
JOURNAL OF CHEMICAL PHYSICS VOLUME 111, NUMBER 14 8 OCTOBER 1999
Universal correlation between energy gap and foldability for the random
energy model and lattice proteins
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The random energy model, originally used to analyze the physics of spin glasses, has been employed
to explore what makes a protein a good folder versus a bad folder. In earlier work, the ratio of the
folding temperature over the glass–transition temperature was related to a statistical measure of
protein energy landscapes denoted as the foldabilityF. It was posited and subsequently established
by simulation that good folders had larger foldabilities, on average, than bad folders. An alternative
hypothesis, equally verified by protein folding simulations, was that it is the energy gapD between
the native state and the next highest energy that distinguishes good folders from bad folders. This
duality of measures has led to some controversy and confusion with little done to reconcile the two.
In this paper, we revisit the random energy model to derive the statistical distributions of the various
energy gaps and foldability. The resulting joint distribution allows us to explicitly demonstrate the
positive correlation between foldability and energy gap. In addition, we compare the results of this
analytical theory with a variety of lattice models. Our simulations indicate thatboth the individual
distributions and the joint distribution of foldability and energy gap agree qualitatively well with the
random energy model. It is argued that the universal distribution of and the positive correlation
between foldability and energy gap, both in lattice proteins and the random energy model, is simply
a stochastic consequence of the ‘‘thermodynamic hypothesis.’’ ©1999 American Institute of
Physics.@S0021-9606~99!50538-2#
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INTRODUCTION

True to their universal aspiration as general models
disordered systems, the success of spin-glass models ha
been limited to physics. Since the 1980s, there has be
plethora of applications of such models to biological top
such as neural networks,1,2 prebiotic evolution,3,4 evolution-
ary dynamics,5–7 immunology,8,9 and protein structure
recognition.10,11 In particular, spin-glass analogies have be
employed to explore protein folding in the context of ‘‘he
eropolymer freezing.’’12–17 The impetus was to provide
model explaining a wide range of hallmark features char
teristic of protein folding:~1! all-or-none transitions betwee
the ‘‘unfolded’’ and the ‘‘folded’’ states,~2! the existence of
measurable, discrete intermediates and multiexponentia
netics on folding and/or experimental time scales, and~3!
observations of ‘‘misfolds,’’ protein drift, and irreversibl
denaturation.

A central parameter, the equilibrium glass transiti
temperatureTg ~also called the ‘‘heteropolymer freezing
temperature! is defined as the temperature where the liqu
like protein chain entropy drops below zero~in the thermo-
dynamic limit! and the chain becomes solid-like and ‘‘fro
zen’’ in any one of its low-energy, metastable states.12–17

Using the random energy model~REM! where correlations

a!Author to whom correspondence should be addressed; electronic
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between the energies of the various conformations are
glected, Bryngelson and Wolynes demonstrated that
equilibrium glass temperatureTg partitions the kinetic be-
havior into two regimes.13 For T.Tg , the distribution of
escape rates from low-energy metastable states is log-no
and fast rates are dominant. However, forT,Tg , the kinetic
distribution of escape rates becomes flat and broad so
slow escape rates are as equally likely as fast rates. T
prominent slow transition rates between minima lead to m
tiexponential time dependencies on biologically releva
time scales, lack of self-averaging for many properties of
system, and folding kinetics that are sensitive to the det
of the protein sequence and its initial conditions. Using
REM, it can be shown that the equilibrium glass temperat
is equal to

Tg5A s2

2S0
, ~1!

wheres describes the variance or ‘‘roughness’’ of the RE
energy distribution andS0 is the conformational entropy o
the system.~In this equation and throughout the paper,kB

has been set to one.! A conclusion based on this relation
that rougher energy landscapes lead to higher glass trans
temperatures. Thus, at physiological temperatures, the af
mentioned hallmark features~2! and~3! would be indicative
il:
9 © 1999 American Institute of Physics
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of proteins with significantly rougher energy landscap
compared to ones which fold consistently and exhibit sing
exponential kinetics.18

Given this simple understanding of the glass transit
temperature and its role in the lack of self-averaging a
slow protein folding rates, what can be said about nat
state uniqueness and stability in folding proteins? The fol
state must thermodynamically dominate the ensemble
other kinetically accessible structures under equilibrium c
ditions. A measure of the relative stability of the native st
is the folding temperatureTf . Based on these ideas ofTf and
Tg , Wolynes and co-workers postulated that optimal foldi
landscapes would seek to maximizeTf and minimizeTg or,
equivalently, increase the ratioTf /Tg .19,20 Using the REM,
it was shown that this ratio is equal to

