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The semi-Euclidean formulation, developed in constructive quantum field theory to handle boson-fermion 
models, is adapted to the statistical mechanics setting. 

INTRODUCTION 

In Ref. 1 Do Brydges and I presented a formulation for 
treating boson-fermion models, taking powerful tech­
niques for using Euclidean fields to study Boson models 
in constructive quantum field theory, and combining 
these with operator methods to handle the fermions. 
This, the semi-Euclidean approach, now seems like 
a useful framework to study such theories. In Ref. 2 
Brydges studies the generalized Yukawa model using 
semi-Euclidean methods. In Ref. 3 techniques patterned 
after those in Refs. 1 and 2 were applied to prove the 
classic theorem of Dyson and Lenard 4 on the stability 
of matter. In the present series of papers I intend to 
introduce a full semi-Euclidean formalism into statisti­
cal mechanics, furthering the flow of ideas from con­
structive quantum field theory into more classical fields 
of physics. 

Ginibre has made beautiful applications of functional 
integration techniques in statistical mechanics. 5 The 
formalism to be presented here will have many points 
in common with that of Ginibre. The interlacing we will 
see between the viewpoints of Refs. 1 and 5 seems very 
satisfying. The interactions in the stability of matter 
problem- - l/r forces between positively and negatively 
charged particles-would not lead to stability in the 
absence of the kinetic energy generated by the exclusion 
principle for the negative charges. 6 This effect may be 
difficult to make explicit in the formalism of Ginibre, 
and the potentials considered in Ref. 5 exclude such 
forces. Our first long range goal will be to obtain the 
existence of the infinite volume correlation functions 
for the matter problem with the interaction l/r modified 
to exp(- nr)/r (this interaction still is excluded in Ref, 
5). The extension to the long range l/r interaction is 
deferred. 

Our avenue to the infinite volume correlation functions 
will hopefully be the adaptation of the cluster expansion 
of Glimm, Jaffe, and Spencer 7 to the present formalism. 
In the present paper the cluster expansion is not de­
veloped. However, we do present some of the expansion 
operations to be used-differentiation of the exponent 
and a pull-through formula. The pull-through formula 
is used to generate a Ginibre-like expansion for cor­
relation functions. We also present operator estimates 
substituting for the "defermiation" estimates of Ref. 1. 
These estimates-to be used in the proof of convergence 
of the cluster expansion-convert operator expressions 
to a context with commutivity. As an example we esti­
mate some terms in the expansion of a correlation 
function. 
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The field theory of boson models, the field theory of 
boson-fermion models, and the field theory of second 
quantized matter in statistical mechanics provide three 
types of field theories-with striking similarities and 
striking differences-that will develop with mutual en­
richment. 

1. NOTATION 

We work with H of the form 

H =Ho + 1s J dz 1 dZ 2 : ~I/J(z 1) V(z 1> z2) /iiI/J(Z2): (1. 1) 

with V symmetric in z 1 and z2 and Ho the sum of a multi­
ple of the number operator with the kinetic energy form 
for Di~ichlet data on the boundary of a fixed volume V. 
I/J and I/J are annihilation and creation fields for a fermion 
or boson particle. The extension to more general po­
tential interactions and more than one species of particle 
is straightforward (such as for protons and electrons 
moving in a fixed background charge). The objects from 
statistical mechanics we will study are of the form 

(1.2) 

where the Ii correspond to imaginary times, the Ii de­
creasing 0 <' t i <' (3, and the I/J(x;, t;) are obtained from 
I/J(x) by progagation under H for an imaginary time Ii' 
We now expunge this definition of the I/J(Xi, Ii) from our 
memory and follow an alternate line of development. 

