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A frequently encountered problem in many branches of science involves the resolution of experimental 
data into a sum of independent exponential curves of the form 

jet) = ~ N. exp( -Ait) , 
i-l 

in order to estimate the physically significant parameters N, and Ai. Such problems arise, for example, in the 
analysis of multicomponent radioactive decay curves, and in the study of the dielectric properties of certain 
compounds. This paper is concerned with the numerical evaluation of a mathematical approach to the 
problem. The approach is based on the inversion of the Laplace integral equation by a method of Fourier 
transforms. The results of the analysis appear in the form of a frequency spectrum. Each true peak in the 
spectrum indicates a component, the abscissa value at the center of the peak is the decay constant Ai, while 
the height of the peak is directly proportional to Ni/A •. Results obtained on an IBM 650 computer indicate 
that the method may possess certain advantages over previous methods of analysis. 

1. INTRODUCTION 

THERE are several types of problems in science in 
which experimental observations may best be 

represented by a linear combination of exponentials 
of the form 

n 

J(t) = L:N i exp( -Ait). (1) 
i=l 

In these problems the parameters N i and Ai have 
biological or physical significance. Therefore, in fitting 
a function of this form to the data it is not sufficient 
that the function merely approximate the data closely, 
but it is also necessary that the parameters be ac­
curately estimated. In Eq. (1) all the exponentials are 
assumed to be separate and unrelated, i.e., none of the 
components are produced as the result of the decay of 
another component. The problem may be stated as 
follows: a function J(t) is approximated by experi­
mentally determining an estimate of J(t) at a finite 
number of values of t. From this discontinuous set of 
data it is desired to obtain n (total number of com­
ponents), and estimates of the N /s and the X/s. The 
essential difficulties in the solution of this problem 
are that we are dealing with a series of nonlinear equa­
tions, that the data are only approximating the function 
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J(t) over a finite range in t, and that the exponential 
series possesses strongly nonorthogonal properties. 

With respect to this prohlem, the authors have been 
concerned principally with the analysis of multicom­
ponent radioactive decay curves. However, similar 
problems arise in the study of (a) first-order chemical 
kinetics, (b) certain diffusion problems such as neu­
trons in a moderator, (c) some order-disorder transi­
tions in solid state physics, (d) dielectric properties of 
certain compounds, (e) relaxation properties of organic 
polymers, (f) pulses in electrical networks, (g) survival 
and mortality experiments in the biological sciences, and 
(h) servo-problems of the guided missile type. Since 
lately in many cases it has become technically feasible 
and even convenient to obtain experimental data of 
reasonably good accuracy, the method of analysis of 
these data assumes greater importance. The purpose 
here is to describe a mathematical method of analysis 
which appears to possess certain advantages over 
previous methods. The method has been evaluated 
on the IBM 650 computer located at the University of 
Pittsburgh. 

II. PREVIOUS METHODS 

By far the most common method used to resolve a 
decay curve into its components is the graphical ap­
proach. Here the data are plotted on semilog paper, 
and the curve resolved by a repeated subtraction of 
straight lines. The limitations of the method are ap­
parent and need not be enumerated here. The method 
is certainly the easiest to perform. The method may be 
considerably refined by employing a least-squares 
technique to fit the straight lines, and some error 
estimation becomes available. The difficulties inherent 
in the subtraction procedure, however, still remain. 
Mathematical approaches to this problem have been 
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suggested by Prony,1 Hudson,2 Householder,3 Cornell,4 
and Ziegler.5 To the authors' knowledge none of these 
methods, except perhaps that due to Ziegler, are in any 
sort of routine use. In none of these methods does the 
number of components "fall out" of the analysis, 
although in two cases3,5 tests are included to determine 
the number needed to adequately fit the data. 

As Lanczos6 has pointed out, there are a number of 
simple and straightforward mathematical solutions to 
the problem of separating exponentials, but unfortu­
nately enormous practical problems arise when they 
are applied to experimental data from physical experi­
ments. The principal reason for this is the exceedingly 
nonorthogonal behavior of the exponential functions. 
The end result is that the initial data must be extremely 
accurate if more than two or three exponentials are 
to be separated. In most cases the accuracy required is 
far beyond that usually available. In Lanczos' opinion 
no amount of least-square or other statistical treatment 
can make up for the extreme sensitivity of the param­
eters to very small changes in the initial data. In the 
method described here, a transformation of the initial 
function to the complex plane is made, wherein the new 
function exhibits entirely different properties. The 
hope that this method may succeed where other 
methods, which deal with purely real numbers, fail is 
based on the presence of periodic functions which 
arise during the analysis. 