Tf

Tg
5AF 2

2S0
1AF 2

2S0
21,

where

F5
Ē2Ens

s
, ~2!

where Ē is the average energy of the protein chain in
conformations,Ens is the energy of the native structure, an
s describes the variance or ‘‘roughness’’ of this REM ener
landscape. Clearly,Tf /Tg is a monotonically increasing
function of F, which is termed the ‘‘foldability.’’ It was
shown both with molecular dynamic and Monte Carlo
netic simulations that faster folders had higher average f
abilities and largerTf /Tg .19–22 This connection between
foldability and faster folding is intuitive when one notes th
F is increased by:~1! stabilizing native-like interactions
which deepens the native stateEns with respect to the bulk of
conformational energiesĒ, and ~2! destabilizing non-native
interactions and misfolds, which alleviates the roughness
of the energy landscape. Although REM theory, on wh
foldability is based, ignores correlations in the energy la
scape, the stabilization of these native-state contacts crea
natural ‘‘folding funnel,’’ which has been advocated as
requirement for fast folding by a number of investigators.23,24

The allure of foldability as a simple statistical measure of
energy landscape and as an indicator of folding ability
spawned a flurry of research into areas of protein struc
designability25,26 and evolutionary dynamics.27,28

Another thermodynamic quantity related to folding k
netics, referred to as the energy gapD, was first introduced
by Shakhnovich and co-workers.29,30 Originally, this energy
gap was defined as the difference in energy between the
tive state Ens and that of the next highest energyE1 .
~Throughout this paper, we will define energies by th
rank; that is,Ens is concomitant with energy of rank 0, th
next highest energy with rank 1, etc.! Upon running Monte
Carlo kinetic simulations of lattice proteins and analyzi
their energy landscapes, Shakhnovich and co-workers
cluded that the relevant statistical feature for fast folding w
a large energy gapD.31,32 However, due to criticism thatD
was perhaps too local a measure, the definition has spec
s
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with time. Currently there are three measures of energy g
D10, Dg , andD10

dis claimed in the literature to be correlated
fast folding

D105E12Ens; Dg5Eg2Ens; D10
dis5E1

dis2Ens. ~3!

D10 is simply the original energy gap.Dg measures the dept
of the native state with respect to the glass transition ene
Eg , defined by the relationS(Eg)50.33 The alternative,
D10

dis, is similar to the original energy gap except that it h
been revised to neglect energetic correlations between s
lar structures.34 Namely,E1

dis is meant to be the next highes
energy of adissimilarstructure, defined as having an amou
of amino acid pair contacts similar to the native state tha
less than or equal to the what is expected between ran
structures. This construction is due to the fact that the n
highest energy is typically a structure sharing;80% – 95%
similarity to the native state and is most likely within i
energy basin; it is not a competitive ‘‘misfold.’’ Withou
explicitly having to calculate correlations between structur
one can rewordE1

dis andD10
dis in the context of the REM with

the following argument: by neglecting those structures w
strong similarity to the native state, one is potentially resc
ing the energy gap as the difference between a structur
energy rankr , Er , and the energy of the native stateEns.
The actual values ofr , with no loss of generality, can be le
undetermined until explicit comparison of the REM to latti
proteins. Hence, bothD10 and D10

dis can be simultaneously
calculated through aD r0 framework, whereD r05Er2Ens.
We should point out that to rigorously calculate the jo
distribution ofF andD10

dis, one explicitly needs to take cor
relations between structures and energies into account u
an analytical approach such as the generalized random
ergy model ~GREM!.35,36 Since the introduction of thes
variousD andF into the literature, there have been perip
eral data and heuristic arguments indicating that energy
and foldability should be related. Unfortunately, since the
has never been a unifying demonstration of the relations
betweenD and F, the presence of two loosely associat
concepts has created some confusion and controversy in
literature.

