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A method of employing the components of a high speed analog computer to evaluate product integrals
is presented. Kernel functions of two variables are obtained with time as the variable of integration and thie
position of ganged potentiometers as the parametric variable. High speed multipliers, function generators,
adders, and integrators permit the evaluation of a one-hundred point product integral curve every 1.67
seconds. This curve is displayed on a cathode-ray tube screen having a long persistence P-7 phosphor.
Examples of sine and cosine transforms evaluated with the product integrator are given. The observed errors
range from 1 to 10 percent, depending upon the problem.

N the fields of engineering and physics, one is fre-
quently confronted with the problem of evaluating
product integrals of the form

Tort

F(y)= f JOK(, D, )
[

where f(t) and the kernel K(y, f) are known functions,
and y is a variable parameter. Well-known equations
of this form are the Fourier integral equation and the
convolution or superposition integral.

The evaluation of product integrals by machine
methods was begun at the Massachusetts Institute of
Technology in 1928.! This work culiminated in 1940 in
the completion of the cinema integraph.?-* Morerecently,
a more general machine capable of solving a wide range
of integral equations has been proposed.*

This paper describes how the components of an
electronic differential analyzer can be applied to this
problem. The product integrator described is capable of
evaluating a one-hundred point curve for F(y) every
5/3 seconds. This curve is displayed on the face of a
cathode-ray tube having a long persistence P-7 screen.

I. PRODUCT INTEGRATION

A block diagram of the set-up used to evaluate
product integrals is shown in Fig. 1. F(y) is evaluated
for a series of discrete values of ¥ by a step by step
procedure. This is accomplished by setting y=0 and
evaluating

F(0)= f SO, d, @)
then changing to y=1v, and evalu;ting
T
Fly)= f FOR o, 0)db, 3)

and so forth. If a sufficiently large number of values of
y are chosen over the range from O to yYmax, an accurate

1 K. E. Gould, J. Math. Phys. 7, 305 (1928).

2T. S. Gray, J. Franklin Inst. 221, 77 (1931).

3 H. L. Hazen and G. S. Brown, J. Franklin Inst. 230, 19 (1940).
4H. Wallman, J. Franklin Inst. 250, 45-61.

determination of F(y) over this range is obtained. An
approximation to the function F(y) can be obtained by
varying the parametric variable y continuously. If y
varies very slowly relative to the variable of integration
¢, the difference between F(y) and this approximation
will be small.

Three of the computing elements indicated: the inte-
grator, the multiplier, and the function generator for
generation of the function of one variable f(f) are units
commonly found in any analog computer. The parti-
cular units used by the author have been described
previously elsewhere.> The important features of these
units which facilitated their use in the product inte-
grator are: (1) wide band widths and correspondingly
short rise times, (2) repetitive operation at 60 cycles per
second. All of the computing elements are switched on
for a period of ten thousand microseconds and then off
for sixty-seven hundred microseconds. Balanced diodes
are used as the necessary electronic switches.® During
the off portion of the computing cycle the electronic
switches automatically restore the integrator to zero
initial condition.

1I. KERNEL GENERATION

The kernel K(y, t) is a function of the two variables
y and ¢ The development of a generator of such a
function would be a very difficult problem if it were

1" K(y,t)
' Function | 1) Kyt «eRNEL y
b GENERATOR GENERATOR

)

OuLTPUT

MULTIPLIER

HULGA)

Fly) ¥y

INTEGRATOR

Fi6. 1. Product integrator block diagram.

"8 A, B. Macnee, Proc. Inst. Radio Engr. 37, 1315 (1949).
$K. R. Wendt, RCA Rev. 9, 85 (1948).
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F16. 2. Set-up for the generation of the kernel
functions coswt and sinwt.

not for one important characteristic of the kernel
function, namely, that the parametric variable y need
only vary slowly relative to the variable of integration 2.

The output unit is an ordinary oscilloscope employing
dc amplification and a cathode-ray tube having a long
persistence screen. The intensity grid is gated on for
two S50-microsecond periods during each computing
cycle; once just before the beginning of the on period,
when the output of the integrator is at zero, and again
just before the end of the on period. Thus, for each
computing cycle two points appear on the output
screen, one giving the zero level and one giving the
value of the integral.

Since the kernel X(y, £) is a function of ¢ alone over
each integration from 0 to T, one way of obtaining
many useful kernels is to use an electronic differential
analyzer to generate the necessary functions of time and
to introduce some way ‘of slowly varying the required
parameter in these functions. Since the parameter
variation is slow, it can be produced by mechanical
means such as a motor-driven potentiometer. For a
fixed value of the parametric variable, the kernel is a
function of ¢ alone. If this function of time can be
represented as the solution of an ordinary differential
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Fi16. 3. Block diagrams of set-ups for the generation of typical
kernel functions. (a) K(y, £) =f(v-), (b) K(y, £) =v-f[¥ sin(kt)].
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equation, the analyzer can be made to solve this
equation directly.

