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The two-dimensional supersonic irrotational flow of a gas in a jet is studied by use of the K4rm4n-Tsien
pressure-volume law. There are two limitations to such a study: (1) since the fluid flow is not continued from
the subsonic range, arbitrary boundary conditions must be prescribed; (2) use of the K4rm4n-Tsien pressure-
volume relation implies a restriction on the permissible range of pressure, density, and velocity. On the other
hand, use of the Kdrmén-Tsien law furnishes several advantages: (1) the velocity potential and stream
function satisfy the wave equation in the hodograph plane and hence these functions can be easily deter-
mined; (2) the mappings between the physical and hodograph planes may be completely characterized and
studied in detail. This gain in information should be valuable in the qualitative understanding of phenomena
as well as in obtaining first approximations to quantitative solutions. In the case of jets, with free stream
lines as boundaries, it is shown that two functions possessing certain desired properties completely determine
the Kdrméan-Tsien flow. Further, the phenomenon of the periodic recurrence of the free stream jet boundary
is explained by a folding property of the map of the flow in the hodograph plane.

1. INTRODUCTION

UR problem will be to develop a simplified theory

for the two-dimensional, irrotational, supersonic

flow of a compressible gas in a jet. Owing to the assump-

tion of the validity of the Kdrman-Tsien pressure-

volume relation, the relation between the maps of the

flow in the physical, hodograph, and stream function-
velocity potential planes can be explicitly exhibited.

In the physical (x, ¥) plane, the velocity potential, ¢,
and the stream function, ¢, satisfy a nonlinear second-
order partial differential equation. However, in the
hodograph (w, 6) plane (where w is the angle between
the characteristics in the physical plane and 6 is the
angle between the velocity vector and the x-axis of the
physical plane), these functions satisfy a linear second-
order partial differential equation. For the adiabatic
pressure-volume relation, this equation has variable
coefficients. In spite of the fact that this equation can
not be explicitly integrated, Frankl! has discussed vari-
ous existence theorems. If the adiabatic pressure-volume
curve is approximated by use of the tangent line to this
curve at an appropriately chosen point (this is the
Kérm4n-Tsien pressure-volume relation), the above
mentioned linear differential equation becomes the
wave equation and explicit solutions may be found.
When boundary value data are given along the line
w=w; (this line can be taken arbitrarily close to the
sonic line w=wy), the solution of the wave equation
depends upon the region of integration in the (w, 6)
plane. By examining the maps of the flow in the (w, 8),
(¢, ¥), and (x, y) planes, the proper integration regions
in the (w, §) plane are determined. Thus, the velocity
potential and stream function can be determined in the
(e, 6) plane and finally these functions can be mapped
into the physical (x, ¥) plane.

Our results are the following: (1) an analytic method,
which depends upon a knowledge of two arbitrary func-
tions, for treating fairly uniform supersonic flows in jets

1F, Frankl, Bull. Acad. Sci. U.RS.S., Ser. Math. (Izvestia
Akad. Nauk S.S.S.R.), 9, 121-143 (1945).

with free stream lines is developed; (2) the phenomenon
of the periodic recurrence of the free stream jet bound-
ary is explained by a folding property of the map of the
flow in the hodograph plane.

Before concluding this introductory section, we shall
list some of the formulas® used in our previous general
study of the Kdrman-Tsien pressure-volume relation. If
we replace the usual adiabatic gas law by a tangent line
drawn at the point (1/py, 1) in the pressure-density
diagram, one finds that

pr—p=a’e?[(1/0)—(1/p1)], (1.1)

where p is density, p is the pressure, ¢ is the local sound
speed. From (1.1) and the Bernoulli relation, it follows
that

Pot=F, (1.2)

where w is the magnitude of the velocity and &, ! are
constants. Further, it can be shown that

(w/w:)=1+M [ (2/7)+(1/¥)], (1.3)

where M; is the Mach number of the flow for w=1w;,
and y=1.4. Finally, it may be shown that the angle, w,
between the two families of characteristics in the phys-
ical plane is related to the magnitude of the velocity by

(1.4)

w—a?=1,

w=1seciw.