For traditional and analytical reasons, in this paper
revisit the REM to derive the various distributions ofF, Dg ,
D10, andD10

dis. Foldability andDg are shown to be equiva
lent measures, directly related to one another by the un
lying conformational entropy. Using the REM model, w
demonstrate thatF, D10, andD10

dis are inherently positively
correlated. We subsequently compare these REM foldab
and energy gap results to a variety of lattice protein simu
tions. Surprisingly, our simulations show that, despite
cavalier application of the REM to proteins, both the ind
vidual distributions and the joint distribution ofF, Dg , D10,
and D10

dis agree qualitatively well with the predictions base
on the REM theory. It should be mentioned that there
other measures of good folders, aside from foldability a
energy gap, in the literature. One prominent candidate is
su5(Tu2Tf)/Tu criterion proposed by Thirumulai an
co-workers.37–39 Unfortunately, asTu represents the transi
tion temperature from noncompact to compact conform
tions, comparison ofsu to F andD in all its forms is beyond
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the scope of our REM analysis, which focuses only on ma
mally compact conformations. One could in principle exte
our REM model to include noncompact conformations an
hydrophobic driving force, similar to previous work b
Bryngelson and Wolynes and Chiu and Goldstein.17,40 How-
ever, recent work by Shakhnovich and co-workers sugg
that Thirumalai’s calculation ofTu , by equating it to the
maximum in the specific heatCv , may be erroneous, par
ticularly for protein sequences with strong, hydrophob
driving forces.41 Thus, the absence of an uncontrovers
definition of su precludes any comparison ofF or D to su

for the moment.

REM AND FOLDABILITY

The REM was originally introduced by Derrida to d
scribe the energy landscape of a generic, disorde
system.42,43 Powerful in its analytical simplicity, the REM is
based on the key assumption of statistical independenc
energy states; namely, the energy of one state is uncorre
with the energy of another state. We begin where others h
before; namely by invoking the REM as a description of t
underlying protein conformational energy landscape.12,13,16

The energies between any two compact conformations
assumed to be independently drawn from a single distr
tion. In the limit of large proteins, the energy distribution
these compact states has been shown to be Gaussia
form.44 Consequently, throughout this paper, we will d
scribe the density of states of a REM heteropolymer
quence byV(E)5nrREM(E), where n is the number of
compact protein structures andrREM(E) is a normalized
REM Gaussian distribution

rREM~E!5
1

sA2p
e2(E2Ē)2/2s2

, ~4!

whereĒ is the average energy of the compact states ands is
the REM roughness and width of the energy density dis
bution. We start by calculating the foldability of the nativ
stateF as a function of the number of compact protein stru
turesn: similar calculations have been done before with s
tistical protein models.13,31,45 The condition of native state
uniqueness and thermodynamic dominance imposes the
dition that the native state energyEns be nondegenerate an
have the lowest value among all othern21 energies (Ens

5E0), a condition commonly referred to as the ‘‘thermod
namic hypothesis.’’46 ~The validity of the thermodynamic
hypothesis has been shown to be increasingly likely w
proteins have undergone significant amounts of selec
evolution to a stable target state.47! For the REM, it is ana-
lytically impossible for any energy to be exactly degenera
However, this assumption cannot be taken for granted in
discrete REM, which models the energy landscape of r
dom, block copolymers.48 Given these constraints, one ca
formally describe the native state energy distribution in
REM by

r~Ensun!5rREM~Ens!P~Ens,n21!. ~5!

Based on the independence of energies and Eq.~4!, these
various probability densities are straightforward to calcul
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rREM~Ens!5
1

sA2p
e2(Ens2Ē)2/2s2

, ~6!

P~Ens,n21!5F E
Ens

`

rREM~E!dEG (n21)

. ~7!

We combine these probabilities and normali
*2`

1`r(Ensun)dEns51 via integration by parts. Notice tha
the normalization constant reflects the combinatorial nat
of how many different ways one can have a lowest ene
state givenn ‘‘picks.’’ The resulting density of native state
energies is

r~Ensun!5nrREM~Ens!F E
Ens

`

rREM~E!dEG (n21)

, ~8!

r~Ensun!5
n

sA2p
e2(Ens2Ē)2/2s2

3F1

2 S 12ErfS Ens2Ē

s&
D D G (n21)

. ~9!

This distribution of native state energies, satisfying t
thermodynamic hypothesis, is commonly known as an
treme value distribution. The conversion fromEns to the
foldability F, a dimensionless quantity, is simple enough
F5(Ē2Ens)/s

r~F!5
n

A2p
e2F2/2F1

2 S 11ErfS F
&

D D G (n21)

. ~10!

