e - 0 , 

A • S(2) 1\ • S,Zl 

S (1) (t) - '''' 0 'S(1) -/OJ 0 ' 
±I -e ±Ie 

= exp[ + i!!!..- c + (2S (I) T 1)t]s (1) - 2 2,0 0 T ± I 

(14) 

(15) 

=exp[ ±iD(2S61)+1)t]S~\, (16) 

where cto = 6112 (the phase is chosen to make the raising 
operator real and positive). With respect to relaxation, the 
role of the zfs and Zeeman interactions are reversed; the 
Zeeman interaction provides a random perturbation to the 
spin Hamiltonian that is modulated by molecular reorienta­
tion, thereby relaxing the zero-order spin states of the zfs 
Hamiltonian. Vibrational modulation of the zfs tensor pro­
vides an additional (quite possibly dominant) relaxation 
mechanism. Spin relaxation times can be defined with re­
spect to the molecular coordinate system through the time 
correlation functions of the components of S. Assuming an 
exponential relaxation function (which is strictly valid in the 
Redfield limit for S25-27), the diagonal matrix elements of 
the needed time-correlation functions are 

(S,mIS~)1 (t)S <.1.\ (0) IS,m) = ( - 2 - 1) Ictm 12 exp( - iD [2m + 1 ]t) exp( - t h~~+ I) 

(S,mIS(:)1 (t)S~\ (0) IS,m) = - 2 -llcs,m 12 exp( + iD [2m - 1]t) exp( - t h;';,~_1 ) 

(17a) 

(17b) 

- 2 - Ilcs~!l12 exp( + jD [2,u + 1] t) exp( - t h~2ll'!l)' (17c) 

ctm is the raising operator of the S spin manifold, its modu­
Ius given by Ictm 12 = S(S + 1) - m(m + 1). In Eq. (17c), 
the relation JcS-:-m 12 = Jctm _ 1 12 has been used with the defin­
ition,u=m - 1. 

Equations (17a)-(17c) describe the motion of the spin 
vectors through the matrix elements of the time correlation 
functions of the tensor components S ~ I). The precessional 

motion of the spin vector results from its interaction with the 
stationary Hamiltonian JYzfs and is described by the time­
dependen t factors of Eqs. (15) and ( 16). In addition to the 
precessional motion, the spin operators contain time depen­
dence due to thermal relaxation processes. These can be de­
scribed formally by stochastic terms of the electron spin 
Hamiltonian. The major stochastic terms for S> 1/2 de-
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scribe vibrational modulation of zfs tensor and rotational 
modulation of the Zeeman interaction. In Eqs. (17a)­
(17c), the effect of relaxation is described phenomenologi­
cally by longitudinal and transverse spin relaxation times, 
,..(1) and r(2) In the zfs limit r(l) and r(2) are not in 
I m m,m ± I • , m m,m ± 1 

principle measurable by esr, since spin relaxation occurs 
with respect to the molecular coordinate frame, not the labo­
ratory frame. In the following, I will not distinguish between 
them. 

Evaluating the traces (S~I)(t)S~)q(O» 
= Tr{S ~I) (t)S ~)q (O)} in the high-temperature limit for S, 
we have 

(Sf,1) (t)Sf,I)(O» = (t)S(S+ 1) exp( -tlrs), (18a) 

(S';,)I (t)S~\ (0» 

= (-2- 1)(2S+ 1)-1 

Xexp( - t Irs) Llcs:m 12 exp( ± immt) 
m 

(S<].\ (t)S~\ (0» + (S~)I (t)S<].\ (0» 

= ( - 2 - 1)( 2S + 1) - I exp ( - t Irs) 

XL Ictm 12(eiWml + e - iWml) 

m 

(18b) 

(18c) 

with mrn = D(2m + 1). These results have been simplified 
through the use of a single parameter r S = r~) = r~.!.. + I to 
describe the relaxation of S in the molecular frame. Substi­
tuting Eqs. (18a)-(18c) into Eq. (12) and using Eqs. (6) and 
( 11) gives, as the final result for the intramolecular dipolar 
paramagnetic relaxation increment, 