2. THE PHYSICAL (x,y) PLANE

We shall consider a gas jet which emerges from
straight walls and is bounded by two free stream lines.
As in the subsonic case,’ we shall assume that along each
free stream line, the magnitude of the velocity is con-
stant. In Fig. 1, ABand A’B’ represent the two straight
walls from which the jet emerges. Along each of these
lines, the stream function ¢ is constant. Further, AC
and A'C’ represent the two free stream lines bounding

2 N. Coburn, Quart. Appl. Math. 3, No. 2 (July, 1945),

#S. A. Chaplygin, “On gas jets,” Sci. Ann. Imp. Univ. Moscow,
Physico-Math. Division, Pub. No. 21 (Moscow, 1904), translated

from the Russian by M. Slud (Brown University Notes, Provi-
dence, Rhode Island, 1944).

124
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the jet. Along each of these free stream lines, the magni-
tude of the velocity, w, and the stream function, ¢,
are constant. From symmetry considerations, we deduce
that the velocity vector has the same magnitude on
both free stream lines. Further, from symmetry, we see
that the y-axis (line ED) is a stream line along which
¢ is constant.

The following values will be assigned to the stream
constants:

B'A'C', y=M/2; ED, $=0; BAC, ¥=—M/2. (2.1)

If pis the density and (#, v) are the x and y components,
respectively, of the velocity vector, then

4 A
M= ——f d¢=f pvdx— pudy.
A’ ,

Evidently, M is the mass of gas entering the jet per
unit time.

We shall specify the inclination of the walls by use of
the negative angle § (see Fig. 1). 4 and A’ are situated
at the jet entrance, where the velocity vector has the
magnitude, w.. The points B and B’ are two sym-
metrically situated points on the walls where the ve-
locity vector has the magnitude, w;. For given values
of w, and 6, the quantity w, will be fixed by a relation
to be determined (see Eq. 3.9). Further, the curves B'E
and EB will represent the locus of points along which
w=w;. Evidently, the curves B’E and EB are sym-
metric. The points C and C’, which are symmetrically
situated on the two free stream lines, and the point D
will be fixed by specifying their hodograph coordinates.

Evidently, we may write Eq. (1.2) in the form

2.2)

(2.3)

where a,, a; are the local sound speeds corresponding
to wj, ws, respectively. By use of the angle w, one can
simultaneously treat the cases: (1) w<ws; (2) 0> ws.
From Eq. (1.4), it follows that these two cases can be
characterized by: (1) 0 w1 <we <73 (2) —r<en<w2 L 0.
In mapping from the («w, 6) plane to the (¢, ¥) plane,
we shall assume only that w; <ws. Hence, this phase of
our work will be applicable to either of the above cases.
However, it will be shown that in order for the (¢, )
plane to map into the proper region of the (x, y) plane,
the angle & must be negative (ws<w;). Finally, we
note that by use of Eq. (1.3) an upper bound for the
ratio w/w, can be given in terms of the Mach number
at Aor A'.

3. THE HODOGRAPH (w, 0) PLANE

We introduce the variable  which denotes the angle
between the velocity vector and the x-axis at any point
of the physical (x, ¥) plane. The plane determined by w
and 6 will be called the hodograph plane. From Fig. 1,
the hodograph map can be determined. We see that

P=wl—al=wl—as,

B'A': 6=§; ‘
ED: 6=—ux/2; 3.1
AB: 0=—r—@.
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Further, from the discussion in the preceding section,
we find that

A, A': w=ws; B'EB: w=uw. (3.2)

In order properly to specify the coordinates of D, C,
C’, it will be necessary to discuss some of the properties
of the stream function and the velocity potential in the
(w, 6) plane. We shall prove:

Theorem 1. If the mapping functions connecting the
(¢, ¥) and the (w, 0) planes are conlinuous, with second
partial derivatives and mnonvanishing jacobian, then
and ¢ satisfy the wave equation.

From our previous work,? we find

w=F f+i)+g(f_i), (3.3)
20 2% 20 2%

wer(B)o(20), o
2 2% A 2%

where F and G are arbitrary functions of their respective
arguments which possess second partial derivatives (at
least sectionally), ! is the constant defined by Eq. (2.3)
and % is the constant, pa=p181=psas. If the jacobian
of Eqgs. (3.3), (3.4) does not vanish, we may solve
these equations for ¢, . We find

ool
o))

where f and g are the inverse functions to F and G,
respectively. From Eq. (3.6), we see that the stream
function (as well as the velocity potential) is a solution
of the wave equation

(6%/06%) — 4(8%/ 3u) =0. @.7)

We shall now determine the hodograph coordinates
of D, C, C’. The slopes of the characteristic lines of

(3.5)

(3.6)

Iy

m

F16. 1. Flow through a jet in the physical plane.
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F1G. 2. The hodograph map of the flow.