We define I/J(x, l) "" I/J(x) , the I introduced only as a label 
to enable us to time order. H(L) is H expressed in terms 
of the I/J(l) and Ifj(t): 

H(I) = (- 1/2111) Ifj(z, l) '72I/J(z, L) + tJ.1Jj(z, t) I/J(z, t) 

+ 1 : 1fjI/J(z 1, t) V(z 1, z2) 1fjI/J(z 2, t): (1. 3) 

(integrals are suppressed). (1. 2) becomes 

Tr[Texp[- t H(t)dtllfj(xj,1 1) oooI/J(xn, In)l (1.4) 
. 0 

with T the time-ordering operation familiar to physicists. 
In fact (1. 4) is essentially the interaction representation 
with the interaction taken to be the full Hamiltonian-so 
the interaction fields have no true time dependence, as 
our I/J(x, t). Taking (1. 4) as a serious expression to 
manipulate and perform estimates with is the heart of the 
semi-Euclidean approach. 

We also want an expression for the path space mea­
sure generated by the one-particle free Hamiltonian 

(exp[ - 5(-1/2M" '7
2 + tJ.) lI/J)(v) = J dx J dtJ.~.y I/J(x) , 

(1. 5) 

where J dtJ.~.y is a measure on paths xp(l), 0 <' 1-:; 5, 
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connecting x and y (and lying in V). 

2. EXPANSION STEPS 

In this paper we consider only two operations. The 
first of these, differentiation of the exponent, assumes 
H(t) depends on a parameter A, and so we write H~(t). 
This happens by allowing V(Zj,Z2) to depend on A, and 
so, V~(Zj,z2)' We write (1.4) as 

Tr[T exp(- tH~(t) dt)R]. (2.1) 
o 

R a polynomial in fields. 

Differentiation of the exponent 

d Il 
- Tr[T exp(-j H~(t)dt)R] 
dA 0 

i ll ( rB dH~(s) ) 
= ds Tr Texp(- ~ H~(t)dt) ~R . 

o 

(2.2) 

The other operation is a pull-through operation. (The 
pull-through operation used in Refs. 1 and 2, different 
from the one presented here, may be useful in some 
circumstances. ) 

Pull·through formula 

T exp(- t H(t) dt) Ifj(x, a) 
a 

=T JdyJdrN:;a)Ifj(y,b) 

X exp (- t [H(t) + V(xp(t) , z) Ifjzp(z)] dt). (2.3) 

We will not write the similar expression for zp and more 
general potentials. 

This pull-through formula provides the connection 
between the semi-Euclidean formulation and the work 
of Ginibre, as we will see in the next section. 

To prove (2.3), we consider the equality 

T J dy J dIN:;a) Ifj(y, b) exp (- f[H(t) + V(xp,Z)IfjZP(Z)]dt) 

- T exp( - t H(t) dt) Ifj(x, a) 
a 

X exp (- [ (H(t) + V(xp, Z )lfjzp) dt) ] (2.4) 

and verify that the differentiation with respect to s in 
the brackets gives zero. 

3. GINIBRE-TYPE EXPANSION 

For clarity we confine our attention to the following 
correlation function F(X2, t2, Xj, tj): 

F = Tr(T exp[ - tH(t) dt] ZP(x2' 12) Ifj(xu tj» (3.1) 
o 

with (3 -, t2 'tl '> O. We now use the pull-through formula 
(2.3) to move Ifj(x, t) to the left. We may also use the 
relation 

Ifj(x, 0) =Ifj(x, (3), (3.2) 

following from commutativity of the trace-see (4. 1) in 
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FIG. 1. Graphi­
cal representa­
tion of G,. 

the next section-giving rise to well-known periodicity of 
our correlation functions. As Ifj is continuously moved 
to left, and re- entered at right by (3. 2), a series of 
terms is generated by the possibility of contraction with 
zp after any number of sweeps. 

zp(x) i(Y) - EIfj(y) zp(x) = Ii(x - y) (3.3) 

with E = 1 for bosons and E = - 1 for fermions. (3.1) then 
becomes 

(3.4) 

The G; are represented graphically in Fig. 1. Expres­
sions for Go, Gu and GN follow: 

Go=Tr[T J df-L;;;:;I) exp (-.( H(t)dt) 

x exp(- {2 [V(xp(t),Z)iP"ZP(Z)]dt)], (3.5) 

