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The technique developed in the general theory of discontinuities is applied to the basic equations
of unsteady magnetohydrodynamics in order to find the conditions to be satisfied by the discon-
tinuities in the derivctives of the significant flow and magnetic field parameters. In the formulation
of the basic equations use is made of the “magnetchydrodynamic approximation.”’” This amounts
to the assumption that the magnetic energy is very large compared with the electric energy, or physi-
cally, that the displacement current is negligible. The fluid itself is considered to be infinitely condue-
tive, inviscid, and compressible. With the aid of the relations satisfied by the jumps in the derivatives
of the parameters the various characteristic manifolds are found. Finally, it is shown that these
manifolds are hypersurfaces along which small disturbances and weak shocks are propagated.

1. INTRODUCTION

HE theory of discontinuities in conventional

hydrodynamics has been treated by many
authors culminating in the work of J. Hadamard'
and the texts by Courant and Hilbert® and Courant
and Friedrichs. However, Hadamard’s theory is
based on the Lagrangian form of the equations of
motion and the classical method treated in the texts
mentioned above are rather cumbersome and long,
especially when the number of parameters involved
is large. Following a method developed by R. K.
Luneberg® for electromagnetic theory one may
obtain a very general theory of discontinuities® in
terms of the Eulerian form of the equations of
motion. This method, as adapted by N. Coburn in
conventional flows of compressible fluids, may be
employed very effectively in the study of dis-
continuities in magnetohydrodynamics.

It is the purpose of this paper to illustrate the
application of this theory to three-dimensional
unsteady flows of a compressible, inviscid, magneto-
hydrodynamic medium, resulting in a simple method
of obtaining the various ‘‘characteristic manifolds”
of the flow. Furthermore, from the resulting relations
to be satisfied by the discontinuities in the de-
rivatives of the flow parameters, it will be shown
that small disturbances and weak shocks are propa-
gated along these manifolds.
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In the next section the fundamental equations of
magnetohydrodynamics are formulated and the
method of the general theory of discontinuities is
applied to obtain the relations for the jumps in the
derivatives of the flow variables. The details con-
cerning the general theory of discontinuities are
given in reference 5.

2. MAGNETOHYDRODYNAMIC EQUATIONS

For the case of the continuum hydrodynamies of
an electrically conducting fluid immersed in an
electromagnetic field the equations describing the
motion are obtained by combining the equations of
conventional macroscopic hydrodynamics with the
equations of electromagnetism. For a general
inviscid, compressible, infinitely conducting fluid
In the absence of external nonelectromagnetic body
forces these are (in Gaussian units)®

B
ot F o) =0, (1

8 9 ) 4 2 uH ) .
3 (o0n) + e (v'n)) + P (P + 8z ) O

_ 9 (‘Z—W H“Hk> —0, (@

ox*
H o
Myl o g o
oz* ar* ax*

where, 2", (\ = 1, 2, 3) denote coordinate axes of a
Cartesian coordinate system, p denotes density,
v, fluid velocity vector, H,, magnetic field vector,
p, pressure, and u,, magnetic permeability (assumed
constant).

Repeated indices indicate summation and §,* is

¢ G. H. Cole, “Some aspects of magnetohydrodynamics,”’
Advances in Physics (Taylor and Francis, Ltd., London,
1956), Vol. 5, p. 452,
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the usual Kronecker delta. Together with the
system of Egs. (1) to (3) must be adjoined the
relation

i}
ZH =0 4
ax* @
which expresses the condition that the divergence
of the magnetic field is zero.
The metric of the space is expressed by the tensor
o satisfying the relation

o = cos (2, 7). (5)

Since a general Cartesian coordinate system is
used, contravariant components of a vector or
tensor are to be distinguished from covariant ones.
The relation between them is given by

etc. (6)

Consider a four-dimensional Euclidean space-
time manifold E,. The time variable will be denoted
by ¢, and the space variable by z*, A = 1, 2, 3. The
space variables are assumed to be Cartesian and
define «' Euclidean three spaces K, in E,. The
coordinate lines, ¢ = variable, will be assumed to be
Euclidean and thus they are lines in E,.

The hypersurface (or lower dimensional manifold)
in space-time along which the discontinuities occur
will be denoted by

¢(t’ x)‘)i = ¢, (7)

where the ¢; are constants and j = 0, or j = 0,
l,orj=0,1,2,0rj =0,1,2 3. If j = 0, then this
system consists of only one equation, and in this
case the discontinuity manifold defines a hyper-
surface. Similarly, if the system consists of two
equations (j = 0, 1) the discontinuity manifold
defines a surface, etc. The vector fields for the
various types of j, [(3¢)/(89)];, [(8¢)/(92")]; (u = 1,
2, 3), determine vectors normal to the discontinuity
manifold.

n = o,

3. RELATIONS FOR THE JUMPS IN THE DERIVA-
TIVES OF THE FLOW AND MAGNETIC
FIELD VARIABLES

In order to determine the fundamental relations
for the study of the discontinuities in the derivatives
of the parameters the general covariant differen-
tiation operator, V;, j = 0, 1, 2, 3 is introduced
where

0 i)
T Vi= o

By differentiation of Eqs. (1) to (3) the following
relations are obtained:

Vo i=123. (8
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v,("T”:‘) + V.VH — nH) = 0. (11)
Since the space E, is Euclidean the interchange of
the order of convariant differentiation is permissible.
Thus, V;V.u, = V.V,u,.

