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The velocity across a jet becomes nonuniform due to contraction or expansion of fluid in the
presence of electric current within the nozzle from which it issues. The results obtained elsewhere
on the instability of a jet of uniform velocity due to electric current and surface tension are corrected.
It is further shown that velocity nonuniformity reduces this instability. The available data on the
instability of a mercury jet issuing from a contraction are for small current density and, hence, low
velocity nonuniformity. However, for reasons yet unknown, the data do not agree with the (cor-
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rected) theory for the case of uniform velocity.

INTRODUCTION

EGLECTING displacement current, the equa-
tion for the intensity of magnetic field becomes

0H/dt = curl UxH) — (1/uo) curl curl H, (1)

where ¢ and ¢ are assumed constant. The equation
of motion for inviscid incompressible fluid is

p(0U0/8¢ — U x curl U)
= —grad (p + $0U") + JxB.  (2)

Consider the steady flow of a current carrying
inviscid, incompressible fluid from an axisymmetric
nozzle of nonconducting material (see Fig. 1). We
assume that electric current density and fluid
velocity are constant at the inlet of the nozzle of
diameter R,. The radius of the outlet is R, and J,,
the current density, is uniform here. The directions
of the velocity and current coincide for the wall
and central streamlines, and, applying the equation
of motion separately to these streamlines, we find
that'

Us — Us = wliR*(L — R*/RD/20, ()

where U, and U, are the exit velocities at the wall
and the center of the nozzle. The velocity varies
parabolically from the center to the wall for small
contractions of the nozzle, and we will assume that
for any amount of contraction, the velocity profile
for steady unperturbed flow is

U.r) = Ul — a1 — r*/R%)], @)
1 M. S. Uberoi, Phys. Fluids 5, 401 (1962).

Fia. 1. Schematie
representation  of
the problem.
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where
a=1-@1-4
v = (wJoR*/2pU0)(1 — R*/R).

For a contracting nozzle vy varies from 0 to 1 since
U, ranges from U, to zero. For an expanding nozzle,
a ranges from 0 to — «. The jet is subjected to a
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small axisymmetric perturbation which deforms its
surface into a shape given by
ikz+wt

rw = R + ae ;i /R O

The governing equations will be solved neglecting
squares of small perturbations.
Instability occurs when the quantity

w = w, + )
has a positive real part.
MAGNETIC FIELD INTENSITY

The magnetic field intensity has 6 component
only. We may write H, and the velocity as

H& = %Jor + h(?', 2, t): (8)
U= iU +ul,z 9, 9)

where 3Jor and U,(r) are the steady state values,
and h and u the perturbation. In terms of these
Eq. (1) becomes, neglecting product of perturbations,

oh _

B U021 2w+ 2w |
1 (0139 9’
+_(5}7~a7 +5ah o

Making use of the continuity equation for incom-
pressible flow, we have

)h 11)

In most cases of hydromagnetics of incompressible
fluid the term on the left-hand side of the above
equation may be neglected. That is, the “skin effect”
is unimportant which is certainly the case for the
experiments to be discussed later. Thus,

ad
(5,7“5,7‘4- ) = 0.

[ +U(r)—]h——h——(%r5;r+

(12)

In this approximation, and because of the special
form of the unperturbed magnetic field intensity,
the velocity has no effect on h, which is determined
by the instantaneous form of the jet boundary. The
solution of Eq. (12), which is periodic in. the 2
direction and satisfies the boundary condition that

r=0h=0,and, atr = R,
J. dr. 1 ok ikztwt
LT T T e T
is
h = —ado[I,(k)/I,(kR)]e™***** . (13)
The_total magnetic field intensity
H, = 3o — ado[l,(kr)/[,(kR))e******. (14)
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VELOCITY FIELD
Taking the curl of Eq. (2) we have

% curl U — curl (U xcurl U) = ; curl (J xB)

or, neglecting products of perturbation velocity,

a_t curlu + U (r) - curlu =£ curl]xB (15)
Now
19 (H;
[curl (J xB)], = oy <7) (16)

Substituting for H, from Eq. (14) and neglecting
the term of order a® compared to that of a,

[eurl (J xB)ls = (6/w)JoklLy(kr)/ T (kR) ™"

Let ¢ be the perturbation velocity stream function
such that

amn

19 _ 9%
u =T ry and u, % (18)
Further, let
¥ = fl)e* e, (19)

where z = kr. Later we will use X to denote kE.
Substituting Egs. (17), (18), and (19) into (15)
and using U, from Eq. (4) we have

e 1df ( _ 1_>
de | rdx 1 z* f
L apdlR (@) 1
= Tl LX) 1 F im0
where
B = (X¥/kU)(w + tkUy) — iaX®. 21)
Then Eq. (20) may be simplified by letting
_ ap.JoR Ii(x) 929
fo) = —i B PR 0. @)