G = (E) TJ T J dw J df-L(Il-tj) J df-L t2 exp(- r'l H(t) dt) 
1 L 1 Xl'W t W t 'X2 Jo 

x exp (- tl V(xp ,z)1fj </!(Z)dt)expL t V(xp ,z)iP"</!(z)d~ o I \ t2 0 [J 

Xexp(-l2 [V(xp ,z)Ifj</!(z) + V(xp ,z)Ifj</!(z) 
t lot 

+V(xpo,xpt)]dt)], (3.6) 

GN= (Et Tr{T J dWj ooodWN J df-L;Il-~I) 000 df-L~. w. 
l' 1 z' 1+1 

x exp [- ft (E V(xPj' z) zp</!(z) + 

xexp[- ~ (Pol V(xpj,z)iP"</!(z) 

+ 6 V(xp.,xp .) dt 
N-t ) ] 

OEi(i 'J 

xexp[- {2(t V(xp.,z)iP"</!(z) + 
t j J=O J 

N 

6 
l~i< j 

t 
o ~ i < j 

(3.7) 

This expansion may be compared to the expansions of 
Ginibre in Ref. 5. We will not here make explicit an 
expression for R N • However, in Appendix C an explicit 
expression for RI is given, and estimated as an example 
of the operator estimates given in the next section. In 
Appendix B Go is Similarly estimated. Future applica­
tions of the semi-Euclidean formalism depend on our 
ability to control estimates- - Appendix B and Appendix 
C are simpler than the estimates needed in the cluster 
expansion, but use the same basic techniques. 
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4. OPERATOR ESTIMATES 

We collect here, first, well-known estimates we will 
use concerning traces; recall an operator estimate 
from Ref. 1; and finally present a cute new estimate for 
traces in a theorem. 

We begin with the well-known facts: 

Tr(AB) = Tr(BA), (4.1) 

~
A ~ B =* Tr(e-A ) ~ Tr(e-B

), (4.2) 

A? 0 =* Tr(A) ~ 0, (4.3) 

A ~ B =* Tr(CAC*) ~ Tr(CBC*), (4.4) 

ITr(AC) I ~ [Tr(AA*)]1/2 0 [Tr(CC*)]1/2, (4.5) 

I Tr(ABC) I ~ [Tr(AA *)]112 ·IIBII • [Tr(CC*)]1 12. (4.6) 

We recall from Ref. 1: 

Estimate: Let H(t) ~ C(t) with C(t) a numerical function. 
Then 

(8 Il 
IITexp(-ll H(t)dt)ll~exp(-~ C(t)dt). (4.7) 

The following theorem is an estimate similar to this 
last estimate, but for traces. 

Theorem: Let H(l) ~Jl + C(t) with C(t) a numerical 
function and Jl a i-independent operator. Then 

ITr(Texp[-.f H(t)dt]) I ~ Tr(exp(-{3Jl)·exp(- .(C(t)dt). 

(4.8) 

A proof of this theorem is presented in Appendix A. 

APPENDIX A: PROOF OF TIME-ORDERED TRACE 
INEQUALITY 

The inequality follows by taking limits in a discrete 
form of the result, stated in the following lemma, and 
using (4.2). The lemma is a special case of Corollary 
3. 2 in Ref. 8. 

Lemma: 

I Tr(A1 ..,A2N) I . .,; If {Tr[~An2N-I ]}1I2N. (AI) 
• 

(The restriction of the product of A/s to contain a power 
of two elements is a function of our method of proof. ) 

Proof: We prove the result by induction on N. First 
forN=l: 

I Tr(AIA 2) I ~ [Tr(AIAf)]I 12 0 [Tr(A0f) ]112. (A2) 

This is just (4.5). Assume (AI) holds for N and proceed 
to the N + 1 case: 

N-I N I 
Tr[(B1Bf)z ]=Tr[(AfAIA0f)2 -]. (A5) 

(4.1) was here used. By the induction hypothesis, 

~{Tr[(AzAt)2Nn1l2{Tr[(AfAI)2NJ}lIz . (A6) 

Substituting (A6) back in (A4) we obtain the (N + l)th 
relation, completing the induction. 

