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The partial wave treatment (phase shift analysis) of the elastic scattering of molecular beams [J. Chern. 
Phys. 33, 795 (1960) I is applied to the calculation of the velocity dependence of the differential and total 
cross sections for an assumed L-J (12, 6) potential. For most of the calculations, the <, u values are chosen 
to correspond to the H,-Hg system. The range of the velocity parameter A=ku=p.vu/Ii is from 3 to 30; 
this is equivalent to a 100-fold variation in H2 beam temperature (approx 8.2-8200K). Computations of 
the angular distribution of the scattering du(O)/dn and the total cross section Q as a function of A are 
reported. A correlation of the interference maxima in du(O) /dn is presented. The Massey-Mohr approxima­
tion for Q(A) for an inverse sixth-power attractive potential is compared with the present calculations for 
the L-J (12, 6) potential. Significant undulatory deviations are noted at low A; this effect is attributed 
to the existence of the broad maximum in the phase shift curve '7 (I), which, in turn, originates from the 
negative repulsive phases at low I. Consideration is given to the question of the sensitivity of the scattering 
to the repulsive part of the potential. 

INTRODUCTION 

I T is well-known that the classical treatment of elastic 
scattering1,2 is inapplicable under certain conditions, 

and in particular, yields no information regarding 
low-angle differential scattering or the total cross 
section. Massey and Mohr3 applied the quantum­
mechanical (partial wave) method to the molecular 
scattering problem, obtaining an exact solution for the 
rigid-sphere modepa and an approximate one for a gen­
eral inverse-power intermolecular potential.3b For the 
latter case a simple approximation for the total cross 
section Q was derived; for the potential 

V(r) =-C/r6
, 

the Massey-Mohr equation takes the form 

Q=b(C/V)2/5, 

(1) 

(2) 

where v is the relative velocity and b a known constant. 
The differential scattering cross section dlT(O)dQ 
[alternatively written J(O) ] could not be expressed in 
simple terms. 

In a previous paper4 a partial wave treatment 
(phase shift analysis) was presented for the scattering 
of molecules subject to a Lennard-Jones (12, 6) po-
tential, 

(3) 

The repulsive part of the potential leads to negative 
phase shifts (T/l) for the lower order partial waves and 
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thus gives rise to a maximum in T/(l), whose location 
and value are dependent upon the velocity parameter 

A=klT = f./.l'lT / Ii. (4) 

It is the purpose of the present paper to investigate the 
influence of the repulsion (via the phase shifts) upon 
the differential and total scattering cross sections and 
their velocity dependence. In this connection it has 
been of interest to investigate the applicability of the 
Born approximation and the validity of the Massey­
Mohr equation when applied to molecular scattering 
according to an L-J (12,6) potential. 

PROCEDURE 

The symbols used are those of I. The two parameters 
found convenient to characterize the scattering system 
are 

A = kIT, (5) 

where k=27r/'A=f./.v/1i is the propagation number, f./. 

the reduced mass, and v is the (initial) relative velocity. 
For most of the calculations to be presented, the param­
eters € and IT have been chosen the same as in I, to 
correspond fairly closely to the H 2-Hg system: €= 

2.46XIO-14 erg, 1T=2.91 A. Here B=125 and A has 
been varied from 3 to 30. This is equivalent to a 100-
fold range in the H2 beam temperature (i.e., from 8.2-
820oK, assuming (from I) the equivalence: T = 295°K 
at A =18). 

Phase shifts were taken from Table III of I, suitably 
extended to higher l (always until 1/1 ~ 0.03) by means 
of the Born approximation (to be discussed below). 
On using the standard Mott-Massey5a equations, 
J(O) and Q were computed from the phases at A = 
3, 5, 7, 9, 10, 14.1, 15, 18, 20, 24, and 30 using an 

5 N. F. Mott and H. S. W. Massey, The Theory of Atomic 
Collisions (Clarendon Press, Oxford, 1949), 2nd ed.; (a) p. 24; 
(b) p. 118. 
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FIG. 1. Typical calculated angu­
lar distributions. Parameter: A. 
B = 125 for all curves. Note that 
the vertical (Jog) scale has been 
shifted by one cycle progressively 
for each succeeding curve (see 
text) . 