T -I = 4r1iP! (~)2{S(S + 1) [(~) CmC(2) _ C(2) C<':) ] 'J'(m ) + 2- 1 

I,d.p I' 41T 3 3 0 0 + I I I 

where 

(20) 

and 

(r
c

) -I = (rs) -I + (rkl» -I. (21 ) 

'" '" In Eq. (19), the functions C ~2) (O,r/J)C <':)q (O,r/J) de-
scribe the orientation of the nuclear spin I in the molecular 
coordinate system. The explicit forms are 

C~/)(O,r/J)Cf,2)(O,r/J) =!(3 cos2 0- 1)2, 

C2
+ I (O,r/J)C 2

_ 1 (O,r/J) = - ~ cos2 ° sin2 0, 

C ~)2 (O,r/J) C <':)2 (O,r/J) = 2 - 2 sin4 0. 

T -I = 40iP! (~)2 {S(S + 1) 
2,d.p I' 41T 3 

(22a) 

(22b) 

(22c) 

The fact that Eq. (19) is independent of the azimuthal angle 
r/J results from the assumption of axial symmetry in Yr s. 

The transverse relaxation rate can be calculated in a par­
allel manner. In terms of the components of F~I), T 2~dlp can 
be written23 

T-~ =2- 1.3- 1500 

dt[(F(I) (t)F(1l (0»e iw
/
1 

2,d.p - I + I 
- 00 

+ (F~\ (I)F~\ (0»e- iw
/
1 

+ (Ff,I)(t)Ff,\)(O»]. (23) 

Transforming S ~ I) and F ~ I) to the molecular coordinate sys­
tem with Eqs. (7) and (8) and calculating the time correla­
tion functions (F~ \) (t)F~)q (0» using Eqs. (9)-(18) gives 

x [( ~ )Cf,2)Cf,2) - C~)I C<':\ ] 'j(O) + 2 -I [6-IC~2)C~2) - 2 -IC(~\ C<':)I + C~)2C (~)2] 

X(2S+ 1)-1 ~ IctrnI2{j(mrn +mI) +j(mm -mIn}. (24) 

This result is identical to that for T I.dlp except for the replacement of j (m I) by j (0). 

B. Scalar relaxation 

The isotropic electron-nuclear scalar coupling is de­
scribed by the Hamiltonian 

H =~ =fzAI'S sc sc 

= iiI, (-1)1-q3-1/2F~l)F~)q. 
q 

In this case, the "lattice" portion of Yrsc is 

F~I)(t) = 31/2A(t)S~I)(t), (26a) 

F~\ (t) = 31/2A(t)S~\ (t). (26b) 

The F(;/q (I) are r~ndom functions of time due to fluctu­
ations in A and/or S. Fluctuations in A can occur in certain 
situations where chemical exchange events interrupt the sca­
lar coupling. An effective contact time rex between I and S 
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enters the theory through the time correlation function, with 

A(t) 'A(O) = A 2 exp( - t !rex) (27) 

of the coupling constant. When I and S belong to the same 
molecule, 7 ex is interpreted as a mean residence time in the 
paramagnetic molecule prior to a chemical exchange event. 
For intermolecular relaxation, I and S belong to different 
molecules, and 7 ex can be interpreted as an effective contact 
time between solvent and solute, determined by the pro­
cesses of translational diffusion. It is assumed that fluctu­
ations in A and S are uncorrelated in time and that both the 
spatial and spin variables remain at thermal equilibrium dur­
ing the relaxation of 1. The general expressions for T ,~d and 
T 2-:.1 obtained from density matrix theory [Eqs. (6) and 
(23)] can be written in the following form: 

T"sc 
- 2-' J:oo A(t)'A(O) [(S<.!.), (t)S<J-\ (O)e

iW
/
t 

+ (S <J-\ (t)S <.!.\ (0) )e - iW/I] dt, 

_1_=2-'Joo A(t)'A(O) [( _2-') 
T2,sc - 00 

x {(S <.!.\ (t)S (~), (0) )/"/1 

+ (S<J-), (t)S<.!.\ (O)e- iWI
'} 

+ (S&')(t)S&')(O) ]dt. 