Eq. (3.7) are

d0/dw= 2%, (3.8)

First, we require that the point A’ lie on the character-
istic through E. Hence, the variables §, w1, w» satisfy
the equation

6+ 77'/2= (w2"w1)/2-

The point D will be fixed as the intersection of the
characteristic of negative slope passing through 4’ and
the line §= — r/2. The resulting coordinates of D are
indicated on Fig. 2. If 2ws— w;> 7 for positive w (or
2w2— w1 >0 for negative w), then the point D must be
replaced by two points D and D'. These latter points
would be the intersections of characteristics through 4
and A’, respectively, with the line w= = for positive
(or w=0 for negative w). For simplicity, we assume
2we— w1 < w for positive w (or 2ws—w;<0 for negative
w). C and C’ will be fixed by assuming that these points
coincide with A’ and 4, respectively.

In the following sections, we shall consider only three
regions of the (w, §) plane: EB’4’ (henceforth denoted
as region I); EA’D (henceforth denoted as region II);
A'C’D (henceforth denoted as region IIT). The regions
EBA, EAD, ACD may be treated by symmetry con-
siderations. Further, the extension of our method to
other regions will be apparent.

Next, we consider the boundary conditions on ¢ for
the integration of Eq. (3.7). In addition to the boundary
conditions (2.1), data along B’E must be given. We
shall assume boundary conditions along B'E which are
equivalent to Cauchy data

B'E: y=3M~+ki(6), ¢=1p(0), —7/2<0<8,

(3.9)

(3.10)

where % and / are the constants previously introduced
and #(6) and p(6) possess second derivatives. In order
for the stream function to be continuous along B’E, it
is necessary that

h@)=0, h(—w/2)=—M/2k. (3.11)
We shall now show that:

Theorem 2. A solution for ¢ exists in region I with the
following properties: (1) the solution depends upon a

"N. COBURN

single function f of the variables 3(w—w2)+0—8 and
How—w2)—0+8; (2) therange of 6 in f(6) is w1 — w2 < 0.

Replacing ¢ by y—M/2, w by w—ws, 8 by 6—§ in
Egs. (3.5), (3.6), we obtain

M
2

+k[f(w;w2+9—9)—g(w;w2—0+é)], (3.12)
¢=l{f(w;w2+0—9)+g(w_2w2—0—{—9)], (3.13)

In order to determine the range of the arguments of f
and g, we write

Ho—w)+0—6=16,, (3.14)

It is easily shown that the characteristic lines (3.14)
will intersect region I if and only if

wl—wgéﬁoﬁﬁo, %(w1~w2)_<_01§0. (315)

Thus, the arguments of f and g have the common range
1(w;—w2) to 0. In this common range, it follows from
Eq. (3.12) and the boundary condition, ¢y=4M when
0=0, that f(8) = g(8) for 3(w1— w2) £8<0. Thus, we may
consider f and g as single function, f, defined over the
interval w;—ws to 0.

The boundary conditions (3.10) furnish relations for
determining f(#). Thus, from Egs. (3.10), (3.12), (3.13),

we find
Zf( W1— We
2

2f(w1;w2—0) — —h(64-B)+p(0+8). (3.17)

Y=

%(w—wg)—G—I—é-—— 01.

+o)=h<o+é)+p<o+é>, (3.16)

Equation (3.16) determines f(6) for
w1~ w0 <0< (w1~ ws);

Eq. (3.17) determines f(8) for 3(w1— w2) <6L0. Further,
the solutions for ¥ and ¢ in region I may be written
in terms of this function, f, as

M W— W _
I: \I/=—2—+k[f( +0—0)

2
—f(w_zw2—0+é)], (3.18)

1 ¢=l[f(f?f+0—é)+f(i?—0+é)]. (3.19)

It should be noted that the function f(§) as deter-
mined by Eq. (3.16) for the range w;— w2 <0< 3 (w1 — ws)
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may differ completely in analytic form from the func-
tion f(6) as determined by Eq. (3.17) for the range
£ (w1— w2) < 0<0. However, by use of Egs. (3.16), (3.17),
it can be easily shown that:

Theorem 3. The necessary and sufficient conditions thal
1(8) be represented by the same function in the above two
intervals are that h(8) have odd symmeiry about 8="0 and
p(0) have even symmetry about 0= 4.