IBM 704 computer. The program yielded 1(0) (in N) 
and 1*(O)_I(O)/tru2 from 0, (0.5), 1800 as well as Q 
(in N) and Q*==Q/7rU2. Computing time for one given 
value of A varied from 0.5 to 1.5 min (in the latter case 
the :'calculation involved 120 phases). 

VELOCITY DEPENDENCE OF THE ANGULAR 
DISTRIBUTION 

Figure 1 shows some typical angular distributions. 
Here A =3, 5, 7, 10, 15, 20, and 24; 0 extends to 140°. 
For clarity of presentation, the vertical (logarithmic) 
scale has been shifted by one cycle progressively for 
each succeeding curve. To fix the location of the curves, 
the values of the intercepts [1(0) in A2] are listed, as 
follows, 

A 3 5 7 10 15 20 24 

1O-3Xl(0) (A2) 0.82 2.51 6.48 8.14 7.33 13.1 21.4. 

The positions of the interference maxima and minima 
are correlated in Fig. 2.6 The index N is an integer for a 

6 For A ~1O the undulations in do-(O) ldO. are noticeably less 
regular; this is seen (to a lesser extent) in Fig. 2. As discussed in 
I, for B = 125 and A ~ 10 penetration of the centrifugal barrier 
occurs (classically, the condition for orbiting is K~O.8) giving 
rise to one or more discontinuities in the 'f/(l) curves; this factor 
may be of some importance here. 

maximum, half-integer for a mllllmum. As pointed 
out in I, the periodicity of the undulations in the angular 
distributions is governed primarily by A. This is seen 
quite clearly in Figs. 1 and 2. 

It would be desirable to construct a unique "reduced 
scattering curve," i.e., a universal representation for 
the velocity-dependent angular distributions (Fig. 1). 
This cannot be expected, however, due to the complex­
ity of the problem when the reduced relative kinetic 
energy 

(6) 

is of order unity and the incident deBroglie wave is 
seriously distorted by the scattering potential. As 
pointed out in I, this distortion is also dependent 
upon A (or, equivalently, the ratio of the wavelength 
to the extension of the force field). 

A step in this direction may be taken if one restricts 
attention to the scattering at low angles and at high 
A, where the wave is not much diffracted by the 
scattering field (conditions appropriate for the Born 
approximation; see the following). Here the undulations 
in the angular distribution 1(0) should be determined 
primarily fib by the variable ks, where 

s=2 sin(O/2), 

or, equivalently, by the dimensionless quantity 

ksu=2A sin(O/2). 

(7) 

(8) 

Figure 3 is a plot with abscissa7 2A sin(O/2), for A = 
15, 20, 24, and 30. In the low-angle region particularly, 
the curves show similarity; the major part of the veloc­
ity dependence is thus fairly well correlated. For smaller 
velocities (A::; 10), the correlation is less satisfactory, 
as anticipated. 

RELATION BETWEEN 1(0) AND Q 

Massey and Mohr3a have considered the limiting 
case when a very large number of phase shifts are re-

g' 

FIG. 2. Correlation of interference peaks in angular distribu­
tions. Parameter: A. B = 125 for all curves. The index N is an 
integer for a maximum, half-integer for a minimum. 

7 The ordinate is (1/ A 2) du(O) /dO.. The rationale for this choice 
is presented in the next secti'on. 
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quired in the calculation of 1(0), and the phases (after 
removing multiples of 11") are essentially random 
numbers (1/1 oscillating rapidly with 1). Under these 
conditions one finds that 

1(0) = (kQ/4nV. (9) 

For the "rigid-sphere" potential Q is velocity inde­
pendent; for a realistic intermolecular potential Q is a 
relatively insensitive function of velocity (see discussion 
following). With the approximation of nearly constant 
Q, Eq. (9) implies I(0)/k2rv constant. To remove the 
major velocity dependence of 1(0) the ordinate in Fig. 3 
was therefore chosen to be (1/ A2)da/dQ. 

It is convenient to rewrite Eq. (9) in terms of the 
reduced quantities 1*(0) and Q*. Thus 

I*(O)~( AQ* /4?rt)2. (10) 

The:ratio j(A) is defined, 

j(A) =I*(O)/CAQ*/4?rt)2, (11) 

100~ 
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FIG. 3. Reduced scattering curves. Parameter: A. B = 125 for 
.all curves. 