In order to obtain the equations for the various
characteristic manifolds the jumps in the derivatives
of the flow parameters will be investigated. Hence,
it is assumed in the future work that v\, p, p, H, are
continuous but that the derivatives of these quanti-
ties may be discontinuous. Also the discontinuities
of s will be assumed negligible.

Consequently from the formulation of the gas law
as p = p(p, §) it is seen readily that

Vip=2aVi+ (QB) Vs, (12)
as/,
where a® = (dp/dp), = local velocity of sound.

Let [V 2] denote the jump in the value of the
derivative of v, across the discontinuity manifold,
[V v"s] the jump in the derivative of v*»,, etc. In
view of our assumption the discontinuity in V,p
may be expressed as

[Vip] = a’[V,0]. (13)

Then by means of the integral forms of Eqgs. (9),

(10), and (11) the jumps in the derivatives of the
parameters satisfy the following equations®:

9 d
SVl + L (V=0 (19

% [Vion\] + % {[va“vx] - [vi :‘; H"Hx]}

3 (0 -
+5 (a [Viel + [vi ‘;aHHx]) =0, (9

2 (Vi) + 22 ((VrE] ~ (V.HW]) = 0. (16)
9z

In the preceding equations (3¢/dt), (3¢/dz") repre-
sents the components of any vector normal to the
discontinuity manifold. The equations (14) through
(16) are the fundamental equations for the study of
discontinuities in the first derivatives of the flow
parameters.
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The auxiliary equation (4) becomes
d
% 7.8 = 0.
ar*
4. VARIOUS “DISCONTINUITY MANIFOLDS”

In this section the (hyper) surfaces associated with
discontinuities in one or more of the first derivatives
of the flow parameters will be investigated.

By means of the usual property of derivatives the
following expansions in the jumps may be made:

[Vien] = ei[Vp] + p[Vnr],
[Viot'n\] = oi[V;t"] + o[V 0], ete.

Introducing these expansions into Eqs. (14)
through (16) and making use of Eq. (17) the jump
relations may be written as

(17)

LIViel + p8,[V ] = 0, (18)
LotV ) + (a'(70] + 5 11(7 .11
(19)
— LS He[V.H] = 0,
LIVH\ + He V'] — H9,[V,n] =0,  (20)

where
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(a) Manifolds along which Vs, may be dis-
continuous but V;p, ¥V H, are continuous: Equa-
tions (18), (19), and (20) yield

[Vl = 0; L[Van] =0; H$.[Van]=0.

It is seen that these equations are satisfied if
and only if ¢(z", f) is the solution of (3¢/9t) +
v*(8¢/92") = 0. These manifolds consist of families
of lines of particle motion. This follows from the
fact that the equation implies that (d¢)/(df) = 0
as the motion of the fluid is followed. It is to be
noted that associated with it the component of the
magnetic field vector normal to the discontinuity
manifolds is zero.

(b) Manifolds along which ¥;p may be dis-
continuous but V», V,;H, are continuous. Equa-
tions (18) and (19) vield

L[V ;p] = 0; #lVip] = 0.

These equations are satisfied if and only if
é(2", t) is the solution of the system
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This system possesses the solutions ¢(z", #); =
¢;, j = 0,1, 2, 3. Hence there exists only a finite
number of points at which V;p may be discon-
tinuous, but Vv, V;H, are continuous.

(¢) Manifolds along which V;H, may be dis-
continuous but 'V ;»,, V ;p are continuous: Equations
(19) and (20) yield

®H [V H,] — H'¢,[V;H,] = 0;  L[V,;H\] = 0.

Hence the discontinuity manifolds consists of lines
of particle motion.

(d) Manifolds along which V;p, V;H, may be
discontinuous, but Vv, is continuous: Equations
(18), (19), and (20) yield

L[V;p] = 0; a’\[V ;0] + :—;_¢XH“[V1'HM]

- Z—;H“ JV.H\ =0; L[V,H)]=0.

Multiplying the second equation by H" and sum
over \ gives ;
H K N = 0.

Hence the discontinuity manifolds are lines of
particle motion with the condition that H'¢, = 0.

(e) Manifolds along which Vv, V;H, may be
discontinuous, but V;p is continuous: Equations
(18), (19), and (20) yield

6Vl =0; LoVl + (= H"(V H,]

— L B[V .H,] = 0;

L[V,H)‘] — H* ,,[V,'U)‘] = O.

Multiplying the second equation by H" and sum over
\ gives
LH' [V ] = 0.

This yields either L = 0 or H}[V ;] = 0.

(i) L = 0 = the discontinuity manifolds consist
of lines of particle motion.

