Poisson’s Ratio at High Temperatures

By

F. L. EVERETT
University of Michigan, Ann Arbor, Michigan

AND

Jurius MikLowitz
Westinghouse Research Laboratories, East Pilisburgh, Pennsylvania

(Received June 5, 1944)

A method is presented whereby both the modulus of elasticity in tension and compression E
and the modulus of elasticity in shear G may be obtained simultaneously from a simple test on
a cantilever specimen subjected to combined bending and twist. By means of the relation
v=(E/2G)~1, values of Poisson’s ratio at various temperatures from ambient to 1000°F

were obtained for five common steels.

I. INTRODUCTION

N recent years, the need for more information
on the elastic properties of the ordinary steels

at temperatures above ambient conditions has
been pointed out. Unfortunately, statically ob-
tained information along these lines exists in only
a limited amount. The available data are confined
to several references in the technical literature.!
In this investigation* an attempt was made to
devise a simple test on one specimen which would
yield simultaneously both the modulus of elas-
ticity in tension and compression E and the
modulus of elasticity in shear G. The moduli were
obtained by subjecting a small cantilever rod of
uniform circular cross section to combined bend-
ing and torsion, and measuring separately the
deformations due to each. From the relation
v=(E/2G)—1, a true value of Poisson’s ratio
would follow. The ultimate objective of the in-
vestigation was to determine the variations of
Poisson’s ratio values of five common steels in the
range of temperatures from ambient to 1000°F.

1 {a) F. C. Lea and O. H. Crowther, Engineering 98, 487
1914).
( (5) C. Bach and R. Baumann, Festigkeit seigenschaften
und Gefiigebilder der konstruktionsmaterialien (Springer,
Berlin, 1921).
(¢c) F. C. Lea, Engineering 43, 829 (1922).
(d) F. L. Everett, Trans. A.S.M.E. 53, 117 (1931).
(e) E. Honegger, The Brown Boveri Review 19, 143
(1923).
(f) G. L. Verse, Trans. AS.M.E. 57, 1 (1935).
* The work of this investigation was carried out at the
University of Michigan in the year of 1942,
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The variables of temperature, non-uniformity of
the test specimen, manipulation, and others were
minimized.

II. SPECIMEN, APPARATUS, AND METHOD

The five S.A.E. steel specimens were rods 3% of
an inch in diameter. The composition of each
specimen is given in Table I.

The cantilever specimen was both bent and
twisted by a single force applied as a dead weight
at the end of a 6-inch torque arm which was
connected to the free end of the cantilever speci-
men. A diagrammatic sketch is shown in Fig. 1.

The entire specimen was subjected to combined
bending and torsion. The application of a load to
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F1c. 1. Diagrammatic sketch of apparatus.
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TaBLE 1. Composition of steels tested.

Composition (%)

Type of steel C Mn Si P 5. Ni Cr
S.AE, 1095 0.9 -1.05 0.25-0.50 0. 1—0 5 0.04 0.04 — -
S.AE., 5140 |0.35-0.45 0.6-0.9 004 0.05 — 0.8 -1.1
S.AE. 3340 |0.35-0.45 0.3-0.6 — 004 005 3.25-3.75 1.25-1.75
S.AE. 1020 |0.15-0.25 0.3-0.6 —  0.045 0.05 - —
('hot rolled)

S.A.E. 1020 0.15-0.25 0.3-0.6 —  0.045 0.05 — —_

(cold rolled)

the end of the torque arm caused relative dis-
placement of two kinds to any two cross sections,
m and n. The constant torque moment caused
relative rotation around the axis of the specimen
and the variable bending moment produced rela-
tive rotation about a locus of points? outside of
the specimen in a plane containing the axis. The
object of these experiments was to determine
these two relative rotations under various con-
ditions of temperature and amount of loading.

Loading and unloading was accomplished by
means of a loading tray which hung from the end
of the torque arm. Loads in amounts of 100 and
200 grams were placed on the tray. The maxi-
mum total load in any case did not exceed 2400
grams.

The measurements of angular rotations were
made by mirrors connected to the end points of
the gauge length mn. Extensions were necessary
to bring the mirrors outside of the electric furnace
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F16. 2. Torsion problem.

2 The points are the centers of curvature corresponding
to the bending moments within the gauge length mn.
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F1G. 3. Bending problem.

which surrounded the specimen and supplied the
heat. The temperature was automatically con-
trolled and held constant within 42°F for one
hour before as well as during each experiment. A
telescope was focused on each mirror and back on
to a special two-dimensional scale consisting of
graph paper which was suspended in a horizontal
plane approximately 41 feet above the mirrors.
Torsion of the rod caused readings on the graph
paper in a direction perpendicular to the axis of
the specimen, and bending produced readings in
the direction parallel to the axis of the specimen.