A. Fourier Transforms

As an example of this technique of kernel generation,
consider the Fourier transformation

+o0
g(w>=i f_ S @

This integral of a complex quantity is conveniently
broken down into two real product integrals

glw)=g1(w)+jga(w), )]
where
(@)= f " (0 cosatdt ©)
81 -J. 1
and { o
@)=~ [ ) s, )

The functions f1(!) and f.(f) are the even and odd
parts respectively of the original time function f(z). To
evaluate the product integrals of Egs. (6) and (7) it is
necessary to generate the two kernel functions coswt
and sinwf. This is done by solving the differential
equation

Fx/dlt= — o’z €]

on an electronic differential analyzer. The set-up for
solving this equation is shown in Fig. 2. The potentiom-
eters P; and P, are introduced to permit variation of
the parametric variable ». These potentiometers are
capable of continuous rotation. They are geared to-
gether and driven by a synchronous motor, through a
reduction gear box at a speed of 0.6 rps. The differential
analyzer used by the author solves equations 60 times
a second; therefore in one rotation of the potentiometers
one-hundred kernel functions are obtained. The differen-
tial equation actually solved by the set-up of Fig. 2is

d%x 6712
——+[-——] wx=0, 0<50<L2x (9)
a2

where
1 R,
= — (10)
. RiCiRLC: Ry
and 6= potentiometer shaft position in radians. Choosing
initial conditions xo=0, #3=1, voltages proportional to
coswi and sinwt become available at the points shown,
with the parametric variable

w=wo(8/2). (11)

As has been indicated, the differential analyzer com-
ponents of Fig. 2 are turned on 60 times a second for a
period of 1/100 sec. If the potentiometer shafts were
held at a fixed value over this 1/100-sec period and
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then stepped to the next value during the off time of
the analyzer, the sine and cosine kernels would be
generated exactly. In practice, these potentiometer
shafts are continuously moving even when the differen-
tial analyzer components are turned on. There is,
therefore, a small variation of the parametric variable
« during each of the individual integrations from 0 to
T seconds. If this variation in 8 is considered, one finds
that the set-up of Fig. 2 solves the differential equation

d*x #\2 T I
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ag 2 1006 T Fi16. 5. Cosine and sine transforms of f1(f) as observed
at the output of product integrator.

set-ups for the generation of f(y-f) and y-f{y sin(kf)]
have been used successfully by the author.

1. RESULTS

The high speed product integrator described here has
been used to evaluate integrals of the Fourier, Schlo-
milch, and convolution types.

A, Fourier Integral

The equipment of Fig. 1 used in conjunction with
that of Fig. 2 is capable of evaluating sine and cosine
integrals. Figure 4 is a photograph of the motor-driven
potentiometers used by the product integrator.

Functions of time which lend themselves to analytic
integration were evaluated in order to check the ac-
curacy of the product integrator. The first of these is

SilH)= —;-[H—cos(‘;r/T)t] for 0<<T

(14)
fi(®)=0 for t> T, and t<0.
10
ot
A g
08— Gu) = %ﬂf[& #cos(%}t} coswt dt
5 NnfeT) i
08}~ i [ 1- !9'-}!2]
Fic. 4. Potentiometers and motor drive used to © © MEASURED POINTS
generate the parametric variable. 0ale
) CALCULATED CURVE
where now 6 is constant over each integration cycle.
This equation has the approximate solution, for oz}~
T=1/100 sec, :
6 2 4 2 opg—t—o B A
x= Cl COS[—woz-}‘ wo']+62 sin[—wat—i— wq—] . (13) " > wT n
27 4 2 - 4
02—
By making C; or C, zero, either the sine or cosine
kernels can be generated.

Blocking diagrams of the set-ups necessary to generate :
other useful kernel functions are given in Fig. 3. These Fic. 6. Calculated and measured cosine transform of fi(2).



Fi16. 7. Cosine and sine transforms of f2(!) as observed
at the output of the product integrator.

o

12 Lo %onu ot ¢ el
b bX (RT3

o
w)x i { -at ——
9 gquc sint @t * =

O O MEASURED POINTS
GALCULATED CURVES

Fic. 8. Calculated and measured cosine and sine
transforms of fy5(f).

_Figure 5 shows the cosine and sine transforms of this
function as they are observed at the product integrator
output. This is a double exposure photograph; normally
only one of these curves is displayed. The calculated
cosine transform for this time function is shown in Fig.
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6. The points plotted in this figure were taken from Fig.
5 graphically. The negative for this figure was viewed
on a microfilm viewer, and the points measured with a
pair of dividers and a scale.