(28) 

(29) 

The spin variables in Eqs. (25 )-(29) are written in the 
laboratory frame. As in the previous section, we assume that 
the electron spin Hamiltonian is dominated by a uniaxial zfs 
[Eq. (13 ) ], which defines the quantization axes of S. The 
transformation of the spin functions to the molecular frame 
and the calculation of the time correlation functions 

(S<J-), (t)S<.!.\ (0) = I (S~')(t)S<.!.)q(O) 
q 

x ~~';, (t)~<.!.)q_, (0) (30) 

was described above [Eqs.( 14 )-( 18)]. As in the dipolar cal­
culation, spin and spatial functions are assumed to be uncor­
related so that their averages can be computed separately. 
We arrive at the result 

T,-:Sd= ~2 {~ S(S+I)}(wI ) + (2S+ 1)-' 

X ~ Ictm 12[}(wm - WI) + }(Wm + WI)] } , 

(31) 

T 2-:S~ = ~ 2 {~ S(S + 1 )}(O) + (2S + 1) -, 

where 

X ~ Ictm 12[J(Wm - WI) + }(Wm + WI)] } , 

(32) 

Wm =D(2m + 1), 

(33) 

(34) 

Expressions (31 ) and (32) differ from each other only in the 
factors}(w I ) and} (0). 

Ill. DISCUSSION 

For purposes of comparison, the Zeeman limit expres­
sions for scalar relaxation corresponding to Eqs. (31) and 
(32) are23 

T ,-:Sd = jA 2S(S + 1)}2 (ws - WI)' (35) 

T 2-:Sd = jA 2S(S + 1) [}2 (ws - WI) +}, (0)]. (36) 

The scalar correlation times are defined 7eJ' = 7S-:i' + 7 e--;", 

where i = 1,2 denote longitudinal and transverse relaxation 
times of S. 

The expressions corresponding to the zfs limit 
[Eqs.(31) and (32)] and the Zeeman limit [Eqs. (35) and 
(36)] coincide in the extreme narrowing limit. In this case, 
7, is short enough that WI' WS , Wm ~7,-', and hence 

(37) 

With the use of the identity 

(2S+ 1)-' I Ics:mI 2 =jS(S+ 1) (38) 
m 

it is apparent that Eq. (31) reduces to Eq.(35), and Eq. (32) 
reduces to Eq. (36). 

It is also possible to compare Eqs.(19) and (24) with 
the results of SBM theory, although only in a formal sense 
since the physical pictures in the two limits are quite differ­
ent. The limiting expressions coincide in the extreme nar­
rowing situation [Eq.(37)], when the geometric factors, 

C (2) C (2) ,are averaged over the full space of the Euler an­
gle~. This qaverage is given by the normalization relation 

Xc (/) Xc (/) = ( - 1) q (21 + 1) - , 
q -q , 

with 1=2. [This kind of averaging in Eq. (19) is clearly 
formal rather than physical.] With these replacements, Eq. 
(19) reduces to 

T - I = (~) (12.)2 YilffJ~ S(S + 1) '(0) (21) 
',dip 3 41T r 6 '1 

whil;h agrees with the SBM result in the extreme narrowing 
limit. 
Scalar relaxation in the zjs limit 