III. SOLUTION BY FOURIER TRANSFORMS 

The function J(t) in Eq. (1) is in the form of a 
Dirichlet series which may be expressed as a Stieltjes 
integral, 

J(t) ='fNiexP(-Ait)= fOexP(-At)dh(A). (2) 

The functionJ(t) may also be expressed in the form of 
a Laplace integral equation, 

J(t) = fOexp ( -At)g(A)dA. (3) 

Here h(A) is a step function and g(A) is a sum of delta 
functions. Owing to the error inherent in the experi­
mental estimate of J(t) and in the numerical computa­
tions necessary to obtain g(A), a plot of g(A) vs A 
appears in the form of a frequency spectrum. The 
presence of a peak in the spectrum indicates a com­
ponent, the abscissa value at the center of a peak is 
the decay constant Ai, while the height of the peak is 
proportional to the coefficient l'v" i. The problem then is 

1 F. B. Hildebrand, Introduction to Numerical Analysis (Mc­
Graw-Hill Book Company, Inc., New York, 1956). 

2 G. E. Hudson, Am. J. Phys. 21, 362 (1953). 
3 A. S. Householder, U.S. Atomic Energy Commission Rept. 

ORNL-455 (February, 1950). 
4 R. G. Cornell, U.S. Atomic Energy Commission Rept. ORNL-

2120 (September, 1956). 
6 Keepin, Wimett, and Ziegler, J. Nuclear Energy 6, 1 (1957). 
6 C. Lanczos, Applied Analysis (Prentice-Hall, Inc., New York, 

1956) . 

to determine g(A) given the experimentally determined 
function J(t). The method advocated here is based on 
a well-known general approach for solving linear 
integral equations? We apply ~his approach to the 
specific case of the Laplace integral equation in a 
manner after Perlis.s A somewhat similar treatment has 
been described by Paley and Wiener.9 

We begin with Eq. (3), 

J(t) = ["exp( -At)g(A)dA, 
o 

(3) 

and proceed to transform the variables A and t. Let 
A=e-Y and t=eX

• Then 

Multiply both sides by eX, 

e'f(ex) = L: exp[ -e(x-Y)Je(x-u)g(e-Y)dy. (5) 

Now 

where F(p.) is the Fourier transform of eXJ(ex). 
By combining Eqs. (5) and (6) we obtain 

F(p.) = [l/(2?r)IJ L: {L: exp[ -e(X-v)Je(x-y)g(e-Y)dY} 

·exp(ip.x)dx. (7) 

Let s=x-y, or x=s+y. Then 

F(p.) = [lj(211')!J L: {L: exp( -es)e'g(e-Y)dY} 

·exp[ip.(s+y)]ds. (8) 

By rearranging terms we have 

F(p.) = [1/(211')IJ f~ gee-v) exp(ip.y)dy L: 
. exp( - e8 )e' exp( ip.s )ds. (9) 

It is important to keep in mind that the term e 8= e X- Y 

is formed by combining in Eq. (5) the term e-Y, 

obtained by differentiating A=e-u, with eX. The kernel 
exp[ -e(x-Y)]e(x-y) in Eq. (5) is kept intact and later 
separated from the function g(e-Y)dy. This last func­
tion is related to the original variables as follows: 

gee-V) dy= g(A) IAdA. (10) 

Hence, when we eventually obtain g(e-v) as a function 

7 E. C. Titchmarsh, Introduction to the Theory of Fourier Inte­
grals (Oxford University Press, New York, 1937). 

8 A. J. Pedis, U.S. Atomic Energy Commission Rept. NP-786 
(September, 1948). 

9 R. E. Paley and N. Wiener, Fourier Transforms in tlte Complex 
Domain (American Mathematical Society, 1934). 
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of y from Eq. (9), this is equivalent to a plot of g(A) /A 
as a function of A. 

By returning to Eq. (9) we see that the right-hand 
side is the product of the Fourier transform G(f.l) of 
gee-v) and the Fourier transform K(f.l) of exp(-es)es• 

Therefore, 

(11) 
and 

G(f.l) = [1/(27r)IJ[F(f.l)/K(f.l)]' (12) 

By taking the inverse Fourier transform of G(f.l) we 
obtain 

In this case K(f.l) can be evaluated analytically, and it 
turns out to be the Euler integral for the complex 
Gamma function, 

IV. A FEW DETAILS ON THE NUMERICAL SOLUTION 

Briefly, the method of solution is shown to consist 
of essentially only two integrations. First, the Fourier 
transform F(f.l) is found by using Eq. (6). This is 
divided by the complex Gamma function given in 
Eq. (14). Finally, gee-v) as a function of y is found by 
using the inverse Fourier transform shown in Eq. (13). 
From the latter, a plot of g(A) /A vs A may be obtained 
immediately. Since it is convenient to use equidistant 
values of fJ. in determining F(f.l), K(f.l) can be found 
most easily from tabulations.Io The function gee-v) 
may be found by using the same f.l values or an equi­
distant subset thereof. Two additional subjects warrant 
comment: the cutoff error and the setup of the nu­
merical integrations. 

