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The instability of two liquid layers with a free surface set in motion by an oscillatory lower boundary
is analyzed for two superposed fluids with different viscosities and different densities. There are two
modes of wave motion: the interfacial and the free-surface modes. When the Froude number is less
than about 3, the interfacial mode governs the instability of the flow. For this case the free-surface
mode is always stable. The two surfaces of discontinuity are always in the phase for the free-surface
mode of disturbance, but may be in phase or 180 deg out of phase for the interfacial mode. The two
modes, however, are found to compete with each other for governing the instability of the flow when
the Froude number is larger than 3. The two surfaces of discontinuity can be out of phase by an angle

different from 180 deg.

1. INTRODUCTION

Interest in the study of stability of unsteady flow
is rather recent. Benjamin and Ursell' considered
the stability of the free surface of an invisicid liquid
contained in a vessel accelerated vertically in a
simple harmonic motion. The stability chart was
found to be the Mathieu function. Shen® and Conrad
and Criminale®* investigated the stability of time-
dependent laminar flows. The former found that the
deceleration strongly destabilizes the flow. The latter
determined the lower bound for the critical Reynolds
number for several cases of parallel flows and flow
with curved streamlines. The stability of an interface
between two inviscid fluids of different densities in
parallel, time-dependent motion was studied by
Kelly.’ The equation governing the stability is also
shown to be the Mathieu type. Yih® investigated
the stability of the free surface of a horizontal layer
of viseous liquid layer on an oscillating plane and
found that the flow can be unstable for long waves.

In this investigation, we analyze the stability of
the oscillatory motion of two superposed fluids with
different viscosities and different densities and with
a free surface on top. The purpose is to see how an
interface, which is a second surface of discontinuity
in density and viscosity, will affect the stability of a

single layer studied by Yih. It is found that the
oscillation of the lower boundary may stabilize or
destabilize the flow, depending on the amplitude and
the frequency of the oscillation as well as the viscos-
ity and density ratios of the fluids. Detailed numeri-
cal calculations for all the cases studied show that the
interfacial mode dominates the instability of the
flow at least when the Froude number is less than 3.
This is because the density difference between the
liquid is less than the density difference between the
upper liquid and air, and, therefore, the interface
is easier to displace than the free surface.

II. PRIMARY FLOW

Consider two superposed fluids of depths d;, and
d,, densities p, and p,, and the viscosities u, and u.,
for the upper and the lower layer of fluid, respec-
tively. The top surface is free while the bottom
boundary is subject to a horizontal foreing oscilla-
tion described by the velocity V, cos w,t, V, being
the amplitude, ¢ the time, and w, the frequency of
oscillation. The Cartesian coordinates X and Y are
chosen as shown in Fig. 1, X is horizontal while ¥
is vertical upward measured from the mean position
of the interface.

All quantities are made dimensionless with respect
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408w, t

Fic. 1. Definition sketch.

to the velocity V,, the depth d,, the density p,, the
time d,/V,, and the pressure p,V3. In terms of the
dimensionless quantities, the equations governing
the basic flow will be

v, _ 10, |, oU,

m1 §°U,
- = 5 an
or R a3y or

R0
for the upper and the lower fluid, respectively, in
which U; and U, are the dimensionless velocities
of the upper and lower layer of fluids, y = Y/d,(z =
X/d, will be used later), r = tV,/d;, R is the Reyn-
olds number defined as p,V, d,/u;, and

B2 and 4 =22 @
M1 Py

m =

The U, and U, have to satisfy the boundary con-
ditions

0 . R
'a_y" U;(T, 1) = O’

Ul('ry 0) = UZ(T; O)}

@)
0 0
a_'y Ui(r,0) = m 5’?; Ux(r, 0),

Us(r, —n) = cosw,t = cos wr,

in Which w = w*(dl/Vo), n = dg/dl.
Equations (1) and (3) can be solved for

U, = Re ({4, cosh [B(1 + ©)y]
+ B, sinh [8(1 4 9)y]} exp (iw7)),

U, = Re ({00 cosh [ﬁ(%)m(l + i)y:l

1/2
+ Dy sinh [ﬁ(%) a+ z)y]} exp (z‘m)) , @
in which the symbol Re denotes the real part in the

brackets, and
OJR 1/2
B = (7) !
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Ay = X(my)"* cosh [B(1 + )],
D, = —Xsinh [8(1 + 2)],
Cy = 4,, B, = (m7)1/2 D,,

where

X= {(m'y 2 cosh [ﬁ(—;;)lm(l + z')n] cosh [8(1 + 4)]

+ sinh [ﬁ(%)l/z(l + i)n] sinh [8(1 + z')]}_l.

Since the primary flow is parallel and in the X
direction, the mean pressures P, and P, are hydro-
static.