The most interesting difference between scalar relaxa­
tion in the Zeeman and zfs limits is in the relative magnitudes 
of T ,-:s~ and T2-:S~' In the Zeeman limit, scalar coupling is 
frequently an important T2 mechanism but rarely a signifi­
cant contributor to T,. This results from the fact that}2 (ws ) 
is generally much smaller than}, (0), except in the unusual 
situation where (WI - Ws )2i; < 1, in which case both T ,-:Sd 
and T 2-:.1 are very small. In the zfs limit, in contrast, T 2-:S~ 
and T 2-:Sd are in most cases equal, with T ,-:Sd much larger 
than predicted by SBM theory. Some aspects of this phe-
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nomenon have been described and commented upon by Ben­
etis et al. \0 

The physical reason for this characteristic difference of 
the two limits is illustrated vectorially in Fig.l. In the Zee­
man limit [Fig. 1 (A) ], I and S spins are shown as vectors 
precessing about the laboratory magnetic field B, with the 
time dependence of the spin components I z and I ± (t) given 
by the Heisenberg form of the operators, 

+;"'1'1 =e + 

1_ (t) = e-;wl'I _, 

Iz(t) = Iz 

and similarly for S ± (t). (The commutation relations 
[ I ± ,Iz] = + I ± have been used to commute I ± and 
e - ;"'IIz'in the first two relations). The z components of I and 
S are static except for effects of relaxation. The relaxation of 
I along the z direction (i.e., T1 relaxation) results from ran­
dom fluctuations in the transverse components of the hyper­
fine energy, 2 - 1M [I _ (t). S + (t) + I + (t). S _ (t)]. 

These two terms oscillate at frequencies of ± (liJs - liJI ), 

and it is the power density of the scalar interaction at these 
frequencies that is responsible for relaxation. In the case of 
T2 processes, relaxation is effected by one transverse compo­
nent and one longitudinal component of the hyperfine ener-

FIG. 1. Scalar coupling in the Zeeman (A) and zfs (B) limits. In the Zee­
man limit (A), spins I and S are quantized by the external field B, about 
which they precess with angular frequencies WI and WS' In the zfs limit (B), 

I is quantized by the external field, and S is quantized along the molecular z 
axis, about which it precesses with angular frequency W m . S,.x and S,.z are 
the components ofS that are static (i.e., non-oscillating) along the laborato­
ry x and z axes, respectively. These give rise to the low frequency portions of 
the spectral density function of scalar coupling. 

gy, and the corresponding spectral density functions are 
j (0) andj(liJs - liJI)' 

The situation in the zfs limit is pictured in Fig. 1 (B). As 
in the Zeeman limit, relaxation of I z is driven by fluctuations 
in Sx (t) and Sy (t) (i.e., the transverse components of S in 
the laboratory frame). Relaxation of Ix is driven by the com­
ponents Sy (t) and Sz (t) (also in the laboratory frame). In 
this limit, however, S is quantized in the molecular frame (x, 
y, z). The hyperfine field associated with the z component of 
S, Sz, is non-oscillating. Sz has components along the labora­
tory x and z directions, denoted Sz x and Sz z in Fig. 1 (B). 
The longitudinal interaction betw~en Sz.z A ~nd I z is static, 
while the transverse interaction between Sz.x and Ix oscil­
lates with frequency liJ I' The former contributes to T2 , the 
latter to T 1 • These are the low-frequency relaxation contri­
butions that are described, respectively, by j(O) andj(liJI ) in 
Eqs. (8) and (7). The spin components Sx and Sy that are 
transverse in the molecular frame oscillate at the transition 
frequencies liJm and give rise to the terms containing 
j(liJm ± liJ I ). However, it is the low-frequency terms [atj(O) 
andj(liJI )] that will dominate T ;-:.cl and T 2-:'c1 in nearly all 
circumstances. 

Another noteworthy point is the fact that scalar relaxa­
tion depends upon molecular reorientation in the zfs limit, 
but not in the Zeeman limit. The scalar interaction AI· Sis 
independent of the spatial orientation of the interspin vector. 
However, it is not independent of changes in the relative 
orientation of the coordinate systems in which I and S are 
quantized, hence the dependence of T I-:'~ and T 2-:'~ upon 7V) 
in Eqs. (31) and (32). As is the case for dipolar relaxation in 
the zfs limit, the relevant reorientational correlation time is 
Tkl

) rather than Tk2
). 