APPENDIX B: ESTIMATE FOR Go 

Go is given in (3.5). To obtain an estimate for Go, we 
require two estimates; we write as follows: 

HoI2 + ± J dz I dz z : if;</J(z I) V(z 1 ,zz) i)i</J(zz) : >Ko, (B1) 

Ho/2+ i J dz l dz 2: ~</J(ZI) V(ZI,Z2) 'iP</J(zz): 

+ J dz V(x,z) if;</J(z) >KI. (B2) 

We do not discuss evaluation of Ko and Kl here, as de­
pending on V, the volume, and the interaction. However, 
it is important to note that in these evaluations the 
kinetic energy arising in the Fermion case may be ex­
ploited (see Ref. 3). We now use (4.8) to obtain 

x exp[ - Ko({3 - (12 - tl» J 

(M/27T) 3 12 (AI Ix2 -x I 12
) 

• 112-t113/2 exp -2" (t 2-11) 
(B3) 

APPENDIX C: Estimate for R I 

We graphically represent Rl in Fig. 2. For definite­
ness we require 2/3{3 ~. t2 :> 11 " (3/3, this is not essential. 
Having pulled-through if; past 12 without contraction with 
</J, we stop at 2/3{3 and then pull-through </J to 1/3{3. The 
resulting expression for R 1 is 

J J (2/38-tl) J <12-1/38) 
R j =E dWl dW 2 dll x l' wI dll w2 • X2 

x Tr[Texp(- t H(t)dt)~(wI,2/3{3) 
2/31l 

• exp(- t /31l
[H(t) + V(xp ,z)~</J(z)ldt) 

t2 I 

oexp(-l2[H(t)+V(xP ,z)~IjJ(z) 
tl 1 

+ V(xP2 ,z)/PIjJ(z) + V(XPI,xpzlJdt) 

.exp (- tl[H(t)+V(xp ,z)if;IjJ(z)]dl\ 
11/3 z ) 

X IjJ(W2' 1/3(3) exp(- .f/3H(t)dn]. 

We abbreviate this as 

RI = E J dW I dW 2 J dll j dll 2 exp (- {2 V(xPI ' xP2 ) dl) 

x Tr[T EI ~(wI)E2E3E41jJ(W2)E5]' 

(C1) 

(C2) 

with 

(A3) where the Ei are the obvious exponentials, except that, 
as indicated, a portion of E3 has been separated out 
explicitly. We use (4.6): 

B i =A2i _1 A2i 

~ I1 {Tr[(B i Bf)2
N

-
1

l}1I2
N 

i 
(A4) 

by the induction hypothesis. We consider one of these 
terms, i = 1, for notational simplicity: 
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FIG. 2. Graphical representation of 

R I • 
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IRjl .;; f dw jdW 2 f d/-Lj d/-L2 expt ~:2 V(l, 2)dt) 

x {Tr[(TE j) ~(Wj) iJI(Wj)(T*Ef)]}1/2 IIE2EgE411 

using 

2xy .;;x2 +y2, 

we get 

2IRjl';;A+B 

with 

A = f dWj f dW2 f d/-Lj f d/-L2 exp(- ~:2 V(l, 2)dt ) 

x Tr[(TE j) ~(Wj) iJI(wj)(T*Ef)] IIE2EgE411 

and a similar expression for B. 

Let 

t2 If d/-Lj f d/-L2 exp( - f V(l, 2)dt) I .;; C 
tj 

(C3) 

(C4) 

(C5) 

for all Wj and W2' This inequality, a statement con­
cerning two particles interacting by a mutual potential, 
can be estimated by standard methods. We get 
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A.;; C Vexp{- [(2/3/3 - t2)Kj + (t2 - t j)K2 + (tj - /3/3)K j J) 

x Tr[exp(- 2/3i3Ho)N] . (C6) 

K2 is defined similarly to Ko and K j • The methods of 
Appendices Band C can be applied in much more com­
plicated situations, and can, very essentially, include 
localization. 
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