- The torsion permitted the determination of the

modulus of elasticity in shear G; and the bending,
the modulus of elasticity in tension and com-
pression E.

Dividing the problem into its elementary
parts, torsion and bending, a simple sketch may
be shown for each, as in Figs. 2 and 3.

The value of the modulus of elasticity in shear
is found by use of the principles of the strength
of materials. Referring to Fig. 2,

B=Wig/GI,, (1)

where g is the angle of twist for gauge length g, I is
the torque arm, W the load, I, the polar moment
of inertia of a circular rod, and G the modulus of
elasticity in shear. Since [, g, and I, are all con-
stants, we may write (1) as

G=K\(W/B). (2)
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Fi1G. 4. Load-displacement curves for SAE. 1095 steel
at 800°F.

We may also write as a close approximation
B=T/2b, (3)

where T is the torsion scale reading corresponding
to an angle of twist 8, and b is the average
vertical distance from the mirrors to the graphic
scale.

The small change in b due to the deflection of
the mirrors may be neglected. Therefore, con-
sidering b a constant and substituting (3) in (2),
we have

G=K2(W/’/T), (4)
which may be written as
G=K(AW/AT). (5

From the load-torsion displacement curves a
value for the modulus of elasticity in shear can be
obtained with the use of Eq. (5).

The modulus of elasticity in tension and com-
pression is found similarly (see Fig. 3). We have

_Wila+g)® Wa* Wgle+2a)

= e 6
2ET ©

2EI  2EI

where « is the angle of bending for gauge length
g, a the forelength of rod, W the load, I the
moment of inertia about the neutral axis of the
cantilever specimen, and E the modulus of
elasticity in tension and compression. Since &, g,
and 1 are all constants, we may write (6) as

E=KyW/a). (7
By former reasoning we arrive at the following:

E=KAW/AB), (8)
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where B is the bending scale reading correspond-
ing to an angle of rotation due to bending, a.
From the load-bending displacement curves a
value for the modulus of elasticity in tension and
compression can be obtained with the use of
Eg. (8).

At constant temperatures of ambicnt, 200, 400,
600, 800, and 1000 degrees Fahrenheit, tests were
run on each of the five different steels to obtain
moduli values. The 800° and 1000°F tests were
made by increasing the load on the specimen by
equal increments and observing the readings of
the rotation due to twist and that due to bending
until noticeable creep occurred. The rod was then
unloaded using the same small increments as
before. Upon unloading, creep persisted for
several readings only, and then became negligi-
ble, as evidenced by the fact that, upon plotting
the data, a straight line resulted. This method of
utilizing the data on unloading rather than on
loading so as to eliminate the serious effect of

F1c. 5. Entire apparatus.
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creep in obtaining the true values of the moduli
was originally reported by one of the authors in
an earlier paper® and was utilized in further ex-
periments by G. L. Verse.*

In the 600°, 400°, 200°F and ambient tempera-
ture tests a similar procedure was used. Con-
siderably less creep was evidenced ; however, data
on unloading only were considered to be reliable
for cstablishing the values of the moduli. At each
temperature the data for both moduli of a specific
steel were plotted. Figure 4 shows a plot of load-
displacement data of the 800°F test made on the
S.A.E. 1095 steel. These curves are typical plots
of the load-displacement data of this investiga-
tion. The slopes of the unloading curves in all
cases, multiplied by the appropriate constants as
given by Eqgs. (5) and (8) above, gave the values
of the two moduli.

From the values of the moduli a value for
Poisson’s ratio at each temperature was derived
from the equation v=(E/2G)—1.

F16. 6. Testing apparatus.

3 See reference 1(d).
4 See reference 1{f).
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Fi16. 7. The cantilever specimen,

The accuracy of obtaining Poisson’s ratic by
this method has been considered. When the
relation

v=(E/2G)—1=(E—-2G)/2G 9)
is differentiated we have
dv=(dE/2G)— (EdG/2G?). (10)
Dividing (10) by (9) we have
dy E [dE 4G
P et S

From relation (11) it is seen that errors of like
sign in measuring both E and G tend to cancel
each other, while errors of unlike sign add, and
when multiplied by the factor E/(E ~2G) might
make an appreciable error in ». There is no reason
to believe that errors in measuring E and G were
of unlike sign. The large magnification of the
rotations due to bending and twist helps to make
the readings accurate; the distance of the mirrors
from the graphic scale was approximately 53
inches. The authors believe that the values for
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Poisson’s ratio found in this investigation are
reliable within a fair degree of accuracy.
Figures 5-7 are pictures of the apparatus.

III. TEST RESULTS
Table 11 presents the final results of the moduli

TasLE 1I. Tabulated results.