‘We shall continue our solution for ¢ into regions II
(EA'D) and III (A’C'D) by use of the well-known
methods? for integrating the wave equation. The solu-
tion for ¢ in these regions can then be determined by
use of Eq. (3.5) and continuity considerations. We find

1: ¢=k[f(szﬁ+o—é)

oTemiT 6) (3.20
(= [ JEED
Ml Ww— W2 i
II: =~———|—l[f( +0~0)
2k 2
w—ws— 27w ;
+f(-———2~————9~—0)], (3.21)
M —w+twe— 2w )
111 ¢=~—{—k[f(—~——~————0+0)
2 2
w— w27 }
—f(—————————~0—6)], (3.22)
2
Ml ~w+w2—-21r N

+ f(i%z:%—r—0~9)]. (3.23)

It is easily shown that the functions in the right-hand
side of the above equations are defined by Egs. (3.16),
(3.17) in regions I and T1I1.

With the aid of Egs. (3.20) through (3.23), we shall
prove three results relating the (w, ) and (¢, ¢) plane
maps of the flow.

Theorem 4. The necessary and sufficient condition for
the continuity across EA’ of the mapping functions ¢ and
& is that h(—w/2)=— M /2k; the necessary and sufficient
condition that the first partial derivatives of ¥ and ¢ be
continuous across EA’ is that p'(—x/2)=0.

*J. D. Tamarkin and W. Feller, Partial Differential Equations
(Brozz_nzsUmvemty Notes, Providence, Rhode Island, 1941),
pp. .
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To show the necessity of the condition A(—w/2)
= — M/2k, we compute the values of Egs. (3.18), (3.19),
(3.20), (3.21) along EA’. We find

YD~ p(D =t k[f(‘”_*?ifil’+ 5)
2 2

)

Ml wi—wet T
oD~ =— l[f( qo)

2

- f(ﬂf——?:—é)]. (3.25)

By use of Egs. (3.9), (3.16), (3.17), we obtain

()
=f(o>-f(w1—w2>=—h(121). (3.26)

Comparing the last three equations, we see the necessity
of our condition, The sufficiency of this condition follows
from the fact that a continuous solution has been
constructed with the aid of this condition.

In order to verify the second part of our result, we
compute the derivatives of ¥ and ¢ in regions T and I1.
Denoting the jump of the derivative across E4’ by
brackets, and using Eqs. (3.9), (3.16), (3:17), we find

f’(wl—wz)‘-f’(o):P’(—g) =%[;:_]

2 3¢ 1rde1 2rde
L2 e

Rt 3w lLod]) Ildw
The primes on f and p denote differentiation of these
functions with respect to their respective arguments,

Equation (3.27) verifies our second result.
In the same manner, we can prove:

Theorem 5. The necessary and sufficient condition for
the continuity of ¥ and ¢ across A’D (the boundary of I
and IIT) is that h(—=/2)=—M/2k; the necessary and
sufficient condition for the continuity across A'D of the
first partial derivatives of ¥ and ¢ is that W (—=/2)=0.

Finally, we examine the Jacobian of the transforma-
tion from the (w, §) to the (¢, ¥) plane. We shall prove:

Theorem 6. The necessary and sufficient conditions ihat
the jacobian, J(¢, ¥/w, 0), shall not vanish in the closed
regions I, IT, IT1 are b’ (§)+ 9’ (6)5=0, k' (6)— p’(6) =0.
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By use of the expressions for ¢ and ¢ in region I,
we find

()
=2klf’(f——2—?+9-(§)f'(i:2f—2—0+é). (3.28)

Similar expressions are valid for regions II and IIT.
Thus, the nonvanishing of the jacobian is equivalent to
the nonvanishing of /(). From Egs. (3.16), (3.17), it
follows that this latter condition is satisfied if and only
if #'(6)%p'(6)70.