III. THE DIFFERENTIAL SYSTEM GOVERNING
STABILITY

The meaning of hydrodynamie stability of a gen-
eral unsteady flow is ambiguous. However, for a
primary flow periodic in time the usual concept of
stability in the sense of Liapounov'*® is adequate.
An infinitesimal disturbance is applied to the pri-
mary flow. We will seek the development of the
disturbances in the long run, and call the flow stable
if the perturbation quantities remain small for all
time, unstable if they do not.

For an unsteady flow, Squire’s theorem cannot be
generalized in a useful way to justify the considera-
tion of two-dimensional disturbance only. However,
it is still true, as pointed out by Yih® that the sta-
bility of a three-dimensional disturbance can be
determined from that of a two-dimensional one for a
flow which differs from the original flow not only in
the Reynolds number, as in the case of steady pri-
mary flows, but also in the distribution of the veloc-
ity of the primary flow. We shall treat only two-
dimensional disturbances in this investigation. We
shall use u; and »; to denote, respectively, the veloc-
ity components in the directions of increasing x and
y, and p; to denote the pressure. The subscript 2
is taken to be 1 for the upper fluid and 2 for the
lower fluid. This eonvention is adopted here;

pi =P, + pi

in which the small letters with a prime refer to the
perturbation quantities. The equation of continuity
for the perturbation flow is.

du} A

ax Tay =¥

u;, = U, + ui,

. I4
vy = U3,

This permits the use of a stream function ¥, in
terms of which

u: = (¢i)u7 D: = _(¢i)x;
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the subseripts, = and ¥, denoting partial differentia-
tion. Since the coefficients of the equations of motion
governing the perturbation flow depend both on y
and 7, they do not permit the use of the exponential
time factor to indicate the time dependence ex-
clusively. However, as far as the variable z is con-
cerned the equations and the boundary conditions
(to be presented later) admit a solution of the form

¥, = ‘Pi(y) T) €xp (’I:Ol.’l),
p: = f.‘(y; T) exp (iax)i

in which « is the dimensionless wavenumber. The
equation governing stability of the parallel flow is
the well known Orr-Sommerfeld equation. Upon
writing ¢ for ¢,(y, ) and x for ¢.(y, 7), the Orr—
Sommerfeld equation for the unsteady primary flow
can be written as

trer

o1 — 2+
= R[(% + z'aUl)(@” — d’¢) — ia(Ul)wtp] , ()

for the upper fluid, and

X”” . 20(2)(” _+_ a4x

= 2R (2 + i) — a0 - ia@x ], )
m ar
for the lower fluid, respectively, in which the primes
on ¢ and on x indicate differentiations with respect
to y.

The boundary conditions are

XI(_n) T) =0, (7)

which express the conditions of adherence of the
fluid to the lower rigid boundary. The prime in Eq.
(7) indicates partial differentiation with respect to
y. If n, and %, denote the deviations (measured in
the unit of d;) of the free surface and the interface
from their mean positions, the linearized kinematic
conditions at the free surface and interface are

X(_n) T) = 0:

(;96—7 + Ul(ly 7') (;%)’11 =] = _(\l’l)zy

and

(56; + U,0, 7) %)772 =0 = — (Yo,

respectively. These two equations give us the rela-
tion between », and ¢, as well as 5, and ¢,. If we let
m = hi(r) exp (fax) and 1n; = h(7) exp (iax),

the above two equations then become

1123

(di + U1, r))h1 —tap(l, 7)
r

and

(% + 4al,0, f))hz —iox(0, 7). (8)
The condition of zero shear stress at the free
surface is

h, %ﬁ Ul(l, T) + ‘P”(I) T) + az‘P(]-; T) = 0; (9)

in which the first term takes care of the mean-shear
increment as y varies from 1 to 1 4+ #5,. The free
surface can be considered as an interface with the
upper fluid of zero density and zero viscosity. The
formulations of the free normal stress at the free
surface and the continuity of normal stress at the
interface are similar. They demand that the dif-
ference of the quantity
!
pg din — p’'p Vs + 2'2[" g—;

(10)

evaluated for the upper fluid from its value for the
lower fluid be equal to
T o
A

in which T is the surface tension. 7', and T, will
be used to denote the surface tension at the free
surface and at the interface, respectively. In Eq.
(10), the first term takes care of the contribution
of hydrostatic pressure to the actual pressure at the
interface. The last two terms in (10) are evaluated
at the mean positions of the interface and the free
surface. The p’ can be evaluated from the z com-
ponent of the Navier-Stokes’ equation governing
the perturbation flow. The condition that the normal
stress should vanish at the free surface then yields

—ia(F7? + 8:0°)h,

1 ! .
+ 5 @ =) = % il =0, (1)

to be evaluated at y = 1, in which F, = V,/(g d,)**
is the Froude number, and S, = T,/p d,V:. The
continuity of v’ at the interface demands