A. Cutoff Error 

ItIis clear that in Eqs. (6) and (13) one cannot 
numerically integrate from - 00 to 00. Consider Eq. 
(6). Here we must introduce the limits ±Xo which are 
the cutoff points of the integral. Instead of Eq. (6) 
we have 

The calculated (27r)!F(f.l) is in error by at least the 
amount E(xo, f.l). The major difficulty of the method is 
now apparent. We are trying to simulate a curve with 
an abrupt cutoff at Xo by a sum of exponentials that 
extend to x= 00. This has the effect of adding into 
F(f.l) Fourier components which extend the range in f.l 
on which F(f.L) maintains appreciable value. Since 
K(fJ.) diminishes rapidly with increasing fJ., for some 
value of p. the quotient F(p.)/K(p.) in Eq. (13) begins 

10 Nat!. Bur. Standards, App!. Math. Ser. 34 (1954), "Tables 
of the gamma function for complex arguments." 

to grow without bound. The end result is found to be 
error ripples in the plot of g(e-u) vs y which tend to 
obscure the results. Hence, it is necessary that a finite 
Xo exist such that the value of E(xo, fJ.) is sufficiently 
small that a good solution is possible. It is most un­
fortunate that once F(fJ.) has been warped by the 
cutoff, the warping cannot be removed by any subse­
quent mathematical treatment. 

If it is not possible to experimentally follow the decay 
curve for a long enough time, the data must be treated 
in some appropriate manner. For example, the longest­
lived component might be extrapolated to give the 
necessary information. Even a somewhat inaccurate 
extrapolation usually yields far better results than if no 
extrapolation is made. Alternatively, it might be pos­
sible to subtract off the longest-lived component 
before the analysis. Finally, a drastic and unrecom­
mended step is to introduce a convergence factor into 
Eq. (13). 

The cutoff errors in Eq. (6) tend to increase the 
height of the error ripples in the final results. A cut­
off at p.= ±f.lo in Eq. (13), on the other hand, has been 
shown to primarily affect the frequency of the error 
ripplies and the breadth of the true peaks. The larger 
the value of f.Lo, the narrower and more' well-defined 
are the component peaks. The maximum useable value 
of p.o depends on how good the initial data are and on 
the cutoff at Xo. If P.o is chosen too large, the cutoff at 
Xv causes the amplitude of the error ripples to increase. 
If P.o is chosen too small, there is an unnecessary loss in 
resolution of the peaks in the final result. The greater 
the value in f.l at which F(p.)/K(f.L) remains well be­
haved, the finer the resolution can be made in the final 
results. 

B. Numerical Integration 

It is convenient to adjust the units of t in the initial 
data such that the decay constants Ai fall in the range 
from 0 to 1. In other words, the half-life of the shortest­
lived component should not be less than 0.693 units 
of t. This is no restriction since the range of t is infinite 
and the scale with which t is measured can be arbi­
trary. Next, each value of J(t) is multiplied by its 
value of t and the results plotted as eXf(eX) 1!S x. 
(27r)!F(p.) is then related to the area under this new 
curve. 

Whereas t ranges in principle from 0 to 00, x now 
ranges from - 00 to 00. Hence, we can set up the 
integral 

(16) 

or more conveniently, 

F(p.) = [1/(27r)i] ~XQI[j *(x) +f *( -x) ] cosp.x 

+i[f*(x) -f *( -x)] sinp.x}dx. (17) 



ANALYSIS OF EXPONENTIAL DECAY CURVES 981 

Here we define J *(x) =exJ(ex). This yields real and 
imaginary parts of F(p.) which we term Fe and F., 
respectively. K(p.) is similarly composed of real and 
imaginary parts Ke and K •. Hence 

(18) 
Next 

~lPO F(p.) e-iYPdp.=~lPo (Fe+iF.) (Kc- iKs ) 
21r -1'0 K(p.) 21r -Po Ke2+ K s2 

. (cosYJ-L-i sinYJ-L)dp.. (19) 

All odd terms vanish in Eq. (19) yielding 

g(e-JI) 

11pO(FeKc+F.K. +FsKe-FeKs·)d =; 0 Ke2+Ks2 cosyp. Ke2+K.2 smyp. p.. 