IV. CONCLUSIONS 

The dipolar and scalar increments to the nuclear spin 
relaxation rates are described in the zfs limit by Eqs. (19), 
(24), and (31), (32), respectively. These expressions are 
valid in the limit where the electron spin Hamiltonian is 
dominated by a quadratic zfs with uniaxial symmetry. The 
inclusion of first-order Zeeman couplings in the analysis is 
fairly straightforward20.21 although we have not done so 
here. 

The analysis assumes that the electron spin relaxation 
functions are exponential in time. This assumption is strictly 
true in the Redfield limit,25-27 i.e., when the motional corre­
lation times that produce electron spin relaxation are short 
compared to Ts. It is frequently stated in the literature that 
the spin system is outside the Redfield limit when T s is com­
parable to or shorter than T R' However, this criterion is 
probably unreliable when the zfs is large. In the zfs limit, the 
relaxation of S is not produced by reorientational modula­
tion of the zfs interaction, but rather by reorientational mod­
ulation of the Zeeman coupling and/or by vibrational modu­
lation of the zfs tensor. Which of these mechanisms 
dominates in a particular situation is not clear a priori. The 
Zeeman mechanism is field dependent (as the square of the 
field strength), while the zfs mechanism depends on the gra­
dients of the zfs tensor elements with respect to the normal 
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coordinates of the asymmetric vibrational modes.28 For vi­
brational modulation of the zfs tensor, the characteristic cor­
relation times are those for vibrational damping ('Tv)' of the 
order of a few picoseconds. In this case, an exponential relax­
ation function should be appropriate for quite short electron 
spin relaxation times (say, > 10 ps). When the Zeeman re­
laxation mechanism dominates, the relevant relaxation-pro­
ducing motions are due to molecular reorientation, and the 
correlation times are relatively long ('TR >30 ps). In this 
case, the Redfield limit is invalid and the use of an exponen­
tial relaxation function in Eq. (17) is questionable. 

It seems likely, however, that for systems with large zfs 
the vibrational relaxation mechanism will normally domi­
nate, since for ions with large static zfs, the gradients of the 
zfs are likewise expected to be large. Extending this line of 
reasoning, one would predict that electron spin relaxation 
times for ions in the zfs limit will be independent of'T R but 
not of 'Tv' This point is readily checked from the temperature 
dependence of'Ts, which is rather different for the processes 
of molecular reorientation and vibrational damping. Molec­
ular reorientation is described (at least approximately) by 
the Debye equation, which predicts that 'T R varies as (viscos­
ity over temperature). The vibrational damping mecha­
nism28 leads to a temperature dependence, 
'TS-

1 ex: TII2 coth(wolk '), where Wo are characteristic fun­
damental vibrational frequencies of atoms in the first coordi­
nation sphere of the metal. The predicted temperature de­
pendence for the vibrational mechanism is considerably 
milder than for reorientation. A recent study involving 
Mn (III) [acac b in the zfs limit21 indicated that in this case 
the dominant 'T s relaxation mechanism is in fact vibrational. 
For chemical systems in the zfs limit with very long 'T R (e.g., 
metallo-enzymes, transition metal ions bound to polymers), 
the Zeeman interaction is effectively static and relaxation of 
S will almost certainly be dominated by vibrational motions 
of the ligands. It is probably significant in this regard that the 
spin relaxation times for Cr(III) are essentially the same in 
aqueous solutions of the low molecular weight binary nu­
cleotidecomplexes Cr(lll) [ADP] and Cr(lll) [ATP] as in 
high molecular weight ternary complexes in which these bi­
nary complexes (Cr(lll) [ADP], Cr(lll) [ATP]) bind to 
metallo-enzymes.29,30 
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