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A numerical computer simulation using a charge sheet model is employed to investigate the heam-
plasma instability and Landau damping in a one-dimensional, finite-length, inhomogeneous plasma. The
results confirm the theoretical predictions that the inhomogeneities in plasma density distribution reduce
the spatial growth rate of the beam-plasma instability and increase the Landau damping rate.

I. INTRODUCTION

In most plasmas generated in the laboratory there
exists a significant axial density gradient close to the
ends of the discharge tube in addition to radial density
variations. It is interesting to investigate how such
spatial inhomogeneities in plasma density modify the
beam-plasma instability and Landau damping. Davis!
used a one species charge sheet model to study the
beam-plasma interaction at the electron plasma fre-
quency in an effort to explain the narrow beam velocity
spread in his laboratory experiments. He found that
the nonuniform plasma density distribution simulated
by a linearized plasma model was the mechanism which
reduced the beam-plasma interaction strength. Jackson
and Raether” selected a special form of plasma density
distribution and were able to obtain the oscillation
frequency and Landau damping rate as a function of
the degree of inhomogeneity. They predicted that an
increase in the plasma density inhomogeneity would
enhance the Landau damping rate.

The first part of the present investigation is devoted
to the development of a linear theory of the beam-
plasma instability and Landau damping phenomena
in a finite-length nonuniform plasma system. Then, a
two-component charge sheet model is used to study the
effects of inhomogeneities in plasma density distribu-
tion on the beam-plasma interaction and Landau
damping by assigning appropriate initial positions to
pairs of ion and electron sheets. The comparison
between the predictions of linear theory and the
numerical computer simulation results is described in
detail.

II. THEORY

In the framework of the hydrodynamic approxima-
tions the basic system of linearized differential equa-
tions for an electron beam nonuniform cold-plasma
system in one dimension is written as
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where the heavier ions are taken as a nonuniform
stationary neutralizing background. In the above
expressions, v denotes the velocity, # is the density,
E is the electric field, ¢ is the magnitude of the electron
charge, and & is the dielectric constant of free space.
Inserting a time variation of the form exp[ jwt] into
Egs. (1)-(5) and neglecting any spatially uniform
electric field in the solution yield the following dif-
ferential equation for the electric field:
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where w,?(2) =[¢*No,(2) /e is the spatially varying
plasma frequency. Let
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where v is a measure of the inhomogeneity of the plasma
density distribution. At z=0 the electron beam is
modulated at the frequency wy and it is assumed that
wpo denotes the dominant mode of the interaction
(i.e., w=wy). The solutions of Eq. (8) can be written
in terms of modified Bessel functions of order one and
the corresponding physically admissible amplitude of
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F1c. 1. Landau damping rate and oscillation frequency of
the lowest-order mode versus the inhomogeneity parameter for
L/ XD=25.

the beam velocity is
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where A, is an integration constant. It is evident from
Eq. (10) and the behavior of the modified Bessel
function Jo, that an increase in the inhomogeneity
parameter » will reduce the spatial growth rate of the
beam-plasma interaction.

It is believed that for a sufficiently warm plasma in
which the resonant interactions between the waves
excited by the electron beam and the plasma electrons
are important, Landau damping will be the dominant
dissipative effect for the beam-plasma instability. In
the following the influence of an inhomogeneity in
plasma density distribution on Landau damping is
investigated. The linearized Vlasov and Maxwell
current equations for an inhomogeneous plasma are
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where f(2, v, ) is the perturbation in the electron dis-

tribution function, fo(2, v) is Maxwellian in velocity

space,

fo(z, v) =No(2)g(v) = No(z) [(2m) 2V 7 ]
Xexp(—1/2V7?), (13)

and Eo(z) arises from the density gradient. The ions
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are treated as a fixed nonuniform neutralizing back-
ground. Weissglas® has shown that in Eq. (11), the
fourth term can be neglected in comparison with the
first term provided that the condition Ap?/AL<K1 is sat-
isfied. In other words, if the square of the Debye length
is much smaller than the product of the wavelength and
the plasma dimension, the variation of the distribution
function resulting from the static electric field arising
out of the density gradient is much smaller than the
local time variation of the distribution function. Follow-
ing Weissglas the odd and even functions (in velocity)
are defined:

Fo(z, v, t) =f(z: v, t) —f(z; -, t);
Fo(z,v,8) =f(z,v,1)+f(3, ~v,1).

The plasma is situated in an idealized ‘“‘square-well”
magnetic field such that f(0, », £) =f(0, —», £) and
f(L, v, ) =f(L, —v, t) which leads to the following
boundary conditions on the odd part of the distribution
function: Fo(0, v, §)=Fo(L, v, {)=0. The plasma
neutrality imposes the following boundary conditions
on the electric field: £(0, t) =E(L, ¢) =0. In terms of
the odd function Fy and if exp[jwt] is assumed to be
the time variation of the perturbations, Egs. (11) and
(12) become
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Now expand Fy and E in sine series and assume the
following plasma density variation:

No(2) = Nog[ 14 sin?(mz/L) ];

then, the elimination of Fo gives the following recurrence
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Fic. 2. Electron beam velocity versus distance for an electron
beam-plasma system with (No2) min/ (V02) max=0.9.
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relation for the electric field:
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F1G. 4. Plasma electron and ion density distributions for an elec-

tron beam-plasma system with (Ng2) min/ (Noz) max=0.9.
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F1G6. 5. Time evolution of plasma electron and ion thermal
velocity and average beam velocity for an electron beam-plasma
system with (Noz2) min/ (Ve2) max=0.9. (a) Plasma electron thermal
velocity versus time; (b) plasma ion thermal velocity versus time;
(c) average beam velocity versus time.