TABLE I. Relation between 1*(0) and Q*. 

L.-J. (12,6);B=125 
Rigid 
sphere 

A 1*(0) Q* 1*(0)/ A2 j(A) j(A) 

3 30.8 7.27 3.42 3.25 1.47 
5 94.3 13.17 3.77 1.09 1.26 
7 244 14.06 4.98 1.27 
9 299 10.69 3.69 1.62 

10 306 9.16 3.06 1.83 1.11 
14.1 245 6.58 1.23 1.43 
15 275 6.67 1.22 1.38 
18 395 7.16 1.22 1.20 
20 491 7.41 1.23 1.12 1.05 
24 806 7.60 1.40 1.22 
30 1208 7.08 1.34 1.35 
40a (1750) (5.80) (1.09) (1.63) 

a These computations less reliable than others. 

which, for the rigid-sphere model at least, should 
approach unity in the high velocity limit. 

Table I lists the calculated values8 of 1*(0), Q*, 
I*(0)/A2, and j(A). Given in the last column for 
comparison are several values of j(A) for the rigid­
sphere model, as calculated from the phases of Massey 
and Mohr.3a From the present results for the L-J 
(12,6) potential it appears that Eq. (10) does not 
adequately describe the relation between 1*(0) and 
Q*. The velocity dependence of Q* is discussed later. 

BORN APPROXIMATION FOR THE PHASES 
(L.-J. POTENTIAL) 

For any L-J potential of the form 

VCr) = (a/rq
) - (b/r8

), (12) 

the Born approximation for the higher order phases 
may readily be evaluated by an obvious extension of 
the treatment of Massey and Mohr.3b The result of the 
integration is simply 

(13) 

where the phases 1/(8) and TJ(q) are obtained from Eq. 
(39) of footnote 3b. 

For the L-J (12,6) potential, using symbols concor­
dant with those of footnote 3b, 

where 

and 

(

C(6) C(l2») 
aV=- 7+-;I2 , (14) 

(15) 

(16) 

8 The calculated values of 1(0) and Q are somewhat sensitive 
to the cutoff phase (number of higher order phases used). Sample 
calculations indicate thatj(A) may be uncertain by a few percent. 
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FIG. 4. Velocity dependence of total cross section. Q*=Q/rr(T2. 
B=125. 

For large l (replacing l+! by l) one obtains the useful 
approximation formulas for the phases 

7J(6) = (3-Ir/8)BA4jl5 (attractive), (17) 

7J(12)=-(6J71/256)BA10IIll (repulsive). (18) 

A quantity of interest is the ratio 

(19) 

Thus for I> 2A the repulsive contribution to the Born 
phase is < 1 % of the attractive term. As mentioned in 
I, for the example investigated, Eq. (17) reproduced 
accurately (±0.02) all directly calculated higher order 
phases (i.e., for I> 2A and 7J (0.5). 

APPLICABILITY OF THE MASSEY-MOHR EQUATION 
FOR THE TOTAL CROSS SECTION 

Massey and Mohr3b derived a simple formula for the 
total cross section Q for the potential a V = - C I r', 
making use of the Born approximation for the higher 
order phases and utilizing the essentially random char­
acter of the lower order phases (mentioned previously) . 
For s=6 the Massey-Mohr equation may be written 
in the following equivalent forms,9 

Q= 5.720( Clk )215= 5. 720u2 ( 4BI A) 21:' 

=4.662XlOll (C'lt,)2/5, (20) 
where 

C' = Cla=4f0'6. 

In terms of Q*=QI1r0'2, one obtains a "reduced" form 
of Eq. (20) 

Q*=3.170(BI A)2/5. (21) 

It is of interest to investigate the influence of the 
repUlsive part of the potential upon Q. Figure 4 shows 
data taken from Table I [the quantum calculations 
for the L-J (12,6) potential] plotted in the form 10gQ* 
vs 10gA. For comparison the appropriate straight line 
corresponding to Eq. (21) is shown. 

