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The random energy model, originally used to analyze the physics of spin glasses, has been employed
to explore what makes a protein a good folder versus a bad folder. In earlier work, the ratio of the
folding temperature over the glass—transition temperature was related to a statistical measure of
protein energy landscapes denoted as the foldalitit was posited and subsequently established

by simulation that good folders had larger foldabilities, on average, than bad folders. An alternative
hypothesis, equally verified by protein folding simulations, was that it is the energy gapveen

the native state and the next highest energy that distinguishes good folders from bad folders. This
duality of measures has led to some controversy and confusion with little done to reconcile the two.
In this paper, we revisit the random energy model to derive the statistical distributions of the various
energy gaps and foldability. The resulting joint distribution allows us to explicitly demonstrate the
positive correlation between foldability and energy gap. In addition, we compare the results of this
analytical theory with a variety of lattice models. Our simulations indicatelibttthe individual
distributions and the joint distribution of foldability and energy gap agree qualitatively well with the
random energy model. It is argued that the universal distribution of and the positive correlation
between foldability and energy gap, both in lattice proteins and the random energy model, is simply
a stochastic consequence of the “thermodynamic hypothesis.”1989 American Institute of
Physics[S0021-960809)50538-2

INTRODUCTION between the energies of the various conformations are ne-

True to their universal aspiration as general models mglected, Bryngelson and Wolynes demonstrated that the
P g uilibrium glass temperaturg, partitions the kinetic be-
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disordered systems, the success of spin-glass models has q\/ior into two regimed® For T>T,, the distribution of
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bF?R Ir|m|t(fed to”phi/iSIr(]:S- ?mcehtrr]: cljglgots' 'l[)f;elre ihaf tbeien &cape rates from low-energy metastable states is log-normal
piethora of applications of suc ode's to blological IopICS, 4 tat rates are dominant. However, Ter Ty, the kinetic
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such as neural networks, prebiotic evolutiorr, evolution distribution of escape rates becomes flat and broad so that

. -7 - ’9 .

?;Zo dr?i:;grrg‘lfﬁ’ln ';?Cl:ﬂ;rlogy?n ;’:;r;ds a?}gge'?essggjvcéuggenslow escape rates are as equally likely as fast rates. These

em l% od tlo ox Igre rotei'n fl?)ldi% in the cgntext of “het. prominent slow transition rates between minima lead to mul-

ploy: Pi fz_ﬂ ding . tiexponential time dependencies on biologically relevant
eropolymer freezing. The impetus was to provide a

o . time scales, lack of self-averaging for many properties of the
model explaining a wide range of hallmark features charac- ging Y prop

L . . . system, and folding kinetics that are sensitive to the details
teristic of protein foldingi(1) all-or-none transitions between y g

X f th i its initial itions. Using th
the “unfolded” and the “folded” states(2) the existence of of the protein sequence and its initial conditions. Using the

. . . . ) EM, it can hown that th ilibrium gl mperatur
measurable, discrete intermediates and multiexponential kB , it can be shown that the equilibrium glass temperature

netics on folding and/or experimental time scales, &8 's equal to
observations of “misfolds,” protein drift, and irreversible
denaturation. [ 52
A central parameter, the equilibrium glass transition  Tg= E (D)

temperatureT, (also called the “heteropolymer freezing”

temperaturgis defined as the temperature where the liquid-

like protein chain entropy drops below zefio the thermo-  whereos describes the variance or “roughness” of the REM
dynamic limiy and the chain becomes solid-like and “fro- energy distribution ané, is the conformational entropy of
zen” in any one of its low-energy, metastable stdfes!  the system(In this equation and throughout the papks,
Using the random energy mod@REM) where correlations has been set to opeA conclusion based on this relation is
that rougher energy landscapes lead to higher glass transition

dAuthor to whom correspondence should be addressed; electronic mait.emp_eratures- Thus, at physiological temperatu_res_, th_e afore-
richardg@umich.edu mentioned hallmark featurg8) and(3) would be indicative
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of proteins with significantly rougher energy landscapeswith time. Currently there are three measures of energy gap:
compared to ones which fold consistently and exhibit singled 4, A4, andA‘f'oS claimed in the literature to be correlated to
exponential kinetics® fast folding

Given this simple understanding of the glass transition dis. wdis
temperature and its role in the lack of self-averaging and 210=E17Ens; Ag=Eg—Ens; Ag=E; —Ens. (3)

slow prqtein folding ratesziwhat can be saiq about nativeAlo is simply the original energy gap, measures the depth
state uniqueness and stability in folding proteins? The foldegys ihe native state with respect to the glass transition energy
state must thermodynamically dominate the ensemble of  afined by the relatiorS(E,)=03 The alternative

g . '

other kinetically accessible structures under equilibrium con-A%ig’ is similar to the original energy gap except that it has

Qitions. A.measure of the relative stability of.the native stateyqen revised to neglect energetic correlations between simi-
is the folding temperatur®; . Based on these ideasdfand |5 girycture$? Namely, EYS is meant to be the next highest

Tq, Wolynes and co-workers postulated that optimal foldingenergy of adissimilarstructure, defined as having an amount
landscapes would seek to maximizgand minimizeTq OF,  6f aming acid pair contacts similar to the native state that is
equivalently, increase the rafity /Ty Using the REM,  |o55 than or equal to the what is expected between random
it was shown that this ratio is equal to structures. This construction is due to the fact that the next