Under the condition that the damping rate is small in
comparison with the frequency w, the perturbation
method can be used to investigate the effects of plasma
density inhomogeneities on Landau damping. In the
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limit of long wavelength the real part of Eq. (19) gives
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and the imaginary part of Eq. (19) gives the damping
rate as
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where «=w,+1w,;. Equation (21) can be identified as
the recurrence relation among the coefficients of the
Mathieu equationt which in standard form is written as
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Fic. 7. Electron beam velocity versus distance for an electron
beam-plasma system with (Noz) min/ (Nez) maz=0.5.
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and
s=— (L2 /3n2V ) [v/2(2+) ]. (25)

For each Mathieu function S, (£, s), & is a function of s,
and therefore the resonance frequency «, for a given
value of the inhomogeneity parameter » can be de-
termined from Eqs. (24), (25), and the function b(s).
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Fic. 8. Plasma electron and ion density distributions for an
electron beam-plasma system with (No2)min/(Ve2) max=0.5.
(a) Plasma electron density distribution at ¢=40/wy; (b)
plasma electron density distribution at #=40/wy.

The corresponding Landau damping rates can be cal-
culated through Eq. (22). The resulting values of
w;i/w, and w,/wy as a function of » for the lowest-order
mode with Z/Ap=25 are shown in Fig. 1. It is observed
that the Landau damping rate is enhanced by the
particular form of inhomogeneity in density profile
investigated here.

III. RESULTS OF NUMERICAL EXPERIMENTS

Two numerical experiments have been carried out in
order to study the effects of plasma inhomogeneities
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Fic. 9. Time evolution of plasma and ion thermal velocity, electric field at =300 (0.02 Vg /wpe) and 5=750 (0.02 Vi /wpe) for
an electron beam-plasma system (Nop) min/ (No2) max=0.5. (a) Plasma electron thermal velocity versus time; (b) plasma ion thermal
velocity versus time; (c) electric field at =300 (0.02 Vg /wge) versus time; (d) electric field at =750 (0.02 Vo /wy) versus time.

on the electron beam-plasma instability and the
plasma heating process. In this investigation a charge
sheet model® for electrons and ions is used to follow the
time-dependent, nonlinear, and inhomogeneous evolu-
tion of the beam-plasma instability in a finite-length
system. The model contains 1000 sheets of plasma elec-
trons, 1000 sheets of plasma ions, and on the average
100 sheets of beam electrons. Electron beam sheets are
injected continuously at the left of the system, pass
through the plasma region, and are collected at the
right. The system is situated in an idealized “square-
well” mirror magnetic field. The mirror ratio is assumed
to have such a value that all beam sheets are lost at
the ends, whereas plasma sheets are reflected back into
the system. This is equivalent to the assumption that
all beam-sheet velocities lie in the loss-cone region and
all plasma sheet velocities lie outside of it. The electron
beam density is chosen to be approximately 0.025 that
of the plasma density and the beam is 39, velocity
modulated at the electron plasma frequency at the
entrance plane. The normalized beam dc velocity is

taken to be 50 which gives approximately three nominal
wavelengths (2rVo/wm) of interaction length in the
system.

Initially, the plasma electrons and ions are cold. A
parabolic plasma density distribution with its maximum
at the center of the interaction region and minima at
each end is generated for both plasma electrons and
ions by initially assigning appropriate intersheet
spacings. The ion to electron mass ratio is taken to be
100 to 1 in the numerical experiments rather than the
realistic value, because in the latter case a prohibitive
amount of computer time would be required to observe
ion participation in the beam-plasma interaction.
Figures 2-10 show some of the resulting numerical
results. The ratios of maximum to minimum plasma
density are 0.9 and 0.5 for runs 1 and 2, respectively.
In the calculations, distance is normalized to the
average plasma intersheet spacing which is equal to
(0.02Vo/wm), time to 1/wm, and acceleration to 0.02
Vowpo.