This distribution of native state foldabilities, for differen
values ofn, is shown in Fig. 1. Admittedly, low values ofn
are rather unrealistic even for very small proteins. Howev
because the largest changes occur for small values ofn, we
have taken the liberty to include them. In addition, we ha
plotted n51081 andn510 3346, the number of uniqu
structures for commonly used 535 two-dimensional~2D!
and 33333 3D compact lattice proteins. It is noticed that
the number of compact structures swells, several things h

FIG. 1. Plot of the foldability distributionr~F! for different numbers of
compact states (n510, 100, 1081, 103 346!, calculated using the random
energy model.
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TABLE I. Statistical parameters describing the distributions of foldabilities~F!, the energy gap between th
ground state and glass transition energy (Dg), and the energy gap between the ground and first excited s
(D10), calculated using Eq.~10! for F, Eq. ~13! for Dg , and Eq.~19! with r 51, integrated overF, for D10 .
Except for the mean,Dg statistics were identical toF. The sixth column is the percentage of REM heteropo
mer sequences that satisfyDg.0 or, equivalently,Tf /Tg.1.

REM F̄ sF SkewF Dg
*r(Dg.0) D10

n510 1.5388 0.5867 0.4116 20.6072 14.84% 0.5374
n5100 2.5076 0.4294 0.6592 20.5273 11.34% 0.3594
n51081 3.2637 0.3497 0.7703 20.4741 9.55% 0.2856
n5103 346 4.3915 0.2715 0.8961 20.4139 7.67% 0.2180
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pen to the foldability distribution:~1! the mean foldabilityF̄
increases,~2! the variancesF decreases, and~3! a positive
skew emerges. The statistical measures for these REM f
ability distribution are shown in Table I.

REM, ENERGY GAP, AND FOLDABILITY

The alternative measure of thermodynamic stability a
fast folding is the energy gap,D. Due to the heterogeneity in
its definition, we must break our calculation of energy g
into two parts: namely, that ofDg and those ofD r0→D10 and
D10

dis. Dg is the energy gap between the native state ene
Ens andEg , defined as the transition where the finite ener
spectrum goes from discretely and thinly populated (O(N))
to continuously and densely populated (O(eN)), whereN is
the amino-acid length of the protein. Thus, similar to fo
ability, one only needs to know the distribution ofEns be-
cause for the REM,Eg is determined byĒ, s, andn. On the
other hand,D r0 will involve calculating thejoint distribution
of two independent energies,Ens and Er . For simplicity’s
sake, we begin our calculations by relatingDg to F

F5
Ē2Ens

s
5

Ē2Eg1Dg

s
. ~11!

Since the relationS(Eg)5 ln V(Eg)50 gives Eg5Ē
2sA2 lnn ~after dropping terms involvingO(Aln s)), we
can rewrite Eq.~11! as

F5
sA2 lnn1Dg

s
5A2 lnn1Dg . ~12!

In order to facilitate comparison with the foldability, w
have redefined the energy gapDg as a dimensionless quan
tity by absorbings in the denominator, as will also be don
for D r0 . It has been shown previously thatĒ and s of a
random heteropolymer depend on the relative amoun
amino acids in the sequence and the details of interac
between these different amino acids.15,44 Thus, by absorbing
s in the denominator, the dimensionless nature ofF, D r0 ,
andDg leads to universal and composition-independent re
tionships between these measures. This said, we need
no further to demonstrate the inherent correlation betweeF
and Dg as identical measures. The REM distribution
r(Dg) is simply given by substituting Eq.~12! into Eq. ~10!
ld-

d

p

y
y

of
n

-
go

f

r~Dg!5
n

A2p
e2(A2 ln n1Dg)2/2

3F1

2 S 11ErfS A2 lnn1Dg

&
D D G (n21)

. ~13!