T 5 5 highest energy is typically a structure sharir@0% —95%
f F 1A /]:__1 similarity to the native state and is most likely within its
2S5,

Ty 2, energy basin; it is not a competitive “misfold.” Without
explicitly having to calculate correlations between structures,
where one can reword$* andASS in the context of the REM with
_ the following argument: by neglecting those structures with
. E—Ens (2 stong similarity to the native state, one is potentially rescal-
o’ ing the energy gap as the difference between a structure of

_ energy rankr, E,, and the energy of the native stafg.
where E is the average energy of the protein chain in allThe actual values af, with no loss of generality, can be left
conformationsfE, is the energy of the native structure, and undetermined until explicit comparison of the REM to lattice
o describes the variance or “roughness” of this REM energyproteins. Hence, bott ,, and A‘fos can be simultaneously
landscape. Clearly[T/Ty is a monotonically increasing calculated through &,, framework, whereA,,=E, — E .
function of 7, which is termed the “foldability.” It was We should point out that to rigorously calculate the joint
shown both with molecular dynamic and Monte Carlo ki- distribution of 7 and A, one explicitly needs to take cor-
netic simulations that faster folders had higher average foldrelations between structures and energies into account using
abilites and largerT(/T,."*"? This connection between an analytical approach such as the generalized random en-
foldability and faster folding is intuitive when one notes thatergy model (GREM).>**¢ Since the introduction of these
F is increased by:(1) stabilizing native-like interactions variousA andF into the literature, there have been periph-
which deepens the native stdigs with respect to the bulk of  eral data and heuristic arguments indicating that energy gap
conformational energieB, and(2) destabilizing non-native and foldability should be related. Unfortunately, since there
interactions and misfolds, which alleviates the roughness has never been a unifying demonstration of the relationship
of the energy landscape. Although REM theory, on whichbetweenA and F, the presence of two loosely associated
foldability is based, ignores correlations in the energy landconcepts has created some confusion and controversy in the
scape, the stabilization of these native-state contacts createdtarature.
natural “folding funnel,” which has been advocated as a  For traditional and analytical reasons, in this paper we
requirement for fast folding by a number of investigatot§!  revisit the REM to derive the various distributionsBf A g,

The allure of foldability as a simple statistical measure of anA 15, and A%S. Foldability andA4 are shown to be equiva-
energy landscape and as an indicator of folding ability hasent measures, directly related to one another by the under-
spawned a flurry of research into areas of protein structuréying conformational entropy. Using the REM model, we
designability®2® and evolutionary dynamics:® demonstrate thafF, Ay, and A% are inherently positively
Another thermodynamic quantity related to folding ki- correlated. We subsequently compare these REM foldability
netics, referred to as the energy gapwas first introduced and energy gap results to a variety of lattice protein simula-
by Shakhnovich and co-worket$° Originally, this energy tions. Surprisingly, our simulations show that, despite the
gap was defined as the difference in energy between the naavalier application of the REM to proteins, both the indi-
tive state E, and that of the next highest enerdy; . vidual distributions and the joint distribution &f, Ay, A4,
(Throughout this paper, we will define energies by theirand A‘l"os agree qualitatively well with the predictions based
rank; that is,E,s is concomitant with energy of rank 0, the on the REM theory. It should be mentioned that there are
next highest energy with rank 1, etdéJpon running Monte other measures of good folders, aside from foldability and
Carlo kinetic simulations of lattice proteins and analyzingenergy gap, in the literature. One prominent candidate is the
their energy landscapes, Shakhnovich and co-workers conr,=(T,—T;)/T, criterion proposed by Thirumulai and
cluded that the relevant statistical feature for fast folding waso-workers>’—*° Unfortunately, asT, represents the transi-
a large energy gap.®>*2 However, due to criticism thak  tion temperature from noncompact to compact conforma-
was perhaps too local a measure, the definition has speciatéidns, comparison of, to 7 andA in all its forms is beyond
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the scope of our REM analysis, which focuses only on maxi- 2
mally compact conformations. One could in principle extend

our REM model to include noncompact conformationsanda | ----- n=100 N
hydrophobic driving force, similar to previous work by 15 ———-n=1081 i
Bryngelson and Wolynes and Chiu and Goldstéiff How- —-—-- n=103346 i
ever, recent work by Shakhnovich and co-workers suggests FAY P
that Thirumalai's calculation off ,, by equating it to the | )
maximum in the specific heda®,, may be erroneous, par- j
ticularly for protein sequences with strong, hydrophobic SN
driving forces* Thus, the absence of an uncontroversial 1 i
definition of o, precludes any comparison &f or A to oy 0.5 1 ) ;' \ ,’ 3
for the moment. [

p(F)