Temperature °F Steel E G P.R.(»)
S.AE. 5140 30.35* 11.20* 0.355
3340 29.75 11.30 315
Ambient 1020 h.r. 29.80 11.33 313
1020 c.r. 29.20 11.35 .286
1095 2990 11.55 .295
5140 2990 11.06 .353
3340 29.40 11.12 .320
200 1020 h.r. 2940 10.90 .348
1020 c.r. 29.18 11.00 326
1095 29.65 11.45 .297
5140 30.40 10.50 447
3340 28.75 10.07 425
400 1020 h.r. 28.95 1045 384
1020 c.r. 28.60 10.36 .380
1095 2990 10.97 .362
5140 29.40 9.72 .510%*
3340 28.35 9.65 470
600 1020 h.r. 26.85 9.89 .358
1020 c.r. 27.87 9.97 .398
1095 28.20 10.11 394
5140 28.80 9.46 .520%*
3340 2497 9.07 376
800 1020 h.r. 26.15 9.33 400
1020 c.r. 26.30 9.53 380
1095 23.95 8.62 .389
5140 24.90 8.23 513%*
3340 23.30 8.34 397
1000 1020 h.r. 22.90 7.90 450
1020 c.r. 18.76 6.50 440
1095 17.95 5.98 .500
* % 108 Ib./in2

** Slightly above maximum value for Poisson's ratio.
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F1G. 9. The variation of the modulus of elasticity in shear G
with temperature.

of tension and compression and of shear, and the
derived values of Poisson’s ratio. As stated previ-
ously, only data on unloading were used in calcu-
lating the moduli since creep may be considered
negligible over the major portion of the unloading
curve.

The values of the modulus of elasticity in ten-
sion and compression are plotted against their
respective temperatures in Fig. 8. The major
changes in E values occur after 400°F, the S.A.E.
1095 steel showing an 18 X10°%1b./in.2 modulus at
1000°F. The S.A.E. 5140 steel maintains its
rigidity better than the other steels throughout
the temperature range. This may be expected
since the 5140 steel is commonly known as a high
temperature alloy. The S.A.E. 1020 hot-rolled
steel maintains its rigidity surprisingly well at the
higher temperatures; its modulus drops to 22.9
X10¢ 1b./in.2 at 1000°F. The modulus of the
S.A.E. 3340 steel drops suddenly at 600°F, but
the drop is cut at 800°F; the final value (at
1000°F) being 23.3X 10 Ib./in 2.

The values of the modulus of elasticity in shear
are plotted against their respective temperatures
in Fig. 9. The curves exhibit many similar trends.
Immediate drop of the modulus G occurs with an
increase of temperature. The S.A.E. 1095 and
cold-rolled steel again show the lowest values at
1000°F. The hot-rolled steel again demonstrates
its ability to keep its rigidity at high tempera-
tures. The high temperature steels (S.A.E. 3340
and S.A.E. 5140) have the highest values of G at
1000°F: 8.3 and 8.2 X108 Ib./in.?, respectively.

Figure 10 shows the variation of the derived
Poisson’s ratio with temperature of each steel

JOURNAL OF APPLIED PHYSICS



TasLE II1. Comparison of modulus E values.

S.AE. Bach & Verses Bach & Lea?
1020 Baumann® Leat 0.43% S.A.E. Baumann® high (0.95%)
Temp. hot-rolled mild steel mild steel carbon steel 1095 carbon steel carbon steel
20 °C 29.8* 299 29.3 29.9 299 29.5 284
100 29.4 294 — 29.0 29.6 29.0 26.3
200 29.0 28.0 28.2 28.0 29.9 28.3 23.4
300 271 27.2 27.2 26.5 28.6 27.2 21.6
400 26.2 26.5 — 24.6 25.0 26.1 17.8
500 24.6 (20.1) 18.7 21.8 20.1 (21.8)
@ See reference 1(b). ¢ See reference 1(f).
b See reference 1(c). * X108 1b./in.2,
TasLE IV. Comparison of modulus G values.
S.A.E. 1020 S.A.E. 1020 Everette Verse? Leac
Temp. hot-rolled cold-rolled 0.34%, C steel 0.34% C steel mild steel
70°F 11.3* 11.4 11.5 11.5 12.4
200 10.9 11.0 “11.5 114 12.1
400 10.5 10.4 11.4 11.3 11.8
600 99 10.0 11.0 10.8 11.3
800 9.3 9.5 9.7 9.6 10.5
1000 7.9 6.5 6.2%* 6.6%* 9.0**

< See reference 1(c).
* X108 Ib./in.2,

a See reference 1(d).
b See reference 1{f).