As demonstrated in Fig. 2,r(Dg) is identical tor~F!

except thatD̄g is shifted down by an amount equal t
A2 lnn. The statistics for these REMDg distributions are
given in Table I. Interestingly, all curves intersect atDg50
and a good portion of REM native state energies are actu
above the glass–transition energy. What is the physical
nificance of these negativeDg? It is clear thatDg50 is
equivalent toF5A2 lnn. SinceS05 ln n, Dg50 is equivalent
to F 252S0 , which defines the transition whereTf /Tg51.
In other words, in order to guarantee thatTf exists and has
meaning, it must be larger thanTg or, equivalently,Ens must
be lower thanEg . The physical relationship ofDg.0 and
Ens,Eg has been discussed before in the protein design
erature, although not in relation to foldability.33,49 Figure 2
emphasizes that a large percentage of REM heteropoly
sequences are not even able to satisfy this weakest foldab
criterion. The exact percentage of REM sequences expe
to satisfyTf /Tg.1 is shown in Table I; clearly it is a de
creasing function ofn. Thus, although foldability increase

FIG. 2. Plot of theDg distributionr(Dg) for different numbers of compac
states (n510, 100, 1081, 103 346!, calculated using the random energ
model.
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with n, the reality is that a smaller fraction of REM he
eropolymer sequences are actually ‘‘foldable’’ for larger p
teins.

Now that a strict correlation betweenF andDg has been
demonstrated for REM heteropolymer proteins, we turn
D r0 . In terms of the REM, we begin by looking atEns5E0

andEr , whereEr is the next highest energy of rankr . For-
mally, this joint distribution is given by

r~Ens,Er un,r !5r~Ensun!r~Er uEns,n,r !. ~14!

The first part of the distribution has already been de
mined by Eqs.~8!–~9!. The second part is similar in deriva
tion to the first, except thatEr is dependent onEns, n, andr

r~Er uEns,n,r !5rREM~Er !P~r 21,Er,n2r 21!

3Q~Ens,Er !. ~15!

Q(Ens,Er) is the Heaviside function, which ensure
proper integration via the constraintEns,Er . The condition
that r 21,Er,n2r 21 remaining energies is given by

P~r 21,Er,n2r 21!

5F E
Ens

Er
rREM~E!dEG (r 21)F E

Er

`

rREM~E!dEG (n2r 21)

.

~16!

Normalization of*2`
1`r(Er uEns,n,r )dEr51 reduces Eq.

~15! to

r~Er uEns,n,r !

5
~n21!!

~n2r 21!! ~r 21!!
rREM~Er !Q~Ens,Er !

3
@*Ens

Er rREM~E!dE# (r 21)@*Er

` rREM~E!dE# (n2r 21)

@*Ens

` rREM~E!dE# (n21) .

~17!

FIG. 3. Plot of theD10 distributionr(D10) for different numbers of compac
states (n510, 100, 1081, 103 346!, obtained by numerically integrating
r(F,D10) over F.
-

o

r-

Thus, combining all the appropriate parts and cancell
terms, Eq.~14! describing the joint probability is

r~Ens,Er un,r !

5
n!

~n2r 21!! ~r 21!!
rREM~Ens!rREM~Er !Q~Ens,Er !

3F E
Ens

Er
rREM~E!dEG (r 21)F E

Er

`

rREM~E!dEG (n2r 21)

.

~18!

Finally, substituting F5(Ē2Ens)/s and D r05(Er

2Ens)/s into the equation

r~F,D r0ur !

5
n!

~n2r 21!! ~r 21!!

e2F 2/2e2(Dr02F)2/2

2p
Q~D r0.0!

3F1

2 S ErfS D r02F
&

D 1ErfS F
&

D D G (r 21)

3F1

2 S 12ErfS D r02F
&

D D G (n2r 21)

. ~19!

We begin by analyzing the distribution of the origin
energy gapr(D10) obtained by numerically integrating Eq
~19! for r 51 overF. As shown in Fig. 3,r(D10) is a mono-
tonically decreasing function ofD10 and the allowable values
of D10 shrink rapidly for increasingn. The statistical details
of r(D10) are found in Table I. The corresponding RE
joint distribution r(F,D10) is shown graphically forn
51081 in Fig. 4 andn5103 346 in Fig. 5. For values large
than n52, the general form of this joint distribution, asid
from statistical measures, is similar across the entire rang
n. The striking conclusion is that bothF andD10 are posi-
tively correlated.

To calculate the appropriate joint distribution o
r(F,D10

dis), we first need to specify the distribution of ran
N(r ) for the lowest energy of dissimilar structures; that
what is the rankr of the first, lowest energy of a structur
dissimilar to the native state? Admittedly, this distributio
N(r ) is lattice model specific and, for comparative purpos
needs to be explicitly calculated ahead of time. Because
are interested in comparing REMr(F,D10

dis) to lattice mod-
els, we determined that the normalized distribution ofN(r )
for 535 2D and 33333 3D lattice proteins could be wel
represented by

N 55~r !5
e20.1605r

5.7439
, ~20!