Significant undulating deviations are noted (which 
are attributed to the repulsive contribution to the 

9 E. W. Rothe and R. B. Bernstein, J. Chern. Phys. 31, 1619 
(1959). 

potential). This effect is thought to be a consequence of 
the broad maximum in the 7J(I) curve (see Fig. 6 of I) 
which, in turn, originates from the negative repulsive 
phases at low l. Although the sign of 7J in itself does not 
affect sin27J (and thus Q) the existence of the maximum 
in 7J(I) gives rise to a certain concentration of non­
random phases near the maximum. These phases 
(depending on whether sin27J>! or <!) either add to 
or subtract from the Q calculated for random phases. 
The directions of the deviations in Fig. 4 seem to be 
fairly well accounted for on the basis of these considera­
tions. 

The deviations are expected to diminish in magnitude 
with increasing A, as the fraction of the total number of 
(non-Born) phases which are nonrandom decreases. 
Thus the velocity dependence of the cross section 
should approach V-2/5 as the "semiclassical"l0 conditions 
are achieved, as appears to be the case experimen­
tally.t1.l2a However, deviations similar to those of Fig. 

.A. ~ 
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FIG. 5. Influence of A and B (at constant BA') upon the 
angular distribution_ 

[0 K. W. Ford and J. A. Wheeler, Ann. Phys. (N. Y.) 7,259, 
287 (1959)_ 

II H. Pauly, Z. Naturforsch. 15a, 277 (1960). 
12 (a) H. Schumacher, R. B. Bernstein, and E. W. Rothe, J. 

Chern. Phys. 33, 584 (1960). (b) Observations of quantum effects 
in the scattering of Li by Hg have been reported [H. U. Hostettler 
and R. R Bernstein, Phys. Rev. Letters 5,318 (1960)]. 



ELASTIC SCATTERING OF MOLECULAR BEAMS 365 

4 should be observable12b for beams of the lighter gases 
at low temperatures. 

In the very high velocity region (large A and K), 
nearly all phases would be negative; the velocity de­
pendence of Q should (eventually) change from V-2/5 

to v-2/ll. This important consideration has not been 
treated quantitatively in the present study. 

SENSITIVITY OF THE SCATTERING TO THE 
REPULSIVE PART OF THE POTENTIAL 

Studies of the scattering of thermal velocity molecu­
lar beams are expected9,13,14 to yield information 
primarily on the long-range attractive part of the inter­
molecular potential (via the constant C'==4~(6) . 
However, in view of the discussion of the previous 
section it is of importance to ascertain the sensitivity 
of the scattering to the repulsive part. 

According to the Massey-Mohr equation, for a given 
relative velocity or k the total cross section should be 
independent of ~ and u provided C' is held constant. 
In the present notation this is equivalent to the condi-
tion 

(22) 

(at constant k, of course). Equation (22) implies 
[through Eq. (17) ] also that all the Born attractive 
phases will remain unchanged. 

A set of calculations was carried out to investigate 
the effect (on both du/dQ and Q) of varying A and B 
at constant k, maintaining BA 4= 2.00X 10-7. Table 
II lists the results for /(0) and Q. The parameters were 
chosen to avoid the "bounded region" discussed in I, 

13 H. S. W. Massey and R. A. Buckingham, Nature 138, 77 
(1936) . 

HH. U. Hostettler and R. B. Bernstein, J. Chern. Phys. 31, 
1422 (1959). 

TABLE II. Influence of A and B (at constant BA4) upon 
1(0) and Q. 

K A B O'(A) lo-3X! (0) (A2) Q(A2) 

1.13" 
3.20b 
9.06" 

16.82 
20.00 
23.80 

250 
125 
62.5 

2.447 
2.910 
3.460 

15.7 
13.8 
18.2 

• Phases estimated using Q-i-K curves from I (extended). 
b Phases from Table III of I (extended), 

207 
198 
184 

enabling the use of the Q-i-K curves (the "reduced 
phase" treatment) to estimate the phases for K = 1.13 
and 9.06. The Massey-Mohr equation (20) yields Q= 
176 A2 (for the three cases). 

Figure 5 shows a comparison of the three calculated 
angular distributions. Although the curves are easily 
distinguishable, the problem of deriving a unique or 
"best" set of parameters ~, u for a given observed 
angular distribution (i.e., the "inversion" problem) 
appears to be a formidable one indeed. 

One may conclude that while the influence of the 
repulsive part of the potential is important (and should 
be observable under certain conditions), the attractive 
term dominates in determining the scattering of ther­
mal velocity molecular beams. 
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