REM AND FOLDABILITY ] ] 2 \ 4 \ 6

The REM was originally introduced by Derrida to de-
scribe the energy Iandscape of a generic, disordereHIG. 1. Plot of the foldability distributiorp(F) for different numbers of
SyStem‘}ZAB Powerful in its analytical simplicity, the REM is compact statesn=10, 100, 1081, 103 346 calculated using the random
based on the key assumption of statistical independence gferay model.
energy states; namely, the energy of one state is uncorrelated
with the energy of another state. We begin where others have
before; namely by invoking the REM as a description of the prem(End =
underlying protein conformational energy landscipt’:*® REWNST o 2w
The energies between any two compact conformations are .
assumed to be independently drawn from a single distribu- P(Ens<n—1)=U prem(E) SE
tion. In the limit of large proteins, the energy distribution of
these4400mpact states has been shown to be Gaussian in \ya combine these probabilites and normalize
form. Consequ'ently, throughout this paper, we will de'ffzp(EngJ n)SE..=1 via integration by parts. Notice that
scribe the density of states of a REM heteropolymer Seége normalization constant reflects the combinatorial nature
quence byQ(E)=npren(E), wheren is the number of ¢ ho\ many different ways one can have a lowest energy

compact p“?te'” _str_uctqres angkem(E) is a normalized  gyo40 givem “picks.” The resulting density of native state
REM Gaussian distribution energies is

e~ (Ens E) 2/202’ (6)

(n-1)
} )

ns

prem(E) = , (8)

(n—-1)
o2 }

—(E—E)%/202 %
e (E7B)727, (4) P(Ensln):npREM(Ens)LfE prem(E) 0E
ns
whereE is the average energy of the compact statesaaisd

the REM roughness and width of the energy density distri-  p(Epdn)= e (Ens )20

bution. We start by calculating the foldability of the native ov2m
stateF as a function of the number of compact protein struc- _ (n-1)
- . . 1 E.s—E
turesn: similar calculations have been done before with sta- X|=| 1—Erf ) (9)
tistical protein modeld331®*The condition of native state 2 ov2

uniqueness and thermodynamic dominance imposes the con- Thjs distribution of native state energies, satisfying the
dition that the native state ener@y,s be nondegenerate and thermodynamic hypothesis, is commonly known as an ex-
have the lowest value among all other-1 energies s treme value distribution. The conversion froFy to the
=Eo), a condition commonly referred to as the “thermody- fo|qapility 7, a dimensionless quantity, is simple enough as
namic hypothesis.”™ (The validity of the thermodynamic F=(E-Elo

proteins have undergone significant amounts of selective n ) F (n=1)

evolution to a stable target stdte.For the REM, it is ana- p(F)= Ee_ﬂz 1+Erf %> )
lytically impossible for any energy to be exactly degenerate.

discrete REM, which models the energy landscape of ranvalues ofn, is shown in Fig. 1. Admittedly, low values of
dom, block copolymer& Given these constraints, one can are rather unrealistic even for very small proteins. However,
formally describe the native state energy distribution in thebecause the largest changes occur for small values ofe

5 (10

hypothesis has been shown to be increasingly likely when
However, this assumption cannot be taken for granted in the  This distribution of native state foldabilities, for different

REM by have taken the liberty to include them. In addition, we have
B _ plotted n=1081 andn=103346, the number of unique
P(End) = prem(End P(Eqs<n—1). ) structures for commonly used>% two-dimensional(2D)

Based on the independence of energies and&gthese  and 3x3X 3 3D compact lattice proteins. It is noticed that as
various probability densities are straightforward to calculatethe number of compact structures swells, several things hap-



6602 J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 N. E. G. Buchler and R. A. Goldstein

TABLE |. Statistical parameters describing the distributions of foldabiliti€s the energy gap between the
ground state and glass transition energy), and the energy gap between the ground and first excited state
(A49), calculated using Eq10) for F, Eq. (13) for Ay, and Eq.(19) with r=1, integrated overF, for Ay,.
Except for the mean) statistics were identical t¢. The sixth column is the percentage of REM heteropoly-

mer sequences that satisky, >0 or, equivalentlyT;/T>1.
REM T o Skew;: A, Jp(A4>0) Ao
n=10 1.5388 0.5867 0.4116  —0.6072 14.84% 0.5374
n=100 2.5076 0.4294 0.6592  —0.5273 11.34% 0.3594
n=1081 3.2637 0.3497 0.7703  —0.4741 9.55% 0.2856
n=103 346 4.3915 0.2715 0.8961  —0.4139 7.67% 0.2180
pen to the foldab|I|ty.d|str|but|0n61) the mean foldablh_t}d—' (A= n o (T 8922
increases(2) the variances - decreases, an(8) a positive pP{Rg \/ﬁ
skew emerges. The statistical measures for these REM fold-
ability distribution are shown in Table I. 1 2Inn+4, (n—1)
x| 5| 1+Erf — (13
2

REM, ENERGY GAP, AND FOLDABILITY

The alternative measure of thermodynamic stability
fast folding is the energy gap. Due to the heterogeneity

As demonstrated in Fig. 2p(4,) is identical top(F)

except thatKg is shifted down by an amount equal to
andy2 Inn. The statistics for these REM distributions are
in given in Table I. Interestingly, all curves intersectgf=0

its definition, we must break our calculation of energy gapand a good portion of REM native state energies are actually

into two parts: namely, that &fy and those of\,,— A5 and
A%S. A4 is the energy gap between the native state en

above the glass—transition energy. What is the physical sig-
ergpificance of these negativA,? It is clear thatA,=0 is