tested. The resulting curves are irregular but
show many similar trends. There is a definite in-
crease of Poisson’s ratio at the higher tempera-
tures in all cases: This means that as the tem-
perature rises the percentage decrease of the
modulus in shear is greater than that of the
modulus in tension and compression. There is no
appreciable change in Poisson’s ratio between
ambient temperature and 200°F, for the S.A.E.
5140, S.A.E. 3340, and S.A.E. 1095 steels. The
two S.A.E. 1020 specimens show a slight increase
in Poisson’s ratio over the same range. From 200°
to 400°F there is a large increase for all steels;
and, with the exception of the S.A.E. 1020 hot-
rolled steel, Poisson’s ratio continues to increase
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F16. 10. The variation of Poisson’s ratio » with temperature.
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** Extrapolated from curves.

up to 600°F. From 600° to 800°F, the S.A.E.
3340, S.A.E. 1020 cold-rolled, and S.A.E. 1095
steels show a decrease in Poisson’s ratio; the
same steels show an increase from 800° to 1000°F .
In the case of the two S.A.E. 1020 specimens and
the S.A.E. 1095, Poisson’s ratio reaches a maxi-
mum value at 1000°F; for the S.A.E. 3340 and
S.A.E. 5140 steels, the maximum values are at
600° and 800°F, respectively.

From the strength of materials it can be shown
that 0.5 is the maximum value of Poisson’s ratio
for isotropic materials. The dotted portion of the
S.A.E. 5140 steel curve has been so designated
since it lies above the limiting value of Poisson’s
ratio.

From 800°F on, the curves approach the
limiting value which seems logical since in the
plastic state Poisson’s ratio is 0.5.

For the purpose of comparison, values taken
from some of the works quoted in an earlier part
of this paper’ have been collected and are
presented in Tables III and IV. With the ex-
ception of the results shown in the last columns

¢ See reference 1.
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of Tables 111 and 1V, reasonably good agreement
between the values given by the various experi-
menters is evidenced.

The encouragement given by Dr. A. Nadai of
the Westinghouse Research Laboratories and by

the Horace A. Rackham School for Graduate
Studies, University of Michigan, is duly acknowl-
edged. The authors also appreciate the help
received at the Westinghouse Research Labo-
ratories in the preparation of this paper.
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In this paper a numerical method is presented for the determination of the characteristic
numbers and modes of vibrating {conservative) systems. The method for continuous bodies is
based on a finite difference approximation and is a “relaxation method” in the same sense as
the term is used by R. V. Southwell. No claim is made of theoretical advancement in the
subject; the paper purports to present a thoroughly practical method of obtaining numerical
answers speedily. Detailed computations are carried out for the transverse vibrations of a
quadrangular elastic membrane. The nature of the method is such that it can be easily extended
to other vibrating systems of finite or infinite number of degrees of freedom. It is to be em-
phasized that the quadrangular shape is just a simple example; the real strength of the method
lies in the fact that numerical results can be obtained for bodies with more complicated and

irregular boundaries.

INTRODUCTION

HE two most successful procedures for

obtaining numerical results in the study of
vibrating bodies are the variational methods and
the perturbation methods. These widely used
“analytical’’ computational procedures are very
powerful indeed so long as the bodies are simple
in their shape, but fail in the case of complicated
shapes because of the prohibitive amount of
numerical work involved. To meet these circum-
stances the method of finite differences was
developed by several authors.!™* The practical
value of these attractive ‘‘non-analytical”’ com-
putational procedures was strongly limited by
the amount of numerical work involved in the
solution of the difference equations. Recently

1R. von Mises and H. P. Geiringer, Zeits. f. angew.
Math. u. Mech. 9, 58-77, 152-164 (1929). )

2 F. Bleich and E. Melan, Die Gewshnlichen und Par{tellen
Differensengleichungen der Baustatik (Julius Springer,
Berlin and Wien, 1927).

3G. E. Kimball and G. H. Shortley, Phys. Rev. 45,
815-820 (1934).

4R, H. Bolt, Phys. Rev. 57, 1057A (1940).
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this situation was remedied by the entirely new
outlook of R. V. Southwell,® whose relaxation
technique transforms the method of finite dif-
ferences into a very powerful and thoroughly
practical numerical procedure. Among other
problems, Southwell has successfully attacked
the equations of vibrating bodies with finite
number of degrees of freedom, and also of one-
dimensional continuous bodies.

Southwell’s method could be easily extended
to two-dimensional bodies also, but we prefer to
present an entirely different technique which
seems superior to that of Southwell’s, both for
systems of finite or of infinite number of degrees
of freedom. It should not be at all surprising that
such alternatives exist within the frame of the
relaxation method, and a comparison is made
between the two procedures when treating forced
vibrations (see Section 8).

5 R. V. Southwell, Relaxation Methods in Engineering
Science (The Clarendon Press, Oxford, 1940).

JOURNAL OF APPLIED PHYSICS