4. SOME MAPPING RELATIONS

The functions relating the (¢, ) and the (x, y) plane
can be analyzed by use of Eq. (1.4). If % and v are the

T\U

; ) $
Fic. 3. The ¢—y-plane map of the flow.

x and y components of the velocity, respectively, and
p is the density, then?

a6 19y

u=—=—-—=[seckw cosf, 4.1)
dx p oy
dd 10y

p=—=—— —=] sec}w sing. (4.2)
dy p dx

From the known relations a=1w sinw/2, pa=#k, where
w is the magnitude of the velocity vector, one can de-
termine p as a function of w and the above relations may
be written as

dy 1 dox

—=-sinjwcosd, —=——sinjwsing, (4.3)
o k oy

dy 1 dx 1

—=—cosiw sinf, —=- costw cosd. (4.4)
d¢ 1 dap 1

In the next few paragraphs, we shall be concerned
with the (¢, ¢) plane map of the flow. Evidently, the
line ED and the curve B’4'C’(see Fig. 1) map into the
lines ¥=0 and Yy=M/2 in the (¢, ¢¥) plane. We shall
show:

Theorem 7. If we move from B to A’, A" 1o C', Elo D
(see Fig. 1) then ¢ is increasing. That is, the maps of the
boundaries B'A'C’' and ED in the (x, y) and (¢, ¢) planes
are in one-to-one correspondence.

N. COBURN

To verify this result, we note that in moving from B’
to A’ along the wall, x increases and y decreases. From
(4.4) and the fact that 6<0 along B’4’, it follows that
9x/3¢>0, dy/d¢4<0. Hence, ¢ must increase as one
moves from B’ to A’. The other results may be shown
in similar manner.

The following result is an immediate consequence of
the assumptions and the form of the equations for ¢ and
¥ in the various regions (or the formulas 3.3 through 3.6).

Theorem 8. If the boundaries B'A'C' and ED of the
(w, 0) and (¢, ¥) planes are in one-to-one correspondence
and if the jacobian, J(¢, ¥/ w, 8), does not vanish over the
regions I, I1, 111, then: (1) the characieristics of the (w, 6)
plane transform into two families of straight lines (which
will be called characteristics) in the (¢, ) plane; (2) to
each characteristic of positive (negative) slope in (w, 9)
plane, there corresponds a unique characleristic of positive
(negative slope) in (b, ¥) plane and conversely.

If the above assumptions are valid, then by use of our
results, one may immediately construct the (¢, ¢) plane
map of the flow (see Fig. 3). In order to obtain condi-
tions under which the boundaries B’A’C’ and ED of the
(w, 8) and (¢, ¥) planes are in one-to-one correspond-
ence, we shall prove:

Theorem 9. The necessary and sufficient conditions thal
the boundaries B'A'C’' and ED of the (w, 0) ond (¢, ¥)
planes be in one-to-one correspondence are i’ (6)+p'(6) >0,
K@ —p'(0)>0.

Consider the line B’A’. In moving from B’ to 4’, we
have shown in theorem 7 that ¢ is increasing. From
Eq. (3.19), we find that along B'A’

w— w2

(4.5)

¢=2lf( ), w1 o< ws.

Equation (4.5) implies that the range of 8 in f(f) is
3 (w1—wy)<6<0. Hence, the f(6) as defined by Egq.
(3.17) must be used. Replacing ¢ in Eq. (3.17) by
1 (w1— wy), we obtain

Yo%)

Since in moving from B’ to 4’, both ¢ and w are in-
creasing (w is increasing, since —r<w1<w:<0, or
0<wi<we< ), then d¢/dw>0. By differentiation of
Eq. (4.6), we find that this last statement is equiva-
lent to
H(e)Y—p'(0)>0, —=/2<60<8. 4.7
A similar argument for the boundaries 4’C’ and ED
will verify the necessity of the remaining condition.



COMPRESSIBLE SUPERSONIC FLOW IN JETS

Further, by reversing the order of the above steps, one
may verify the sufficiency of the above conditions.
From theorem 9, it follows that:

Theorem 10. If W (0)>0, ¢'(6)>0 (or p'(6)<0) and
K (0)> 4'(0), then the (w, 6) and (b, Y)Y maps of the bound-
aries of regions I, I1, I11 are in one-to-one correspondence.