EnsandE,, defined as the transition where the finite energyequivalent taF= y2 Inn. SinceSy=Inn, A;=0 is equivalent

spectrum goes from discretely and thinly populatéq))
to continuously and densely populate@(€")), whereN is

to F?=2S,, which defines the transition wheflg /Ty=1.
In other words, in order to guarantee thgtexists and has

the amino-acid length of the protein. Thus, similar to fold- meaning, it must be larger thar or, equivalently E,; must

ability, one only needs to know the distribution BEf be-
cause for the REME is determined b, o, andn. On the
other handA,, will involve calculating theoint distribution
of two independent energiek,,; and E, . For simplicity’s
sake, we begin our calculations by relatiag to 7

be lower thanEy. The physical relationship oh ;>0 and
Ens<Eq4 has been discussed before in the protein design lit-
erature, although not in relation to foldabil#y*® Figure 2
emphasizes that a large percentage of REM heteropolymer
sequences are not even able to satisfy this weakest foldability

criterion. The exact percentage of REM sequences expected
to satisfy T;/T4>1 is shown in Table I; clearly it is a de-

E—Eps
= = creasing function oh. Thus, although foldability increases

. E-Egtdy

(o

11

o

Since the relationS(Ey)=In Q(E)=0 gives E;=E

— o2 Inn (after dropping terms involving)(yIn o)), we
can rewrite Eq(11) as

V2 Inn+A
]—"=%=\/2 Inn+Ag.

In order to facilitate comparison with the foldability, we
have redefined the energy gag as a dimensionless quan-
tity by absorbingo in the denominator, as will also be done
for A,q. It has been shown previously thgt and o of a
random heteropolymer depend on the relative amount of
amino acids in the sequence and the details of interaction
between these different amino acid$’ Thus, by absorbing
o in the denominator, the dimensionless naturefofA g,
andA leads to universal and composition-independent rela-
tionships between these measures. This said, we need to go
no further to'dem'onstrate the inherent Correlatl_on,bet,\/\@en FIG. 2. Plot of theA distributionp(A) for different numbers of compact
and Ag as identical measures. The REM distribution of states (=10, 100, 1081, 103 346 calculated using the random energy
p(Ag) is simply given by substituting Eq12) into EQ.(10)  model.

n=10
n=100
----n=1081
—-—-- n=103346

(12) 15 ¢

o(A,)

051
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5
n=10
K e n=100
% \ --—-n=1081
\ —-—-- n=103346

FIG. 3. Plot of theA 4 distributionp(A 1) for different numbers of compact
states (=10, 100, 1081, 103 346 obtained by numerically integrating

p(F,Aqo) over F.

with n, the reality is that a smaller fraction of REM het-
eropolymer sequences are actually “foldable” for larger pro-

teins.
Now that a strict correlation betweefiandA 4 has been

Energy gap and foldability 6603

Thus, combining all the appropriate parts and cancelling
terms, Eq.(14) describing the joint probability is
p(EnS,Er|n,r)

n!
= n—r— DI —1)! pPrem(Eng) prem(Er) O (Es<E;)

(r=1) ® (n—-r—1)
“'E PREM(E)‘SE} :

E,
X f prem(E) 6E

ns

(18)

Finally, substituting 7=(E—E,J/c and A,,=(E,
—End/o into the equation

p(F,Arolr)
nl e~ F2g=(Aro= P12
S D1 27 0(4r0=0)
Ao~ F F\\ Y
x| =| Erfl =] +Erf| =
2 V2

(n—r—1)
X

5 (19

1-Erfl ———
V2

We begin by analyzing the distribution of the original

demonstrated for REM heteropolymer proteins, we turn teenergy gapp(A;g) obtained by numerically integrating Eq.

A,p. In terms of the REM, we begin by looking &= E,
andE,, whereE, is the next highest energy of ramk For-
mally, this joint distribution is given by

p(EnSvEr|nar):p(Ensln)P(Er|Ensanar)- (14

(19 for r=1 overF. As shown in Fig. 3p(A) is a mono-
tonically decreasing function &, and the allowable values
of A4q shrink rapidly for increasing. The statistical details
of p(A,p are found in Table I. The corresponding REM
joint distribution p(F,A19) is shown graphically forn

The first part of the distribution has already been deter=1081 in Fig. 4 anch=103 346 in Fig. 5. For values larger
mined by Eqs(8)—(9). The second part is similar in deriva- thann=2, the general form of this joint distribution, aside

tion to the first, except th&, is dependent ok, n, andr
p(E(|Ens,n,1) = prem(E/)P(r —1<E,<n—r—1)

X O(E<E,). (15)

from statistical measures, is similar across the entire range of
n. The striking conclusion is that both and A, are posi-
tively correlated.