After substituting Eq. (22) into Eq. (20), g does not
appear in the equation, and the first integral of the
equation gives

dg 1 * yliy) dy

@~ @ b T+ ity P
The boundary condition
(U)rup = Or,/0t + U, dr./0z, (24)
gives the relation
9X) = —BoUo/kuiR)w + kUs).  (25)
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PRESSURE FIELD AND DISPERSION RELATION

The pressure in the jet is the sum of steady state
and perturbation pressures
p = por) + ap, (™", (26)

By substituting the above equation, together with
Eqgs. (14), (18), (19), and (22}, in the z component
of Eq. (2), we obtain the expression for the per-
turbed pressure just inside the jet when we let z = X,

pd R?
BPUO

Lo 2655+ (2)...)

- This pressure is determined by the surface tension T
of the fluid and the surface geometry of the jet®
p(R) = (T/R)X* — 1). (28)

Equating Egs. (27) and (28), and substituting from
Eqgs. (21), (23), and (25), the dispersion relation is
obtained,

p(R) = 3uJiR + plw + kU,)

27

IL(X)
To(X)

EJ_?,I,(X) {g Lot kU, 1
p IyX) kU, XIN(X)

(@ + kU = ——5 L x(xt - D75

+

X 213 (x) dx
'ﬁ@+mmwwwwu—wm%'m)

STABILITY IN ABSENCE OF SURFACE TENSION

We neglect the effect of surface tension and sub-
stitute Eq. (7) into Eq. (29), which leads to two

equations,

‘ Iaq

323 =1 l: 2
Ty LX)

1
T XI(X)I1L(X)

LX)
Io(X)

2 2 _ 3 o 2
f(X—?@MQEQQif?@d 0
"/X _ _ (X? - 12)xlf(2a:) dx s, ()
o X' — 2 — (v/)ZXT + (v/a)Z.X
where
27 = pwr/uds, (32

¢ H. Lamb, Hydrodynamics (Cambridge University Press,
New York, 1952), p. 473.
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Fic. 2. Influence of initial velocity nonuniformity (a) in
absence of surface tension

and
2 = plos + kU /uls. (33)

For an expanding nozzle « is negative, 2, is un-
changed, and the sign of Z; changes. The results
are shown in Fig. 2. In the case of uniform initial
flow o = Z; = 0, and Z, is given in terms of the
known functions. The results for « = 1 were ob-
tained by an iterative process starting with the
solution for @« = 0. The process converged rapidly.
As X — =, Z;, — 0 and Z? approaches 1 + 1X for
all values of a.

STABILITY IN PRESENCE OF SURFACE TENSION
Substituting Eq. (7) in Eq. (29) we get

-0 =-XX*"-1 § gi

X[, L&) LX)
+”b+2bnw>zmﬂ}
N
XL LX)

fx x* - 91:2)|:X2 -2 — 21_01 (%)iﬂiX]mIf(x)

[XZ - = <1)%Q-X:|2 + - 02X
2a \N/ N &

,Y%N%
alo(X)1(X)

(X* — 2M)xli(z) dx

X
f [Xz_”Z‘L@‘)*“‘X]Z—l— xs
i 4a2N T

2a \N

dx

)

(34)

9,’=

(35)
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Fra. 3. Influence of initial velocity nonuniformity («) in
presence of surface tension

where

@ = */T, (36)
@ = plw; + EUYRY/T, 87)
N = pJZR*/AT = ul*/4n°RT, (38)

and I is the total current.
For uniform initial velocity @ = @; = 0, and®

_ 2 Ix(X)

b, Lm,um} .

+“&+2Pmm L@l 9
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Fic. 4. Variation of growth constant (m,)mM with axial
current I for mercury jet of 0.2 ¢m radius, T' = 487 dyn ecm™,
p = 13.6 g cm™2,

# G, Murty, Arkiv Fysik 18, 14 (1960).
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Due to some oversight, Murty obtained the
erroneous result which in our notation is

- —X(X' - 1) ?g;
LX)  Iy(X)
+Mé+ [@ Lm} (40)

The results for N' = 3 and « = 1 are shown in Fig. 3,
and were obtained by iterative process starting with
the results for @« = 0. The nonuniformity of the
initial velocity profile caused by either converging
or diverging nozzle decreased the instability.