The second time function chosen is

T
fg(t)=—ge‘6‘/7' for 0<i< T,

(15)
f:()=0 for t=0and t>T.
This is a difficult function for the product integrator to
handle because fs(?) is rather close to zero over most of
each integration period. The multiplier is, therefore,
operating in a very unfavorable manner most of the
time, and one might expect the errors to be high. The
observed sine and cosine transforms are shown in Fig. 7.
Figure 8 shows the measured curves and the calculated
points. The error in this case is greater than that
observed in Fig. 6, but is less than 10 percent over most
of the output range.

This second example illustrates one of the applications
of the cosine and sine integrals. If the function f(f) is
considered as the desired impulse response of 1 linear
passive network, then the real and imaginary parts of
the transfer impedance of this network are respectively
the cosine transform and the negative of the sine
transform of this f(¢). Thus the curves of Fig. 8 are the

‘real part and the negative imaginary part of the imped-

ance of a parallel RC network.

Another application of cosine transforms is the evalu-
ation of the power density spectrum of experimentally
observed autocorrelation functions. The high speed inte-
grator has been used for this purpose by N. H. Knudt-
zon.” A typical autocorrelation function of some filtered
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F16. 9. Autocorrelation function of filtered random noise as measured by an electronic correlator.

7 N. H. Knudtzon, Technical Report No. 115, Research Laboratory of Electronics, M.I.T. (1949).
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random noise is shown in Fig. 9. The data for this
curve were obtained with an electronic correlator de-
veloped at the Massachusetts Institute of Technology.?
These data were plotted on an 8 X 11-in. piece of paper,
and photographically reduced to a mask for the arbi-
trary function generator. Figure 10(a) shows the output
of the arbitrary function generator. Figure 10(b) is the
power density curve for this correlation function as ob-
served at the output of the product integrator.

B. Errors

Of the four computing elements indicated in Fig. 1
the two most subject to error are the multiplier and the
kernel generator. The time integrator can easily be
made accurate to within 0.1 percent. The photocell-
feedback arbitrary-function generator used wasaccurate
to within 2 percent of the maximum output. This
maximum output corresponded to a deflection of two
and one-half inches on the face of a 5UP11 cathode-ray
tube. Greater accuracy than this could be achieved by
suitably compensating the function masks,

The principal error in kernel generation as described
in Section II is caused by the continuous rotation of
the parametric variable potentiometers. This results in
an error which would not be encountered if the para-
metric variable were varied in a quantized manner
during the off time of the integration cycle. This
source of error has been investigated in some detail for
the cosine and sine transforms. In this case the
kernel functions obtained are those given by Eq. (13).
In this equation the frequency wy is the maximum value
of the parametric variable w, and the kernel function
error is largest when the wy is large. This source of error
can always be reduced by reducing the rate of change
of the parametric variable. For the cosine and sine
transforms this would amount to reducing w, or
modifying the set-up of Fig. 2 to give a range of fre-
quencies from w; to w, instead of 0 to we.

The other important source of error in the product
integrator is the multiplier. No analog multiplier is
capable of perfect zero adjustment. To a first approxi-
mation the output of any multiplier having inputs x»
and y will be

F(z, y)=x y+ax+asy+as. (16)
When such a multiplier is used in a product integrator,
the product integrator output will be

F'(y)=F(y)+E\(y)+Es, an

8 T. P. Cheatham, Technical Report No. 122, Research Labora-
tory of Electronics, M.L.T. (1949).

9 A. B. Macnee, Technical Report No. 136, Research Labora-
tory of Electronics, M.I.T. (1949). -
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F16. 10(a). Autocorrelation function of Fig. 9 as generated
by cathode-ray tube function generator.

Fic. 10(b). Power density spectrum observed at output of
product integrator by taking the cosine transform of the correla-
tion function shown in Fig. 10(a).

where F(y) is the desired output,

7
Ea(3)=as f K@, b, (18)

and

o f Canf(t)+as]dr. (19)

The second of these error terms E, is independent of
the parametric variable y and can, therefore, be sub-
tracted from the output of the integrator shown in
Fig. 1. This js easily done experimentally by adding a
constant to give zero product integrator output with
K(y, t) disconnected from the multiplier input.

The first error E;(y) being a function of y is not so
easily removed. It can be evaluated analytically by
Eq. (18), or experimentally using the product multiplier
itself to do the work! This error is not a function of
f(); it is minimized by making the desired F(y) as
large as possible without overloading the multiplier.
This means the scale of the f(f) voltage should always
be such as to use all of the available multiplier dynamic
range. This last effect is the principal source of error
in Figs. 6 and 8. :