To calculate the appropriate joint distribution of
p(]—',A‘lj'os), we first need to specify the distribution of rank

O(Ens<E,) is the Heaviside function, which ensures Afr) for the lowest energy of dissimilar structures; that is,

proper integration via the constrai,<E,. The condition
thatr —1<E,<n-r—1 remaining energies is given by

Pr—1<E,<n—-r-1)
E, (r—1) 0 (n—r—1)
:[j pREM(E)éE} [f pREM(E)(SE} .

ns E
(16)

Normalization off = Zp(E,|Es,n,r) 5E, =1 reduces Eq.
(15 to

p(Ef|Eps,n,1)
(n—=1)!
T (n—r—1)I(r—1) Prem
[ prem(E)SE1 ™ VLSE prem(E) SE]™ "D
[IEHJ)REM(E)5E](H71) '

(Er)O(Ens<Er)

X

7

what is the rank of the first, lowest energy of a structure
dissimilar to the native state? Admittedly, this distribution
M(r) is lattice model specific and, for comparative purposes,
needs to be explicitly calculated ahead of time. Because we
are interested in comparing REMJ—‘,A‘{S’) to lattice mod-

els, we determined that the normalized distribution\df)

for 5X5 2D and 3x3Xx 3 3D lattice proteins could be well
represented by

—0.1605

Nss(r):m' (20)
—0.044%x

N3¥(r)= 51704 (212)

Thus, given an appropriatd/*(r), the corresponding
REM joint distributionp(]-',A‘l"os) is obtained by

n

p(f,A?®=§1 N*(Np(FAglr). (22)



6604 J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 N. E. G. Buchler and R. A. Goldstein

2, . . . R R N R ] 2 i . I . I 1 . 1 .
) 0.2 0.4 0.6 0.8 1 1.2 1.a 0 03 0.6 1.2 15

. 6 09
Ao Ajg

FIG. 4. On the left is a contour plot of the REM joint distributipF,A ;o) for n=1081, which demonstrates the the strong, statistical correlation between
foldability and the original energy gap. On the right is a scatter plof @nd A, for the corresponding 85 lattice protein simulation.

Similar to A, we start by analyzing the distribution universal across all\;o and A%, However, the particular
p(Alp), obtained by numerically integrating E(®2) over oy of the correlation and the joint distributiopg.F, A )

F. As shown in _Fig. 6, Oi”rslstgac_i of being a mc;inot_onically and p(F,A%s) does depend on the details of the underlying
decreasing function ofAjy similar to Ajg, p(Ajg) is a energy distribution andv{r)

crggoped Gaussian, pgaking near “Iow—medium” values of Now that we demonstrated the connections betwggen
A¥S. The cause of this decreased density of sm4ff are Ay, Aso, and A% for REM heteropolymer sequences, the

ther —1 energies betweeB, andE,s and the large number .
of dissimilar lowest energy structures which hawe 2. The natural question is whether these REM results have any bear-
' ing on real proteins. Namely, the REM was based on the

REM joint distribution p(F,A%S) is shown graphically for _ _
n=1081 and\/%(r) in Fig. 7 andn=103346 and\V33Yr) assumption that the energies between structures Qf a ranfjom
in Fig. 8. Again, notice the positive correlation between botheteropolymer sequence are uncorrelated. In reality, particu-
F and ASS . Intuitively, this statistical correlation between larly with the lattice models commonly used by researchers,
energy gap and foldability makes sense as larger values dfis independence of energies is false; there are necessarily
foldability, where E, is drastically low, probably leaving €nergetic correlations between structures as they all share, to
more room for larger possible values of All,. The cause of various degrees, common energetic contacts. Far from being
this positive correlation betweeRandA,q is independent of  a technical nuisance to REM applicability to proteins, these
the shape of the underlying energy distribution and, hencegnergetic correlations between conformations are actually

6 O.‘Z 0‘.4 0:6 0.8 i 1:2 1:4 20 0‘3 0I6 0.9 1.2 15
Ao A

FIG. 5. On the left is a contour REM plot of the joint distributip(F,A ;o) for n=103 346. On the right is a scatter plot&fandA ;4 for the corresponding
3X3X3 lattice protein simulation.
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15 - - distributions ofF, A4, A5, andA{§ for compact lattice pro-
n=108 teins in 2D and 3D would compare to those of REM het-
----- n = 103346 eropolymer sequences.

LATTICE PROTEINS, ENERGY GAP, AND
FOLDABILITY

p(AA;o )

Lattice proteins are coarse-grained versions of proteins,
where the level of detail focuses on amino acids as entities
occupying lattice points and protein conformations as self-
avoiding walks on these regular lattices. Clearly, this ignores
very real aspects of proteins, such as atoms, backbone
angles, sidechain packing, etc. Nevertheless, lattice proteins
have a rich history in theoretical biophysics because their
simplicity manages to capture salient features of
FIG. 6. Plot of theA S distributionp(A%) for n=1081, 103 346, obtained DIOPOlymers™® In this paper, we used two different compact
by numerically integrating (F,A%S) over . lattices: a 5x5 2D and a X 3x3 3D lattice. Our choice of
using only compact lattices is based on the observation that:
(1) hydrophobic collapse and excluded volume are dominant

important for the emergence of folding-funnel landscapes oforces,(2) compact lattice structures, with a constant amount
good protein folder$*>* and answering why some structures of pair contacts, exhibit a Gaussian distribution of enerffles,
are more common or “designable” than othér$®5253The and (3) a majority of competitive misfolds and glass transi-
applicability of the REM to lattice proteins and heteropoly- tions are expected to occur in collapsed conformatidifr
mer freezing has been explored by Pande and co-workers.the maximally compact 85 2D lattice protein there are a
They demonstrated that for large, compact lattice proteinéotal of 1081 possible self-avoiding walks, excluding rota-
the energetic correlations between structures, although neviens and reflections. Similarly, there are 103346 such pos-
zero, were generally small enough to ensure that the REM igible conformations for the maximally compack3x3 3D

a good approximate model. In addition, work by Wolyneslattice protein chain.