(i) H'[V] = 0. In this case Eq. (20) yields
HYV,H,) = 0. Hence, Eq. (19) gives

LoVl ~ ¢ H'$,[V,H,] = 0.

Also from Eq. (20)

(.1 = LT,
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"Therefore,

LoV ] — "—;; H*H’$ .5 [—V-I:—”*—] =0
or

— B gepg? 0] =
41I'pH H¢a¢ﬁ)[vvv)\] 0'

(z

Hence in this case the discontinuity manifolds are
described by the partial differential equation:

L* - f,;_,, H*H % .$5 = 0.

(f) Manifolds along which ¥V, V,p may be
discontinuous, but V;H, is continuous: Equations
(18) and (19) yield

L[V;p] + ppu[V '] = 0,
LoV m] + &’:[V,p] = 0.
Multiplying the last equation by ¢, and sum over
A gives
Lo [V '] + a’g¥6.[V 0] = 0.
Hénce, using (18),
. L2 _ a2g)‘u¢x¢ﬂ = .

It is to be noted that this is exactly the relation
which describes the characteristic surfaces in the
case of conventional hydrodynamics.®

(2) Finally the manifolds along which V;p, Vu,
and V,;H, may all be discontinuous will be de-
termined : It will be seen that these are hypersurfaces
and they are usually known as the ‘“‘characteristic
manifolds” of the flow.

Multiplying Eq. (19) by H* and summing over A
gives

LoHNV 0] + ’H'$:[V 0] = 0. @D

Multiplying Eq. (20) by H', summing over },
and using Egs. (18) and (21) yields
L?pH'[V H\] + LpH*H [V ']

+ @’H H%.6s[V 0] = 0.

Multiplying Eq. (19) by ¢, summing over A, and
using Eq. (18) gives

(22)

(L7 — a"g"%a90) [V i0] = 5= 0™t [V ).
Using this equation together with (18), (22), and
the fact that [V ;p] £ 0, it is seen that the character-
istic manifolds are described by the differential
equation:
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(23)

The characteristic relation (23) was also obtained
by Friedrichs and Kranzer by using a method of
weak shocks.” It may be easily shown, e.g., by
computing the determinant of (18), (19), and (20),
ete., that this condition is also a sufficient one.

It is to be noted that the above equation reduces
to the familiar characteristic equation for con-
ventional hydrodynamies .in the absence of a mag-
netic field.

5. PROPAGATION OF SMALL DISTURBANCES OR
WEAK SHOCKS

It will be shown in this section that small dis-
turbances in the parameters v, p, p, H, are propa-
gated along the characteristic manifolds. Suppose
u, P, p, Hy, and their space-time derivatives are
continuous except that in crossing the discontinuity
manifold the parameters themselves and their
derivatives may be discontinuous. Let {ov\] denote
the jump in the value of pv, across the discontinuity,
[pv*v,] the jump in the values of pv*n, ete. Let the
subseripts 1 and 2 indicate values on the sides of the
discontinuity manifold, then

fab] = (ab), — (ab), = (a, — a,)(b, — b,)
+ a;b, + azb, — 2a,b;.

Upon simplifying the right-hand side the jump in
(ab) may be expressed in the form

[ab] = [a][b] + [a]b, + ai[b]
= —[al{b] + [a]b; + a.[b].

Similar to the case of conventional hydrodynamics
the jumps in the flow parameters satisfy the relations®

(24)

o ol + 2w = 0, (25)

% () + 2 {1 + (i + [ 22 ]) o0 (
26)
o

? K. O. Friedrichs and H. Kranzer, “Non-linear wave
motion io magnetohydrodgnamics,” New York University,
Inst. Math. Sci. Rept. MH-8, 1958 (unpublished). This was
brought to the attention of the author by the referee of this
paper.



UNSTEADY MAGNETOHYDRODYNAMICS

21,0 + 2 (vE) - W) = 0. @)
or
The auxiliary equation becomes
% g = 0. (28)
ax"

This means that the normal component of the
magnetic field vector is continuous across a dis-
continuity manifold. As before, entropy changes are
assumed negligible and hence

[p] = a’[p]. (29)

Expanding the jump relations (25), (26), and (27)
by means of Eq. (24), neglecting the quadratic and
cubic jumps, and using the relation (28), the equa-
tion for the characteristic manifold (23) is obtained.
Thus small disturbances and weak shocks are indeed
propagated along the characteristic manifolds as
they are in the case of conventional hydrodynamics.
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6. CONCLUSION

As was shown in the foregoing the general theory
of discontinuities is readily adaptable to the study
of discontinuity manifolds in unsteady flow of
magnetohydrodynamics. The characteristic hyper-
surfaces of the flow were determined in a very
elegant manner which avoids the extensive algebraic
manipulations one usually encounters in the classical
method of characteristics. Moreover, the method of
the general theory of discontinuities may be extended
to discuss the shock and contact discontinuities in
unsteady magnetohydrodynamics [see (25)—(28)].
This may possibly lead to useful information con-
cerning the effect of the magnetic field on the nature
of the shock manifolds.
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