The proof can be given in three steps. First, the above
conditions 1mply K(0)xp'(6)>0 and hence that f(6)
is an increasing function of 6 [see Egs. (3.16, 3. 17)]
Thus, by theorem 9, the maps of ED, B’A’C' are in
one-to-one correspondence. From Eq. (3.10) and our
conditions, we see that the maps of EB’ are in one-to-one
correspondence. Finally, the mapping functions along
the characteristic £4’, which bounds region I, have
the values

¥=3M~+k[ fo—w)—f(0)],
o= flo—w2)-+7(0)].

Since f(#) is an increasing function of 6, the maps of
EA’ are in one-to-one correspondence. In a similar
manner, it may be shown that the (w, 8) and (¢, ¢) maps
of A’D, C'D are in one-to-one correspondence.

Finally, we consider the mapping of the interior
points of the (w, 8) and (¢, ¥) planes. We prove:

Theorem 11. If the boundaries of the (w, 0) and (¢, V)
planes are in one-to-one correspondence (see theorem 10),
then the interior points of these two maps of the flow are
in one-to-one correspondence.

EA’: 4.8)

Consider a point P in the interior of region I in the
(w, 6) plane. Through P one can pass two character-
istics of the (w, #) plane. These characteristics will be
such that they will intersect either B’4’ or EB’ in two
points. Consider the case where the lines intersect EB’
in the points Q and R. Using subscripts to denote the
values of the variables at various points, we see that
0o <6p<Og. Since Q and R lie on characteristics through
P, we find that (wp, 6p) satisfy

(0p—0r)/(wp—wr)=—%
(0p—0q)/(wp—wq)=

Substituting Eq. (4.9) into the formula for ¢ in region I
and noting that we=we=w, we find

M w1 W =
¢P=~—+k[f( +03—0)
2 2
_f( 2
M w1—ws
\0P=~*+k[f(
2 2

(4.9)

2+203—20P—0R+é)], (4.10)

+20P—20Q+oo—é)

o5

—00+é)], (4.11)
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M w1 W -
¢R=;+k[f( +oR—e)

—f(w:m—eﬁé)], (4.12)

M W1 W -
¢Q=—+k[f( +00—9)
2 2
- f(w1;w2—oq+é)]. 4.13)

By noting that f(6) is an increasing function of # and
0p—08¢>0, 0r—8->0, we see from Egs. (4.10) through
(4.13) that Yo<¢p <. A similar argument shows that
¢p> g, dr> dr, and also that P must lie to the left of
the intersection of the characteristics RP and EA’.
Further, the same argument will show that interior
points of regions IT and III of the (w, §) plane map into
interior points of the corresponding regions of the (¢, ¢)
plane.

Agam since the inverse function to f(6) is also an
increasing function, it can be shown that a point P in
the (¢, ¢) plane interior maps into a unique point P
in the (w, 6) plane interior.

Our final results are concerned with the mapping
from the (x, ¥) plane to the (¢, ¥) plane. We shall show
that it is essential that » be negative (or wa<w,). In
particular, we shall prove:

Theorem 12. If, (I) no back flow exists (0 is negative),
(2) we<w: (w is megative), (3) the (x,y) plane map of
EB' is in one-to-one correspondence with (¢, ) plane
map of EB', (4) K(6)>0, p'(0)>0 (or $'(6)<0) K'(8)
='(68)>0, then there exists a one-to-one correspondence
between the interior points of the (x, y) and (¢, ¥) planes.

Through any point P in the interior of the (¢, ¢)
plane, there pass two lines, the line ¢=constant and
the line ¥ =constant. These lines intersect the bound-
aries, B'E and B’A'C’, in the points, R and S, respec-
tively. By theorem 7 and assumption (3), the bound-
aries of the (x,y) and (¢, ¥) planes are in one-to-one
correspondence. Hence, the points R and S have unique
maps in the (x, ¥) plane. Evidently, ¥p<ys, ¢»> dr.
From assumptions (1) and (2) of the theorem and Egs.
(4.3), (4.4), it is seen that along SP, dx/dy <0, and
along RP, 8y/9¢<0. Thus, xp>xs, yp>yz, and to each
interior point of the (¢, ¥) plane, there corresponds at
least one interior point of the (x, ) plane.