N 333~r !5
e20.0441r

22.1794
. ~21!

Thus, given an appropriateN !(r ), the corresponding
REM joint distributionr(F,D10

dis) is obtained by

r~F,D10
dis!5(

r 51

n

N !~r !r~F,D r0ur !. ~22!
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FIG. 4. On the left is a contour plot of the REM joint distributionr(F,D10) for n51081, which demonstrates the the strong, statistical correlation betw
foldability and the original energy gap. On the right is a scatter plot ofF andD10 for the corresponding 535 lattice protein simulation.
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Similar to D10, we start by analyzing the distributio
r(D10

dis), obtained by numerically integrating Eq.~22! over
F. As shown in Fig. 6, instead of being a monotonica
decreasing function ofD10

dis similar to D10, r(D10
dis) is a

cropped Gaussian, peaking near ‘‘low–medium’’ values
D10

dis. The cause of this decreased density of smallD10
dis are

the r 21 energies betweenEr andEns and the large numbe
of dissimilar lowest energy structures which haver>2. The
REM joint distribution r(F,D10

dis) is shown graphically for
n51081 andN 55(r ) in Fig. 7 andn510 3346 andN 333(r )
in Fig. 8. Again, notice the positive correlation between bo
F and D10

dis. Intuitively, this statistical correlation betwee
energy gap and foldability makes sense as larger value
foldability, where Ens is drastically low, probably leaving
more room for larger possible values of allD r0 . The cause of
this positive correlation betweenF andD r0 is independent of
the shape of the underlying energy distribution and, hen
f

h

of

e,

universal across allD10 and D10
dis. However, the particular

form of the correlation and the joint distributionsr(F,D10)
andr(F,D10

dis) does depend on the details of the underlyi
energy distribution andN(r ).

Now that we demonstrated the connections betweenF,
Dg , D10, and D10

dis for REM heteropolymer sequences, th
natural question is whether these REM results have any b
ing on real proteins. Namely, the REM was based on
assumption that the energies between structures of a ran
heteropolymer sequence are uncorrelated. In reality, part
larly with the lattice models commonly used by researche
this independence of energies is false; there are necess
energetic correlations between structures as they all shar
various degrees, common energetic contacts. Far from b
a technical nuisance to REM applicability to proteins, the
energetic correlations between conformations are actu
FIG. 5. On the left is a contour REM plot of the joint distributionr(F,D10) for n5103 346. On the right is a scatter plot ofF andD10 for the corresponding
33333 lattice protein simulation.
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important for the emergence of folding-funnel landscapes
good protein folders50,51 and answering why some structur
are more common or ‘‘designable’’ than others.25,26,52,53The
applicability of the REM to lattice proteins and heteropo
mer freezing has been explored by Pande and co-worke54

They demonstrated that for large, compact lattice prote
the energetic correlations between structures, although n
zero, were generally small enough to ensure that the REM
a good approximate model. In addition, work by Wolyn
and co-workers established that previous REM thermo
namic quantities were practically unchanged when red
using the GREM, which explicitly takes correlations in
account.55 However, there are substantial differences b
tween 2D and 3D proteins in terms of replica-symme
breaking, which directly reflects on REM validity.14,15,49Di-
mension is also of paramount importance for entropy ca
lations of chain loops in 2D and 3D proteins.55,50,49Conse-
quently, given this history, we were interested as to how

FIG. 6. Plot of theD10
dis distributionr(D10

dis) for n51081, 103 346, obtained
by numerically integratingr(F,D10

dis) over F.
f

.
s
er
is

-
e

-

-

e

distributions ofF, Dg , D10, andD10
dis for compact lattice pro-

teins in 2D and 3D would compare to those of REM h
eropolymer sequences.