(20) 

If F(p.) is determined for an equidistant set of J-L'S 

ranging from 0 to J-Lo in steps of say t.p.=0.1, it is 
then convenient to use tabulated values of the gamma 
function.lO In most cases it suffices to use a simple 
numerical integration scheme such as Simpson's Rule 
for Eqs. (17) and (20), although if the accuracy of the 
initial data warrants it, a more refined procedure such 
as that of Filonll may be employed. Normally, it is 
not convenient to take experimental data in precisely 
the right intervals that best suit the method of analysis 
to be used to evaluate the data. In the present case, 
two alternatives arise. Either an unequal interval 
integration scheme can be employed to obtain the 
Fourier transform function F(p.), or an interpolation 
procedure might be used to obtain functional values 
of the initial data at the desired intervals. If a large 
number of data are available one might choose the 
former approach, whereas if the initial data are avail­
able at only a few points or if the data are badly scat­
tered the latter method might prove the more desirable. 

V. RESULTS OF THE NUMERICAL EVALUATION 

To test out the method, we have constructed one-, 
two-, three-, and four-component decay curves. In 
the most accurate of these curves [J(t) = 100e-o·02tJ 
the data ranges in accuracy from about 1 part in 105 

at the beginning of the curve to 3 parts in 10 at the end. 
The accuracy of the remaining curves ranges from 
about 0.5 to 1 part in 104 at the beginning to perhaps 
5 parts in 10 at the end, except for the curves wherein 
the data are deliberately distorted in order to study 
a particularly desired effect. To simplify the calcula­
tions the data are constructed at equal intervals in the 
logarithm of t. This yields many points near the be-

11 L. N. G. Filon, Proc. Roy. Soc. Edinburgh 49, 38 (1928-
1929) . 

TABLE 1. Input data for the accurate decay curve j(t) = 
100e-o·02t , together with %-deviation factors used to simulate a 
decay curve with scatter." 

x j(t) % deviation 
----

0 -00 100.000 
1.0000 0 98.020 +4.1 
1.2840 0.25 97.467 -8.0 
1.6480 0.50 96.758 -6.9 
2.1170 0.75 95.854 -6.4 
2.7183 1.00 94.706 -1.9 
3.4903 1.25 93.259 0 
4.4817 1.50 91.426 +0.5 
5.7546 1. 75 89.128 -1.8 
7.3891 2.00 86.261 +3.6 
9.4877 2.25 82.717 -2.5 

12.182 2.50 78.380 +0.7 
15.643 2.75 73.134 -2.1 
20.086 3.00 66.915 +2.8 
25.790 3.25 59.703 0 
33.115 3.50 51.567 +1.9 
42.521 3.75 42.724 -1.2 
54.598 4.00 33.556 -1.9 
70.105 4.25 24.608 -3.6 
90.017 4.50 16.524 -1.5 

115.584 4.75 9.909 0 
148.413 5.00 5.139 -1.4 
190.566 5.25 2.212 +4.0 
244.692 5.50 0.7493 +5.5 
314.191 5.75 0.1866 0 
403.429 6.00 0.0313 -15.9 
518.013 6.25 0.0032 +122.0 
665.42 6.50 0 0 

"Data points between 1=0 and 1=1 not listed. 

ginning of the decay curve where J(t) is decreasing 
rapidly, and relatively few points at widely spaced 
intervals in t near the end of the curve where the 
longest-lived component is decaying slowly. The data 
thus produced are more realistically distributed with 
respect to the variable t than would have been the 
case had equal intervals in t been chosen, since one 
normally tends to take more experimental points 
where the data are changing rapidly. An example of 
the decay curve data is given in Table r. Here the 
initial data for the single component curve J(t) = 
100e-o·02t are shown together with the factors used to 
distort the data when the effect of scatter in the 
original data is studied (see Sec. V.D). The points 
between t=O and t= 1 are omitted from the table since 
they are normally obtained by interpolation. The 
accuracy of these points was about 1 part in 105 for 
this curve. 

A. Effect of Cutoff with Respect to p. 

By using Eq. (20) we determine a plot of gee-v) vs y 
by integrating the expression from 0 to J-Lo for each 
desired value of y. Such a plot is equivalent to a plot of 
g(A) /A vs A. In Fig. 1 we show the effect of increasing 
the final integration range from /oLo=2 to /oLo=4, by 
using the data for the single-component curve where 
A=0.02. It is seen that the principal peak falls in the 
same place on each curve, just at the proper A value. 
The breadth of the principal peak and the smaller 
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24 HI)- 100e-0
.
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"0' 2.0 "0 = 4.0 

20 

16 

FIG. 1. Effect of increasing 1-'0 from 2.0 to 4.0 in the an~lysis 
of a single-component decay curve. ;\.=0.02, xo=7.0. Ordmate 
units are arbitrary. 

ripples appears to be caused by errors, primarily cutoff 
errors, in the calculation and errors in the initial data. 
As the range in f..!, is extended, the resolution of the peak 
becomes better. In Fig. 2 the range in f..!, is extended to 
f..!,o= 6 and J.lo= 8, and again the resolution increases 
progressively. The positions of the peaks in the :r~or 
ripple change as a function of f..!,o, whereas the posItIOn 
of the true peak does not. This fact provides one 
method for distinguishing small true peaks from error 
ripples-simply change J.lo and note which peaks do not 
shift position. 