and co-workers established that previous REM thermody- The energy for any given sequengen a conformation
namic quantities were practically unchanged when redonk is a linear function of the amino-acid pair contacts that are
using the GREM, which explicitly takes correlations into Mmade

account® However, there are substantial differences be-

tween 2D and 3D proteins in terms of replica-symmetry EE= yﬁA:‘, (23
breaking, which directly reflects on REM validit§:'>°Di- =

mension is also of paramount importance for entropy calcuwhere the se{yﬁ} specifies the residue pair-contact energies
lations of chain loops in 2D and 3D protei’s>>*°Conse-  of all possible pair contacts that can be formed$orA!‘j is
quently, given this history, we were interested as to how theequal to one if nonsequential residueand| are on adjacent

° °.5 1 1.5 2 2.5 5 0 0.5 1 15 2 25 3

di :
Aty i

FIG. 7. On the left is a contour plot of the REM joint distributip(LF,A‘ﬂi) for n=1081 and\®(r), which demonstrates the strong, statistical correlation

between foldability and energy gap. On the right is a scatter pldt ahd A‘ﬂ;" for the corresponding 85 lattice protein simulation.
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A i ’ Ac1hss
10 10

FIG. 8. On the left is a contour REM plot of the joint distributip,Ad s) for n=103 346 andV*3*Yr). On the right is a scatter plot cﬁandA‘i‘OS for the
corresponding &3 3 lattice protein simulation.

lattice sites in conformatiok and zero, otherwise. Since all dent. This is in stark contrast to previous simulations which
conformations are unlque no s{aA i} Is identical. Each have looked at energy gap statistics. All histogramsFof
pair-contact energyyIl ‘y(AI A 5) |s a function of the se- Ay, Ay, andA were binned with a width of 0.05 and
guence amino aCIdSlS andAJS at positionsi andj, where normallzed to sum to 1.0.

Y(Ai,A;) is specified in the definition of the amino-acid In similar order to our REM calculations, we begin by
alphabet For both compact lattice models, we constructehbokmg at the single distributions(7), p(Ag), p(A40), and
our sequences randomly using the standard Miyazawap(A 05) for lattice proteins. Figures 9—11 demonstrate that
Jernigan(MJ) 20-letter alphabet’ In the simulation them- the F, Ag, Aqp, AYS histograms are qualitatively similar to
selves, all sequences had to satisfy similar criteria to whatheir correspondlng REM distributionsn€1081 and n
was imposed in our REM calculations: have a unique, non=103 346). Namely, the distributions @i(7) and p(A,)
degenerate, global energy-minimum native state. We geneexhibit a Gaussian-like shape with strong positive skew,
ated 50000 such random MJ heteropolymer sequences fgm(AlO) is an exponentially decreasing function &f,, and
both lattice geometries and kept track of foldabilifyand p(Alg) is a cropped Gaussian, peaking near low—medium
energy gapf\ g, Ay, andA{S. As in our REM derivations, values ofAd'S The statistical details of these lattice protein
all A were normalized byr so as to ensure that distributions S|mulat|ons as compared to their REM counterparts are
of energy gap and foldability remain composition indepen-shown in Table Il. However, despite these qualitative simi-

1.5 ¢ 1 1.5 ¢

p(A, ), p(F)
p(A, ). p(F)

05 r

-2 0 2 4
A LF

o 2

o

FIG. 9. Histogram of normalizeF andA 4 distributions for random sequences in different compact lattice geomégfgsfor the 5x 5 and(right) for the
3X3X3 lattice proteins. We have included the REMand A, distributions for comparison.
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FIG. 10. Histogram ofA ,, distribution for random sequences in different compact lattice geoméleisfor the 5<5 and(right) for the 3X3X 3 lattice
proteins. REM distributions are given by the solid lines.

larities, there are some undeniable quantitative differenceshe discussions of Pande and co-workers concerning the
namely, all lattice protein distributions of, Ay, Ajg, and  REM breakdown for compact lattice proteitfs.

A‘l“os are consistently shifted to lower values. Fortunately,  What about the correlation between energy gap and fold-
these quantitative differences can be rationalized on the basigjjity in lattice proteins? As expected in their definitiaf,

of structural and energetic correlations endemic to lattice;nqa were perfectly correlated for lattice proteisnpub-
g

proteins. Because all structures share a certain amount gk The resulting joint distribution gb(F,A 1) is found
similar contacts with other structures, the stochastic conse-

guence of these correlations is an effective decrease in tHn the form of a scatter plotin Figs. 4 and 5. Additionally, we

e Siot the joint distribution ofp(F,A%9) in the form of .
possibleenergy difference betweds, E, andE, . This re- plot the joint distribution ofp(,A3) in the form of a scat

sults in smaller, average values of foldability and energy gapt.er plotin Figs. 7 and 8. We have specifically included them

Note that the percent of average, similar contacts fe55is next to their corresponding REM contour plots to effectively

15.44% and 18.79% for:83x 3 lattice proteins. As shown highlight the resemblance of lattice distributions and analyti-
. . . _ p :

in Table II, this higher number of average, similar contacts incal expressions for botp(7,A4) and p(F,Alp). Again,