LATTICE PROTEINS, ENERGY GAP, AND
FOLDABILITY

Lattice proteins are coarse-grained versions of prote
where the level of detail focuses on amino acids as enti
occupying lattice points and protein conformations as s
avoiding walks on these regular lattices. Clearly, this igno
very real aspects of proteins, such as atoms, backb
angles, sidechain packing, etc. Nevertheless, lattice prot
have a rich history in theoretical biophysics because th
simplicity manages to capture salient features
biopolymers.56 In this paper, we used two different compa
lattices: a 535 2D and a 33333 3D lattice. Our choice of
using only compact lattices is based on the observation t
~1! hydrophobic collapse and excluded volume are domin
forces,~2! compact lattice structures, with a constant amo
of pair contacts, exhibit a Gaussian distribution of energie44

and ~3! a majority of competitive misfolds and glass trans
tions are expected to occur in collapsed conformations.17 For
the maximally compact 535 2D lattice protein there are
total of 1081 possible self-avoiding walks, excluding rot
tions and reflections. Similarly, there are 103 346 such p
sible conformations for the maximally compact 33333 3D
lattice protein chain.

The energy for any given sequenceS in a conformation
k is a linear function of the amino-acid pair contacts that
made

ES
k5(

i , j
g i j

SD i j
k , ~23!

where the set$g i j
S% specifies the residue pair-contact energ

of all possible pair contacts that can be formed forS. D i j
k is

equal to one if nonsequential residuesi and j are on adjacent
ion
FIG. 7. On the left is a contour plot of the REM joint distributionr(F,D10
dis) for n51081 andN 55(r ), which demonstrates the strong, statistical correlat

between foldability and energy gap. On the right is a scatter plot ofF andD10
dis for the corresponding 535 lattice protein simulation.
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FIG. 8. On the left is a contour REM plot of the joint distributionr(F,D10
dis) for n5103 346 andN 333(r ). On the right is a scatter plot ofF andD10

dis for the
corresponding 33333 lattice protein simulation.
ll

id
te
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y
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i-
lattice sites in conformationk and zero, otherwise. Since a
conformations are unique, no set$D i j

k % is identical. Each
pair-contact energyg i j

S5g(A i
S ,A j

S) is a function of the se-
quence amino acidsA i

S andA j
S at positionsi and j , where

g(Ai ,Aj ) is specified in the definition of the amino-ac
alphabet. For both compact lattice models, we construc
our sequences randomly using the standard Miyazaw
Jernigan~MJ! 20-letter alphabet.57 In the simulation them-
selves, all sequences had to satisfy similar criteria to w
was imposed in our REM calculations: have a unique, n
degenerate, global energy-minimum native state. We ge
ated 50 000 such random MJ heteropolymer sequences
both lattice geometries and kept track of foldabilityF and
energy gapsDg , D10, andD10

dis. As in our REM derivations,
all D were normalized bys so as to ensure that distribution
of energy gap and foldability remain composition indepe
d
–

at
-
r-

for

-

dent. This is in stark contrast to previous simulations wh
have looked at energy gap statistics. All histograms ofF,
Dg , D10, and D10

dis were binned with a width of 0.05 and
normalized to sum to 1.0.

In similar order to our REM calculations, we begin b
looking at the single distributionsr~F!, r(Dg), r(D10), and
r(D10

dis) for lattice proteins. Figures 9–11 demonstrate th
the F, Dg , D10, D10

dis histograms are qualitatively similar t
their corresponding REM distributions (n51081 and n
5103 346). Namely, the distributions ofr~F! and r(Dg)
exhibit a Gaussian-like shape with strong positive ske
r(D10) is an exponentially decreasing function ofD10, and
r(D10

dis) is a cropped Gaussian, peaking near low–medi
values ofD10

dis. The statistical details of these lattice prote
simulations as compared to their REM counterparts
shown in Table II. However, despite these qualitative sim
FIG. 9. Histogram of normalizedF andDg distributions for random sequences in different compact lattice geometries~left! for the 535 and~right! for the
33333 lattice proteins. We have included the REMF andDg distributions for comparison.
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FIG. 10. Histogram ofD10 distribution for random sequences in different compact lattice geometries~left! for the 535 and~right! for the 33333 lattice
proteins. REM distributions are given by the solid lines.
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larities, there are some undeniable quantitative differen
namely, all lattice protein distributions ofF, Dg , D10, and
D10

dis are consistently shifted to lower values. Fortunate
these quantitative differences can be rationalized on the b
of structural and energetic correlations endemic to lat
proteins. Because all structures share a certain amoun
similar contacts with other structures, the stochastic con
quence of these correlations is an effective decrease in
possibleenergy difference betweenEns, Ē, andEr . This re-
sults in smaller, average values of foldability and energy g
Note that the percent of average, similar contacts for 535 is
15.44% and 18.79% for 33333 lattice proteins. As shown
in Table II, this higher number of average, similar contacts
33333 lattice proteins conveniently explains the larg
drop in F̄, Dg, andD10 relative to the REM, when compare
to 535 lattice proteins. The quick analysis above parall
s:

,
sis
e
of
e-
he

p.

n
r

s

the discussions of Pande and co-workers concerning
REM breakdown for compact lattice proteins.54

What about the correlation between energy gap and fo
ability in lattice proteins? As expected in their definition,F
andDg were perfectly correlated for lattice proteins~unpub-
lished!. The resulting joint distribution ofr(F,D10) is found
in the form of a scatter plot in Figs. 4 and 5. Additionally, w
plot the joint distribution ofr(F,D10

dis) in the form of a scat-
ter plot in Figs. 7 and 8. We have specifically included the
next to their corresponding REM contour plots to effective
highlight the resemblance of lattice distributions and anal
cal expressions for bothr(F,D10) and r(F,D10

dis). Again,
notice the strong statistical correlation betweenF, D10, and
D10

dis for lattice proteins and the REM. This conclusive
demonstrates thatF, Dg , D10, and D10

dis are all correlated,
FIG. 11. Histogram ofD10
dis distribution for random sequences in different compact lattice geometries~left! for the 535 and~right! for the 33333 lattice

proteins. REM distributions are given by the solid lines.
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TABLE II. A comparison ofF, Dg , D10 , andD10
dis statistics for lattice protein simulations and their correspon

ing REM heteropolymer sequences.

F̄ sF SkewF Dg
*r(Dg.0) D10 D10

dis

REM n51081 3.2637 0.3497 0.7703 20.4741 9.55% 0.2856 0.7066
535 lattice 3.1328 0.3527 0.6447 20.6051 5.58% 0.2230 0.6194

REM n5103 346 4.3915 0.2715 0.8961 20.4139 7.67% 0.2180 0.6825
33333 lattice 4.1474 0.2923 0.5466 20.6580 2.34% 0.1553 0.6069
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either perfectly or statistically to one another, both in RE
theory and in lattice protein simulation.

CONCLUSIONS

One of the central topics of theoretical biophysics h
been to understand how proteins fold so quickly. Interdis
plinary insights quickly focused on protein energy lan
scapes to extract features relevant to faster folding. In p
ticular, with advances in computational power, it w
established using molecular dynamic and Monte Carlo
netic simulations of proteins that foldabilityF, energy gapD,
and sigmasu were well correlated to fast folding. Unfortu
nately, there has been no theoretical attempt to relate t
disparate measures. For reasons mentioned earlier, it wa
purpose of this paper to elucidate the inherent connec
betweenF and energy gap,Dg , D10, D10

dis, using the REM.
Our analytical calculations demonstrate thatF and Dg are
identical measures and that, as shown by the joint distr
tions r(F,D10) andr(F,D10

dis), F and energy gap are statis
tically correlated measures. Consequently,a posteriori it
comes as no surprise that both foldability and energy gap
all highly correlated to fast and reliable folding.

Despite these REM results, we found it necessary to
our own lattice protein simulations to explore whetherF and
D were indeed correlated. All lattice proteinF, Dg , D10, and
D10

dis distributions and joint distribution were qualitative
similar to that predicted using the REM. There were qua
tative differences between these two models, but these
ferences could be explained on the basis of correlations
tween lattice proteins. It might be worthwhile to calculateF,
D10, and Dg for the GREM, which takes the relationsh
between energetic and structural correlations into acco
but qualitatively little is expected to change.

Given that the stochasticity of the REM and energe
correlations in lattice proteins can be reconciled in the u
versal GREM, why areD and F positively correlated? We
argue that in a stochastic framework, the correlation betw
foldability and energy gap arises because both measure
defined byEns, the lowest energy, which is a constraint
the thermodynamic hypothesis. The fact that energy gap
all its forms, and foldability are a measure of the depth of
native state with respect tosomething, eitherEr , Eg , or Ē,
leads to a positive correlation between these measures.
particularform of the correlation or joint distribution, how
ever, is sensitive to the details of the underlying distribut
of energies and our particular definition of energy gap. Th
s
i-
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se
the
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given thatĒ andEg are constants of the underlying distribu
tion, Dg andF should be less fickle measures of fast foldin
as compared toD10 andD10

dis.
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