48 

40 

32 

24 
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" 16 
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HI) .100e-O
•
Oll 

"0 =6.0 1'0=8.0 

~ 

FIG. 2. Effect of increasing J.l.0 from 6.0 to 8.0 in the analy~is of 
a single-component decay curve. ;\.=0.02, xo=7.0. Ordmate 
units are arbitrary. 

48 
EXPANSION OF PEAK 

FOR "0' 8.0 "0 = 9.0 

004 003 002 0015 10 0.1 001 
X 

FIG. 3. Detail of the peak shown in Fig. 2 for 1-'0=8.0, and ~he 
results for the analysis of a single-component decay curve wIth 
1-'0=9.0. A=0.02, xo=7.0. Ordinate units are arbitrary. 

Once the positions of the true peaks are found, they 
may be examined more closely by taking smaller 
intervals in y. The left-hand curve in Fig. 3 shows an 
expanded view of the tlo= 8 peak of Fig. 2. Also shown 
in Fig. 3 is the curve obtained for f..!,o= 9. While the 
resolution is excellent and the center of the peak falls 
at the proper place, it is seen that the error ripples 
are no longer symmetrical with respect to the true 
peak. In order to obtain finer resolution without in­
creasing the height of the error ripples, it is necessary 
to use better initial data and/or perhaps a more ac-

t(t)= 1000e-0•1I + 100e 0.011 

64 "0 = 3.0 . "0=6.0 

56 

48 

40 

2 

2 

A ~ 4 

16 
4 

a 

I ~ 
~ 

:~~ ~ V l~ ~1 \J 

I . L ...1 6 -I 10 0.1 0.01 0.001 10 0.1 0.01 0.001 
;\. 

FIG. 4. Effect of increasing J.l.0 from 3.0 to 6.0 in the analysis 
of a two-component decay curve. AI=0.1, A2=0.01, xo=7.0. 
Ordinate units are arbitrary. 
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curate integratiDn scheme such as the Qne due tD 
FilDn,u AlthDugh nDt checked experimentally, it may 
.only be necessary tD extract mDre pDints frDm the 
initial data by SDme interpDlatiDn procedure SD as tD 
be able tD extend 11-0 tD a higher value withDut intrD­
ducing mDre error. 

Figure 4 illustrates the case .of a tWD-cDmpDnent 
curve with 11-0 increasing frDm 3 tD 6. In bDth curves 
the principal peaks are .of the same height. This is 
because the cDefficient .of the secDnd cDmpDnent, 
which is a factDr .of 10 smaller than that .of the first 
cDmpDnent, is divided by a A which is alSD a factDr .of 10 
smaller than the A fDr the first cDmpDnent. FurthermDre, 
the breadth .of each .of the tWD peaks is the same. 
This means the resDlutiDn is CDnstant .over the entire 
range due tD the fact that the methDd treats the initial 
data as a whDle and minimizes the errDr unifDrmly 
.over the entire curve. This fact is useful in analyzing 
unknDwn curves. FDr example, if tWD cDmpDnents have 
A values SD clDse tDgether that the resultant peaks 
cannDt be cDmpletely resDlved, the peak representing 
their sum may be wider than expected fDr a single­
cDmpDnent peak. The symmetry .of the peak gives a 
rDugh indicatiDn .of the relative amDunts .of each CDm­
pDnent. 

In Fig. 5 the results .of the analysis .of a three-cDm­
pDnent decay curve are displayed. Again the increase 
.of 11-0 frDm 6 tD 8 greatly improves the accuracy .of the 
final results. Finally, in Fig. 6 the results .obtained 
frDm the analysis .of a fDur-cDmpDnent curve are shDwn. 
In this curve, the A values range from 0.5 tD 0.01 while 
the cDefficients range frDm 3750 tD 100. In Table II, 
the relative height .of each cDmpDnent peak [g(Ai)/Ai] 
and the assDciated Ai value as determined graphically 
from the data in. Fig. 6 are cDmpared with the actual 

96 
t(t)=I.o.o.oe -O.lt -0.021 -O.Olt 

t-looe +I.o.oe 

1'0' 6 0 1'0' 8 . .0 

8.0 -

64 

48 

-< .... 
::< 

32 0. 