The first half of the interaction region corresponds



176

40 60 80 100

REL AMP AT 300

20

© ———

0 2 4 6 8 10
FREQUENCY, I/u

a. 22300(0.02 Vo /upg)

160 240 320 400

REL AMP AT 750

80

o AP~ A\

o 2 4 6 8 10

FREQUENCY, /up
b. 22750(0.02 Vo fupgh

F16. 10. Frequency spectrum of the electric field at =300 and
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qualitatively to the case considered in the analytic
study except that a parabolic density distribution has
been generated instead of a linear density variation. In
the initial stages of the interaction the electron plasma
oscillations excited by the passage of the electron beam
through the plasma have been observed and the re-
sulting beam velocity variations (Figs. 2 and 7) and
the electric field illustrate that the increase in the in-
homogeneities of the plasma density distribution does
reduce the spatial growth rate of the dominant mode
in the beam-plasma interaction. However, at a later
time, the electron plasma oscillations die out. The
mechanisms of beam-plasma instability and the re-
sulting phenomena such as harmonic generation, ampli-
tude modulation, and wave-wave interaction are
discussed in detail in Ref. 6.

On the other hand, there is no appreciable difference
in the time evolution of the plasma electron and ion
thermal velocities for the two experiments. This might
be attributed to the fact that the mechanism responsible
for plasma heating is not Landau damping since the
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plasma sheet velocity is much less than the phase
velocity of the waves in both experiments. The fre-
quency analysis for the electric field at z=300
(0.02Vo/wm) (Fig. 10), shows that there are satellite
frequencies (wp=0.lwn) generated around the funda-
mental frequency, whereas at z=750 (0.02Vy/wu)
only harmonics of the electron plasma oscillations have
been generated.

To verify the theory on the effects of plasma density
inhomogeneities on the Landau damping rate and the
oscillation period, a special form of plasma density
variation [Eq. (18)] is simulated by assigning the
appropriate intersheet spacings to pairs of electron and
ion charge sheets. The electron beam is turned off and
the initial perturbation is excited by giving each
electron sheet the following velocity”:

V= 'Ui()+€VT sin(ikw/L), (26)

where vy is the unperturbed velocity of the ith sheet,
Vr=40 is the normalized thermal velocity, e=0.1is a
dimensionless perturbation, and 2=5 is the wave-
number. The Debye length is defined as A\p=Vr/wp.
In this case Ap is equal to (0.8 Vy/wy) which contains
40 plasma sheets and corresponds to L/Ap=25. The
behavior of the voltage across the system is shown in
Fig. 11 for »=0.1 and 0.5. For the case of »=0.1, the
theoretical predictions are w,/wn=1.05 and w;/w,=
1.975%X 1073, where the numerical simulations give
w,/w21.02 and wi/w,<107% For the case of »=0.5,
the theory predicts w,/wp=1.175 and wi/w,=3.42X
102, whereas the numerical simulation yields w,/wx~
1.18 and w/w,~3X1072 Thus, it appears that the
numerical experimental results are in good agreement
with the theory.

VOLTAGE

1, I/upo

Fic. 11. Time evolution of the voltage across the system for
L/xp=125.
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IV. SUMMARY

The two-component charge sheet model of a plasma
system is used to investigate the effects of inhomo-
geneity in the plasma density distribution on beam-
plasma interaction and Landau damping in a finite-
length one-dimensional system. The theoretical pre-
dictions that an increase in the inhomogeneity will
reduce the spatial growth rate of the dominant mode in
the beam-plasma interaction and enhance the Landau
damping rate are demonstrated by the numerical
experiments and the results are in good agreement with
theory.
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The nonlinear evolution of the Dory~Guest-Harris type instability is investigated by numerical integra-
tion of the Vlasov equation in one spatial and two velocity dimensions. Two methods are used: a particle
simulation and the Fourier-Hermite transform. The two methods are compared for fo(o.) = (22#51)71X
(va/VI)® exp (—v12/2) for k values which are unstable. A method of predicting the limiting amplitude of
the electric field is presented for the case in which one mode dominates the system.

I. INTRODUCTION

The linear behavior of the Dory—Guest-Harris in-
stability is well known.!? Recently, a numerical study
of the nonlinear behavior was made by Byers and
Grewal® using a particle simulation model of the plasma.
They found that the electric field saturates after reach-
ing a certain level as is expected and thereafter the
field rises and falls with a period of roughly the cyclo-
tron period.

We concentrate on a rather special type of Dory~
Guest-Harris instability, that of zero frequency. We
model this instability in two ways; by Fourier-Hermite
transformations of the Vlasov equation and by particle
simulation. The simplifying assumption is made that
it suffices to consider only one spatial dimension (x)
and two velocity dimensions (v, v,) while the magnetic
field is assumed to be constant and directed along the
2 axis.

Sections II and III present a general outline of the
two methods, Sec. IV compares the results, and Sec. V
attempts an explanation of the electric-field saturation.

II. THE NONLINEAR VLASOV EQUATION

If we consider a constant magnetic field directed
along the z axis and all quantities to be functions only
of the spatial dimension #, and the velocity dimensions

7, v, the Vlasov—Poisson system can be written in
dimensionless variables as
a 3 i) ;) 9
ol ind r(s - Y)
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where ¢ is in units of w,, v is in units of the thermal
velocity, # is in units of the Debye length, and R=
w/wy, the ratio of the cyclotron frequency to the plasma
frequency.

The Vlasov equation may be Fourier transformed in
%, vz, o, by the transformation (compare Ref. 4)
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