3x3x3 lattice proteins conveniently explains the largernotice the strong statistical correlation betwe®nA 14, and

drop |nﬁ Ig, andrlo relative to the REM’ when Compared Agbs for lattice pI’OteinS and the REM. This ConCIUSiVely

to 5x5 lattice proteins. The quick analysis above parallelsdemonstrates thaf, Ay, A;o, and Afs are all correlated,

1.5 : 1.5
1 1
AW 1
/’ 7 - |
'! 2 |l / -_ §<2 _
T [ =
0.5 // 0.5 ||
0 0
0 1 . 2 3 0 3
A:o

FIG. 11. Histogram oﬁ‘fg distribution for random sequences in different compact lattice geomékeisfor the 5<5 and(right) for the 3X3X 3 lattice
proteins. REM distributions are given by the solid lines.
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TABLE Il. A comparison ofF, A, A;o, andA S statistics for lattice protein simulations and their correspond-
ing REM heteropolymer sequences.

7 oy Skew. A, Jp(Ag>0) A, A%

REM n=1081 3.2637 0.3497 0.7703 —0.4741 9.55% 0.2856 0.7066
5X5 lattice 3.1328 0.3527 0.6447 —0.6051 5.58% 0.2230 0.6194
REM n=103 346 4.3915 0.2715 0.8961 —0.4139 7.67% 0.2180 0.6825
3X3X3 lattice 4.1474 0.2923 0.5466 —0.6580 2.34% 0.1553 0.6069

either perfectly or statistically to one another, both in REMgiven thatE andE, are constants of the underlying distribu-
theory and in lattice protein simulation. tion, A4 andF should be less fickle measures of fast folding,
as compared td ;o andASS.

CONCLUSIONS ACKNOWLEDGMENTS

One of the central topics of theoretical biophysics has . The authors would like to thank Tom Weinacht for tech-

been to understand how proteins fold so quickly. Interolisci_nlcal assistance and Todd Raeker for computational support.

plinary insights quickly focused on protein energy Iand-E;\r/:ggg% b?gﬁog\g’?g pr(()jvll\(ljglci l:]y NdIH Qrant NGOS'
scapes to extract features relevant to faster folding. In parﬂIO BIR95612955 » an shared-equipment Grant
ticular, with advances in computational power, it was '

established using molecular dynamic and Monte Carlo ki-, ) )

netic simulations of proteins that foldabilit§, energy gap, a'ggg't’ H. Gutireund, and H. Sompolinsky, Phys. Rev.3&, 1007
and sigmao, were well correlated to fast folding. Unfortu-  2p_amit, H. Gutfreund, and H. Sompolinsky, Phys. Rev. L&, 1530
nately, there has been no theoretical attempt to relate thesg1985.

disparate measures. For reasons mentioned earlier, it was th&- Anderson, Proc. Natl. Acad. Sci. USB, 3386(1983.

f thi t lucidate the inh t ti D. Rokhsar, P. Anderson, and D. Stein, J. Mol. E\28, 119(1986.
purpose o IS paper 1o elucidate € Inherent connec IOI‘];S' Kauffman and S. Levin, J. Theor. Bidl28 11 (1987.

d' .
betweenF and energy gapdy, Ajp, ATg, using the REM.  sc. Amitrano, L. Peliti, and M. Saber, J. Mol. Eva9, 513 (1989.
Our analytical calculations demonstrate tifatand A4 are C. A. Macken and A. S. Perelson, Proc. Natl. Acad. Sci. USBA6191

identical measures and th hown by the joint distribu-,(1989-
dentica easures and that, as sho by the joint distribu 8S. Kauffman, E. Weinberger, and A. Perels&anta Fe Institute Studies

t!ons p(F, A1) andp(}-'Atljlos)v JF and energy gap are S_tfit's' in the Sciences of Complexitiddison-Wesley, Reading, MA, 1988
tically correlated measures. Consequenty posteriori it °S. Kauffman and E. Weinberger, J. Theor. Bibit1, 211 (1989.
comes as no surprise that both foldability and energy gap ar]lé'\/'- S. Friedrichs and P. G. Wolynes, Scier#6, 371(1989.
all highly correlated to fast and reliable folding. 2"0'133'(5333”"“5' R. A. Goldstein, and P. G. Wolynes, J. Mol. BR#2,
Despite these REM results, we found it necessary to rum; p, Bryngélson and P. G. Wolynes, Proc. Natl. Acad. Sci. B88A7524
our own lattice protein simulations to explore whettféand (1987.
A were indeed correlated. All lattice proteffy Ay, Ao, and ﬁJ D. Bryngelson and P. G. Wolynes, J. Phys. Ch@86902(1989.
A% distributions and joint distribution were qualitatively 155' : gﬂgtmgz:ﬁﬂ Zﬂg 2' m gﬂgg é‘ig)hh{fs'a%ht%f%%ggésg
similar to that predicted using the REM. There were quanti<sg_ |. shakhnovich and A. V. Finkelstein, Europhys. L&t569 (1989.
tative differences between these two models, but these dif?J. D. Bryngelson and P. G. Wolynes, Biopolym&6 171 (1990.
ferences could be explained on the basis of correlations belzig-1 Digi’?gg';o”' J. N. Onuchic, N. D. Socci, and P. G. Wolynes, Proteins
tween lattice proteins. It might be_ worthwhile to ca|C_U|?ﬂB_ 19R.'A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolynes, Proc. Natl.
Ay, and A, for the GREM, which takes the relationship  Acad. Sci. USA89, 4918(1992.
between energetic and structural correlations into account’R. A. Goldstein, Z. A. Luthey-Schulten, and P. G. Wolynes, Proc. Nat.
but qualitatively little is expected to change. 213‘3%"- SS;C'C iU;;SnAds?' ilozgr(]tiﬁ% 3. Chem. PhyeL 1519(199
Given that the stochasticity of the REM and energeticzzyy g getancourt and J. N. Onuchic, J. Chem. PGS, 773 (1995
correlations in lattice proteins can be reconciled in the uni23p. E. Leopold, M. Montal, and J. N. Onuchic, Proc. Natl. Acad. Sci. USA
versal GREM, why aré\ and F positively correlated? We 89, 8721(1992.