16 N 
.0 A ~ ~ 
v~ ~ ~~ If9 

-16 

I. [, I, I" . 
1.0 .0.1 .0 . .01 1 . .0 .0.1 .0 . .01 

FIG. 5. Effect of increasing p.o from 6.0 to 8.0 in the analysis 
of a three-component decay curve. AI=O.l, A2=0.02, A.=O.Ol, 
xo=7.0. Ordinate units are arbitrary. 

s;, 
<$ 
'" 

96 f(t)'3750e-05'+IOOOe-0.1t + IOOe-0.
021 

+IO.oe-
oolt 

1'0 '8 . .0 

8.0 

64 

48 

32 -

16 

FIG. 6. Results of the analysis of a four-component decay curve 
p.o=8.0. Al =0. 5, A2=0.1, A.=0.02, A4=0.01, Xo= 7 .0. Ordinate 
units are arbitrary. 

values. The deviatiDns from the true values give an 
indicatiDn .of the accuracy .of the meth.od. F.our c.om­
pDnents are determined frDm .only 29 pDints .on the 
gross decay curve in the range frDm t= 1 tD t= 1100 
tDgether with the assDciated pDints in the range frDm 
t=O t.o t= 1 which are nDrmally fDund by interpDlatiDn. 
By using mDre pDints in the initial data and by extend­
ing the limit 11-0 slightly, a mDre accurate determinatiDn 
.of the parameters is pDssible. 

The relatively large-error ripple peak, which .occurs 
at a A value .of abo'ut 0.0035, can be distinguished frDm 
a true peak by several means. First, the .original data 
can be checked tD see if a cDmpDnent with a half-life 
rDughly three times as IDng as that .of the A=0.01 CDm­
pDnent is reasDnable. Next, the final integratiDn limit 
11-0 can be changed and the shift in pDsitiDn .of the errDr 
ripples nDted. Finally, the width .of the suspected peak 
at its base [where g(A)/A=O] can be cDmpared with 
the width .of true peaks, since error ripples always 
appear narrDwer than true peaks. The ",5% shift in 
the apparent A value .of the A=0.01 peak is nDt en­
cDuntered when a A=0.02 and A=0.01 tWD-cDmpDnent 
curve is analyzed, but dDes .occur in the results .of the 
three-cDmpDnent analysis. Since experience shDws 
that a 5% shift is relatively large fDr a majDr peak, 
it is pDssible that the data fDr the A=0.1 decay curve 
are slightly in error. 

The range in A can easily be extended tD CDver a 
much greater spread in half-lives prDvided the CD­
efficients N i tend tD decrease as the Ai values decrease. 
What is impDrtant here is the relative values .of the 
qUDtient N/Ai. AlthDugh in Fig. 6 the Ai and the N. 
values vary by factDrs .of 50 and 37.5, respectively, 
the qUDtients N /Ai, i.e., the heights .of the peaks, 
differ at m.ost by a fact.or .of 2. The maximum ac-
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TABLE II. Comparison of the results graphically determined from Fig. 6 for the four-component decay curve with the actual values. 
Height of the A=O.1 peak normalized to 1.000. g(Ai) lAds termed Hi. 

II, H2 
-.--~---~--

Actual value 0.750 1.000 

Graphical estimates (Fig. 6) 0.769 1.000 

% deviation from actual values +2.5 0 

ceptable difference in N ;fAi depends on the integration 
limit JJ.o and on the separation in Ai values. For example, 
with similar Ai values such as 0.02 and 0.01 in a two­
component curve, a difference in peak heights of 3 or 4 
might be the maximum variation which still permits a 
reasonably accurate determination of the parameters 
Ni and Ai for a JJ.o of the order of 8. On the other hand, 
with widely separated Ai values such as 0.5 and 0.02 
in a two-component curve, the peak heights might 
differ by a factor of 10 and still allow a useful solution 
to be found for a JJ.o of the order of 8. Obviously, the 
limiting factor is the relative heights of the error ripples 
compared to the peak heights. 

B. Effect of Cutoff with Respect to X 

In all cases the experimentally determined function 
f(t) must be cut off at some finite value of t. Actually, 
under the change of variables, we are interested in the 
function eXf(ex ) vs x. Consider the case of the single­
component curve with A=0.02. In Fig. 7 we show a 
plot of the function eXf(ex ) and two cases of cutoff. 
In the first case I xo 1=5.25, while I xo 1=6.25 in the 
second case. It should be kept in mind that equal 
intervals in x correspond to exponentially increasing 
intervals in t. While little information is lost on the left, 
a considerable amount can be lost on the right. Even 
with a cutoff at I xo 1=7, the amount lost is not 
negligible for high JJ.o values (JJ.o~ 9) since the curve 
actually extends to x= ± 00 • Figure 8 shows the results 

>< ., -x .. 

X= Inl 

CUT·OFF AT 
- Xo '5.25 

CUT-OFF 
1- ~T 
I Xo -6 25 

6 8 10 

FIG. 7. Plot of the 
function e"f(e<) vs x 
for a single-compo­
nent decay curve 
with A=0.02. Cut­
offs at xo=5.25 and 
xo=6.25 shown. 