DISCUSSION AND COMPARISON WITH
EXPERIMENTS

The assumed initial velocity profile agrees with
the detailed analysis of flow in a nozzle of small
contraction or expansion. Further, the profile does
not introduce instability of its own as rotational
flows often do. Equation (29) shows that w = 0
if Jo = T = 0, ie., the instabilities analyzed here
are due to current and surface tension.

Assuming that the observed rate of growth cor-
responds to maximum instability, the results for
a = 0 are compared with experiments® on a mercury
jet in Fig. 4. The discrepancy cannot be explained
by the decrease in instability caused by the initial
nonuniformity of the veloeity, since o << 1 for these
experiments.

Depending on the background disturbances, the
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Fre. 5. Comparison of experimental with theoretical re-
p

sults, not considering the effect of velocity distribution across
the jet. R = 02 em; 7 = 487 dyn em™}; p = 13.6 g em™2,

¢ A, Dattner, B. Lehnert, and S. Lundquist, in Second
United Nations International Conference on the Peaceful Uses
of Atemic Energy (United Nations, Geneva, 1958), Vol. 31,
p. 325. The rates of growth are taken from Murty’s paper.
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observed rates of growth may mnot correspond to
maximum instability. In Fig. 5 we have calculated
the rate of growth vs wavenumber corresponding
to experimental conditions. The rate of growth and
the wavenumber of disturbance are given for only one
value of current in Murty’s paper, and this is shown
in Fig. 5. Both the rate of growth and wavenumber
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are off by mearly 1009,. The discrepancy is un-
resolved.
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The nonuniform expansion of a rigid, perfectly conducting piston into an infinitely conducting
fluid wherein there exists a weak uniform magnetic field is considered. A solution for the state of the
plasma and the magnetic field between the piston and the magnetohydrodynamic shock is obtained
by a small perturbation method; the dependent variables are expressed in double expansions about a
zero order (hydrodynamic) solution. The solution is valid for pistons (either cylindrical or spherical)
whose expansion velocity is expressible by a small perturbation on a constant velocity. The develop-
ment includes second order terms; however, numerical results are restricted to first order. Within the
first order perturbation, it is shown that the fluid dynamic analysis is uncoupled from the magnetic
field, and the shock shape retains its cylindrical or spherical symmetry. Calculations are carried out
for a spherical piston, for several values of v (specific heat ratio), and a./v0 where a. is the ambient
speed of sound and v, is the uniform piston velocity. The results show that the shock velocity is

nearly insensitive to changes in the piston velocity.

1. INTRODUCTION

HE expansion of a piston into a fluid medium

propagates a shock ahead of it which separates
the disturbed fluid from the quiescent region. The
classical solution to this problem was obtained by
Taylor' who considered a spherical piston expand-
ing with constant velocity into a fluid in the absence
of a magnetic field. Across the shock, the Rankine—
Hugoniot relations were satisfied; behind the shock,
the fluid was governed by the fluid equations while,
at the piston, the kinematic condition equating the
piston velocity to the fluid velocity was imposed.
Taylor’s solution retained spherical symmetry and
remained self-similar for all times because of the
constant piston velocity. Rogers® extended the
Taylor analysis to other geometries.

When the fluid is infinitely conducting and a
magnetic field exists, the expanding piston propa-
gates ahead of it a magnetohydrodynamic shock
across which properties are governed by modified
—‘—(??[.—Taylor, Proc. Roy. Soc. (London) A186, 273 (1946).
273 (1946).

M. H. Rogers, Quart. J. Mech. Appl. Math, 11, 411
(1958).

Rankine—Hugoniot relations as first derived by
de Hoffmann and Teller.® Behind the shock, the
fluid is governed by the magnetohydrodynamic equa-
tions and Maxwell’s equations, while at the piston,
a constraint on the magnetic field, in addition to
the kinematic condition of Taylor, is imposed.

The expansion of a piston into an ionized medium
wherein a magnetic field exists is relevant to ex-
plosions in the ionosphere or to the astrophysical
problem of exploding stars.

Kulsrud et al.* have considered the uniform ex-
pansion of an infinitely conducting spherical piston
into an infinitely conducting fluid in which initially
there exists a constant magnetic field. They have
solved this problem by a perturbation procedure
about the zero order (hydrodynamic) solution of
Taylor'; their perturbation parameter ¢ was related
to the ratio between the undisturbed Alfvén velocity
and the piston velocity, and was assumed small.
Their solution is still self-similar, even though

3 F. de Hoffmann and E. Teller, Phys. Rev. 80, 692 (1950).

4 R. M. Kulsrud, I. B. Bernstein, J. B. Fanucci, M. D.

Kruskal, and N. Ness, AFSWC-TDR-62-12, Vol. II, Chap. 2,
March 1962 (to be published).