Further, it is easily seen that a unique interior point
corresponding to P must exist. From Eqgs. (4.3), (4.4), we
find

v 1w
Xp—Xg= f —— sin— sinfdy, (4.14)
vy k2
1 w
Yp—YR= f — cos— sinfd¢. (4.15)
¢p b2
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By assumption (4) and theorems 10 and 11, to each
interior point of the (¢, ) plane, there corresponds a
unique interior point of the (w, ) plane. Hence, the
above integrals are single-valued and define unique
values of (xp, yp). A similar argument shows that to
each interior point in the (x, y) plane, there corresponds
a unique interior point of the (¢, ¢) plane.

5. THE FUNCTIONS CONNECTING THE (w, 0)
AND (x, y) PLANES

We shall merely state some results. By use of Egs.
(4.3), (4.4), the expressions (3.18) through (3.23), and
the chain rule for differentiation, we can easily obtain
the expressions for 9x/dw, dx/38, dy/dw, dy/96 in the
regions I, II, III. It can be shown with the aid of some
detailed computation that:

Theorem 13. The partial derivatives dx/dw, dx/00,
dy/0w, dy/80 are such that; (1) the integrability condi-
tions are satisfied; (2) the tangential derivatives of the
Sfunction x(w, 8) along EA’ in region I is equal to the

R. G. TREUTING AND W. T. READ, JR.

tangential derivative of this function along EA’ in region
II (similar results are valid for y(w, 6) along EA’ and for
both functions along A'D); (3) thus, these functions define
a continuous map from the (w, 8) plane to the (x, y) plane.

6. SOME REMARKS

It should be noted that our methods can be extended
to other regions of the (x, y) plane. The fundamental
idea can be obtained by use of Fig. 3. Evidently, the
extension of ED and the two characteristics through C’
furnish region IV. Thus, region IV in the (w, §) plane
should be the region bounded by ED, EC’, and C’D.
This folding property of the (w,6) plane map will
furnish a type of periodic recurrence of the jet boundary
in the physical (x, ) plane.

Finally, it should be noted that the above mapping
idea is applicable to the two-dimensional jet for an
arbitrary gas law. Here, the problem is to determine the
Riemann function in the hodograph plane.®

8S. Bergman, Trans. Am. Math. Soc. 57, No. 3, 299-331
(May, 1943).
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A method is given for determining the residual stress in a sheet material by removing successive uniform
layers of material from the surface of a test specimen and measuring the resulting curvature. From the condi-
tion of equilibrium of a free specimen, a stress »s curvature relation is derived which holds over the depth
to which material has been removed. The method applies when the stress is constant in the plane of the
specimen and varies through the thickness. An experimental technique is described which is believed to
satisfy the essential requirement that the removal of surface layers should not affect the stress in the remain-

ing material, and a practical example is given.

I. INTRODUCTION

ESIDUAL stresses, that is, stresses which may
exist in a material free of external load, generally
result from nonhomogeneous plastic deformation, which
may be introduced in many ways including probably all
of the fabrication methods.! These stresses have an im-
portant effect on the physical properties of metals,
Fatigue life in bending, for example, depends on the
maximum stress developed at the surface including
residual stress. The important practical problems of
measuring residual stresses have been attacked in many
ways. One method, for which a bibliography is given,!
involves unbalancing the self-equilibrium of the internal
stresses by removing or sectioning a part of the material
and observing the resulting deformation.?~* The present

1W. M. Baldwin, Jr., “Residual stresses in metals,” Edgar
Marburg Lecture, A.S.T.M., 1949.
2 N. Davidenkov, Z. Metallkunde 24, 25 (1932).
3 G. Sachs and G. Espey, Trans. AIME 147, 348 (1942).
( 4 D. G. Richards, Proc. Soc. Exptl. Stress Analysis 3, No. 1, 40
1945).

treatment of this method differs from the previous ones
in two respects: first, two principal components of stress
are considered; second, these components are explicitly
expressed as functions of curvature, thereby eliminating
the need for calculation by successive approximations.

The method applies to sheet materials and involves
removing successive uniform layers from the surface of
a sample. In an initially straight sample symmetry
makes it necessary to remove material to a depth of only
half the thickness. When the following three conditions
are satisfied, the accuracy of the method is limited only
by the precision of the measurements.

(1) In order to determine the stress from the curva-
ture it is necessary that the sample be linear in pure
bending, over the range of curvatures involved, and
that the elastic constants be the same throughout the
material. If these conditions are not satisfied, the stress
cannot be obtained from the curvature. Instead, it is
necessary to measure the bending moment required to
straighten the strip after every removal of material. A