Ha H. Al A2 Aa N 

0.500 1.000 0.500 0.100 0.02 0.010 

0.466 0.988 0.516 0.0985 0.021 0.0095 

-6.8 -1.2 +3.2 -1.5 +5.0 -5.0 

of a cutoff at I xo 1=5.25. When the final integration is 
carried out to JJ.o=6, the error ripples completely 
mask the true curve. The dark triangle shows the 
expected height of the true peak. However, even in this 
poor case where the initial data are cut off after about 
5.5 half-lives, excellent results can be obtained if we 
are willing to accept poorer resolution. By restricting 
JJ.o to 4 the error ripples are greatly reduced and the 
true peak appears at the proper A value. 

The results for the case of a cutoff at I Xo 1=6.25 are 
as follows. For JJ.o= 6 there is no apparent deviation 
from the results shown in Fig. 2 where the data are 
cut off at I Xo 1= 7. Only when JJ.o is increased to 8 do 
the error ripples appear larger than they are in Fig. 2. 
Even in this case the true peak appears at the proper 
A value. 

C. Effect of Poor Extrapolation of the Initial Data 

Since a large cutoff in the initial data can exhibit 
such a profound influence on the final results, it is 
naturally of interest to see if it is advantageous to 
extrapolate the initial data, even if the extrapolation 
is somewhat in error. Two decay curves are constructed 

-OO2t 
(WITH CUT-OFF AT Xo=525, 1(1)= 100e 140 

fLo = 60 fLo = 4.0 
120 - 30 

100 25 

80 20 

60 15 

.. 
.0( 40 10 
'-

0 ~11 .~ 
t--5
V V_ 

~ 

.0( 

'" 20 

-20 

-4 0 ·10 Y 

-6 0 ·15 
Jm. ~ Jm. 

LO 01 0.01 0.001 1.0 0.1 0.01 0.001 
). 

FIG. 8. Effect of cutoff at Xo = 5.25 in the analysis of a single­
component decay curve with p,o decreasing from 6.0 to 4.0. 
A=0.02. Ordinate units are arbitrary. 
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based on the single-component ;\,=0.02 data. In each 
case the accurate data ends at I Xo 1= 5(t= 148.4) where 
an abrupt change is made to a ;\. value of 0.023 or 0.017. 
These curves are called "low extrapolation" and "high 
extrapolation," respectively. The curves are then 
extended out to I Xo 1= 7. The final results obtained for 
each case appear in Fig. 9 and may be compared with 
Fig. 8 where the initial data are cut off at I Xo 1=5.25. 

In the case of the high extrapolation, the initial 
data appear to contain an additional component with 
a A value less than 0.02. Thus, for /J-o=6 we see a 
double peak near ;\.=0.02. The presence of the addi­
tional ficticious component has shifted the position 
of the true peak to a larger value, and has caused 
large error ripples at the beginning of the curve due to 
the fact that the initial data in the range from t= 0 to 
t= 148.4 do not contain the additional component. 
Although badly distorted, the results are still of 
much more value than if the extrapolation had not 
been made, as in the case of the cutoff at I Xo 1=5.25. 
At a sacrifice in resolution, the high extrapolation data 
yield excellent results for a /J-o = 4. In the case of the low 
extrapolation and /J-o= 6 we again find that even a poor 
extrapolation is much better than a large cutoff. 
With /J-o= 6 the error ripples are large, but the true peak 
appears at just about the proper place. By decreasing 
/J-o much better results can be obtained. It may be said, 
then, that even a poor extrapolation usually yields 
better results than if the data are not extrapolated 
at all, but care must be taken not to try to push the 
resolution beyond the accuracy inherent in the data. 
Furthermore, it is safer to err on the low side rather 
than the high side when extrapolating. 

-o.ou 
I(t)= 100e (WITH POOR EXTRAPOL ATION) 

56 
HIGH HIGH LOW 

EXTRAPOI.ATION EXTRAPOLATION. EXTRAPOL ATION 

48 -
1'0 = 6.0 1'0 = 4.0 1'0= 6.0 

40 -

32 -
24 f-

'" 16 
;:; 
A 
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~AA f-R ~ ~4 

~ 
W\j \f 
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-16 

-24 
1., I" I, 
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A 

FIG. 9. Effect of poor extrapolation of the initial data in the 
analysis of a single-component decay curve. >.=0.02, Xo= 7.0 
Ordinate units are arbitrary. 
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! (WITH SCATTER) 
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FIG. 10. Effect of scatter in the initial data in the analysis of a 
single-component decay curve. >.=0.02, xo=7.0. Ordinate units 
are arbitrary. 