: : ) 24 i - i
argue that in a stochastic framework, the correlation between?éz'\i{q‘;g;“ A. Garcia, and J. Onuchic, Proc. Natl. Acad. Sci. L#5A

foldability and energy gap arises because both measures asg Govindarajan and R. A. Goldstein, Biopolym@6 43 (1995.
defined byE,, the lowest energy, which is a constraint of 2°s. Govindarajan and R. A. Goldstein, Proc. Natl. Acad. Sci. 19843341
the thermodynamic hypothesis. The fact that energy gap, in (1996.

. - 2’3, Govindarajan and R. A. Goldstein, Biopolymdi; 427 (1997).
all its forms, and foldability are a measure of the depth_of th@ss. Govindarajan and R. A. Goldstein, Protefss 461 (1997,

native state with respect womethingeitherE, , Eg, or E, 29g. |. Shakhnovich and A. M. Gutin, J. Chem. Ph98, 5967 (1990.
leads to a positive correlation between these measures. lefl’é? I, Shakhnovich and A. M. Gutin, Natufeondor) 346, 773(1990.
particularform of the correlation or joint distribution, how- 2 Sall. E. 1. Shakhnovich, and M. J. Karplus, J. Mol. Bi@35 1614
ever, is sensitive to the details of the underlying distributions2p Saji, £. 1. Shakhnovich, and M. J. Karplus, Natuteondon 369, 248
of energies and our particular definition of energy gap. Thus, (1994.



J. Chem. Phys., Vol. 111, No. 14, 8 October 1999

33E. |. Shakhnovich and A. M. Gutin, Proc. Natl. Acad. Sci. US® 7195
(1993.

34A. M. Gutin, V. I. Abkevich, and E. I. Shakhnovich, Proc. Natl. Acad. Sci.
USA 92, 1282(1995.

%B. Derrida and G. Toulouse, J. PhyErance Lett. 46, L401 (1985.

36B. Derrida and E. Gardner, J. Phys.1G, 2253(1986.

87C. J. Camacho and D. Thirumalai, Proc. Natl. Acad. Sci. LEBA6369
(1993.

38D, K. Klimov and D. Thirumalai, Phys. Rev. Leff6, 4070(1996.

39D, K. Klimov and D. Thirumalai, J. Chem. Phy$09, 4119(1998.

40T L. Chiu and R. A. Goldstein, J. Chem. Phyi€)7, 4408(1997).

“IA. R. Dinner, V. Abkevich, E. I. Shakhnovich, and M. Karplus, Proteins
35, 34 (1999.

42B. Derrida, Phys. Rev. Let#5, 79 (1980.

43B, Derrida, Phys. Rev. B4, 2613(1981).

44W. Wilbur and J. Liu, Macromolecule®?, 2432(1994.

4w, Wilbur, F. Major, J. Spouge, and S. Bryant, Biopolym&g 447
(1996.

Energy gap and foldability 6609

46C. Anfinsen, Scienc&81, 223(1973.

47S. Govindarajan and R. A. Goldstein, Proc. Natl. Acad. Sci. 955545
(1998.

48A. M. Gutin and E. I. Shakhnovich, J. Chem. Phg8, 8174(1993.

v, S. Pande, A. Y. Grosberg, and T. Tanaka, Rev. Mod. Pliyspress.

505, S. Plotkin, J. Wang, and P. G. Wolynes, J. Chem. Ph@§, 2932
(1997.

51B. A. Shoemaker, J. Wang, and P. G. Wolynes, Proc. Natl. Acad. Sci.
USA 94, 777 (1997).

52A. V. Finkelstein and O. B. Ptitsyn, Prog. Biophys. Mol. Bi@0, 171
(1987.

53A. V. Finkelstein, A. M. Gutin, and A. Y. Badretdinov, FEBS Le®25,
23(1993.

54V, S. Pande, A. Y. Grosberg, C. Joerg, and T. Tanaka, Phys. Rev7Bett.
3987(1996.

553, S. Plotkin, J. Wang, and P. G. Wolynes, Phys. ReS3271(1996.

%H. S. Chan and K. A. Dill, Phys. Toda46, 24 (1993.

573, Miyazawa and R. L. Jernigan, Macromolecul@s 534 (1985.