D. Effect of Scatter in the Initial Data 

Since we are dealing with a Fourier-type analysis 
we expect the method to exert a smoothing effect, in 
the least-square sense, on the data. The greater the 
smoothing effect the more statistical scatter can be 
tolerated in the initial data. To investigate this effect 
we have constructed a curve using the ;\.=0.02 single­
component data which contain a certain amount of 
more or less random scatter. Table I lists the percent 
deviation and the sign with which each point of t~e 
accurate data is changed to produce the scatter effect. 
\:V'hile the scatter so introduced may seem large with 
respect to certain types of actual experimental data, it 
is just those cases where accurate data are not available 
that are in most need of a method of analysis. In Fig. 
10 the results obtained with the poor data are shown 
for /J-o values of 6 and 4. For /J-o= 6 large error ripples 
are produced, but the true peak still appears at the 
proper A value. By reducing /J-o to 4 relatively excellent 
results are obtained due to the reduction in the error 
ripples. It is anticipated that smoothing of the data 
prior to analysis appreciably improves the final results. 
It should be possible to successfully analyze decay 
curves containing considerably more scatter provided 
that the data do not contain a bias and that a sufficient 
amount of initial data is available to provide a basis for 
the smoothing effect. 

VI. DISCUSSION 

As mentioned in the introduction, it is hoped that 
the method described here may be of use in the analysis 
of data from a wide variety of experimental problems 
in the physical, chemical, and biological sciences. The 
ultimate accuracy, of course, depends upon the data 
available. For example, when analyzing a mixture of 
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radioactive isotopes it is usually possible to accumulate 
a large amount of accurate decay-curve data. This is 
one case where a high level of resolution in the final 
results should be possible. When the usual radioactive 
decay-rate data are analyzed, the heights of the 
resultant peaks are proportional to the number of 
atoms of each species. 

Another case where good resolution should be pos­
sible occurs when the measurements may be repeated 
as often as desired and the results from each set of 
measurements averaged. Dielectric relaxation proper­
ties, for example, lend themselves to repeated measure­
ments. Certain types of chemical kinetics data, on the 
other hand, or measurements involving the rates at 
which injected materials disseminate in a'living organ­
ism cannot always be obtained with great accuracy. 
The meager or poor data often represent reactions in 
which there are only one or two components. Hence, 
a lower level of resolution may give a satisfactory 
solution that is not available when using other types of 
mathematical approaches since the detrimental effects 
due to the nonorthogonal properties of the exponential 
series can, to some extent, be avoided by using the 
present method. 

A few remarks of an empirical nature on the subject 
of errors are applicable here. With reasonable resolu­
tion, the function g( e-Y ) vs y produces symmetrical peak 
profiles for true components. Furthermore, the breadth 
of the true peaks is independent of y. Therefore, an 
error estimate may be obtained from the peaks them­
selves, and if a peak appears unsymmetrical or wider 
than another peak, the presence of unresolved com­
ponents is indicated. The positions of the peaks in 
the error ripple depend upon lJ.o, while the positions of 
the true peaks do not. This fact can be used by merely 
carrying out the final integration to two different lJ.o 
values and noting which peaks shift position. Also, 
the width of the base of a true peak is wider than the 
base width of an error ripple. Another test depends on 
the regular damping of the amplitudes of the error 
ripples. A divergence from the regular trend signals 
the presence of a true peak. Finally, it may be possible 
to obtain an error estimate for the integration scheme 

and also for the cutoff error. When there is doubt 
about a particular component, calculated decay curves 
can be constructed both with and without the sus­
pected component, and the scatter of the experimental 
points about the calculated curves can be examined 
statistically with respect to "goodness of fit." 

The fact that the results of an analysis are available 
as a functional display particularly at several levels of 
fineness of resolution, rather than merely a set of 
values for the parameters, is quite advantageous. 
Although the determination of the number of com­
ponents in principle is reduced to counting the number 
of true peaks, in difficult cases it is desirable to view 
the solution as a whole in reference to the mutual 
interaction of all of the parameters. A study of the 
curves representing the final results at several levels 
of resolution can provide a sounder basis for the ap­
plication of human judgment in cases where there is 
only a small amount of one of the components or where 
two components have similar A values. Another ad­
vantage is that the initial data are not required to be as 
accurate as in other methods, and full use is made of 
the accuracy that is available since the data are 
treated as a whole, as opposed to "subtraction-type" 
methods wherein all but the shortest-lived components 
are determined by using fewer points than are actually 
available. Furthermore, the occurrence of half-lives 
very dose together in magnitude does not endanger the 
entire solution as in other methods. 

The major limitation of the method appears to be 
that information concerning the decay of the longest­
lived component must be available for many half-lives. 
This limitation may not be too serious and several 
methods for treating the data in this regard have been 
suggested. 
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