¢, ) = x(0, 7). 12)

The continuity of the z-component velocity at the
interface demands that

w@ﬂ+mm%m&ﬂ

=x@a+mm%M@ﬁ.<m
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The continuity of shear stress at the interface is
expressed by

2

0”0, 7) + (0, 7) -- hz("') ay° U,0, 7)

= ( 0, ry + ax(() )+ h (T) 2 Uz(O T))
(14)

Finally, the continuity of normal stress at the
interface demands

. 0 I¢]
"*th<— U’ + i; ¢ + ? 3y U1>
— (""" — a%)
. 0 a
-H‘yaR(— Ux' + ig;x' x5y U2>
+ mx'" — o’x')
+2d%0" — 2a°mx’ = waR(F;? + a2S2)h2,

in which all variables are evaluated at y =

(15)
0, and

o ~ "lgd = (y — DF’
P T2 —
S = P1 d,Vg

Equations (5) and (6) together with the boundary
conditions govern the stability of the flow.

IV. SOLUTION OF THE STABILITY PROBLEM

An extended Floquet theorem is adopted to solve
the Orr-Sommerfeld equation with time-periodic
coefficients. We shall assume the roots of that equa-
tion to be simple. Hence, the solutions ¢ and x in
Eqs. (5) and (6) have the form

ey, r) = exp (ur)®(y, ), (16)
x(, 7) = exp (un)X(y, 7).
Correspondingly,
h(r) = exp uH, (), -

ho(7) = exp (ur)Hy(7),

in which ®(y, ), X(y, r), H,(v), and H,(r) are
periodic in 7.

The method of regular perturbation of Yih for
long wave, wavenumber o << 1, will be adopted
to solve the eigenvalue problem. The functions
<I>(y, ), X(y, 7), H,(r), Hy(7), and u can be expanded
in power series of a:

CHIN-HSIU LI

‘I’(y, T) = Zoai‘pi(yy T)y

Xy, 7) = Zax<y 7,
H@p:i&mm, (18)
Hy(r) = Zw:aihm-(‘r),

i=0
M= Z a'f;

i=0
in whieh ¢’s, x’s, and A’s are all periodic functions in
7. The superseript ¢ on « denotes the power. Upon
substituting these expansions into (5), (6), and (8),
as well as all boundary conditions, and collecting
the powers of « and letting the coefficients be zero,
we obtain a series of equations for each order of
approximation. First of all, we have from (8), cor-
responding to the order of o’, the kinematic con-
ditions

dhm

+ bohio = 0 (19)

and

dh20 + Oohso = 0;

(20)
for the free surface and for the interface, respectively.
Since hy, and hy, are periodic time functions, the
only way to satisfy (19) and (20) is 6, = 0. Con-
sequently, ki, and ks, are two constants. Without
loss of generality, take

hqg = 1 and hzo = 0Oy, (21)

where ¢, is a constant of integration to be deter-
mined, and represents the ratio between £, and b,
or the amplitude ratio between the interface wave
and the free surface wave.

The differential system of the zeroth-order ap-
proximation 1s

I
oy = R et
T

(22)
rrrr l_a_ ’e
xo''' =R e
XO(_n) T) = 07 X{S(_n, T) = 07

62
o UL D et 0 =0,

J
o', 7y — R 5;%(1, 7 =0,
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‘PO(Oy T) = XO(O; T)x
0
240, 7) + o 3y U, 7)
= X0, 7) + o 5% U0, 7, (23)
62
0’0, 7) + o, P U,, 7)
9
= m(X(l),(O; T) + (] 6_y§ UZ(O; T)) ’
R 40,1 — o0, 7
ar @o\Y, ©o s
a ’ rrr
— R 6_7‘_)(0(0; ) + mx¢’’(0, 7) = 0.

Equations (22) and (23) can be solved for
¢o = Re ({B, 4 C, cosh [8(1 + 9)y]
+ D, sinh [B(1 + 9)y]} exp (iw7)),

xo = Re ({B + C cosh [ﬁ(%ﬁ)m(l + i)y]

+ D [5(%) " + i)y]} exp (iar) ) @5,

in which B,, B,, C,, C;, D,, and D, are given in
the Appendix.
The next approximation, (8) gives

(24)

d
;l; hu(T) + 6

= —iloo(1, 1) + U,(1, 7] (26)
- —g [B, exp (iwr) + B¥ exp (—iwr)],
and
(% hoy (1) + 0.0,
= ~LUB, + €, + 0,C) exp (o)
+BE 4 CF+ 0O exp (—iwn)],  @D)

respectively, in which the asterisk in the superseript
indicates the complex conjugate. This convention
will be adopted from here on. The right-hand sides
of (26) and (27) consist of the periodic time functions
only; furthermore, k;; and h,, are also periodie, so
that

01 = 0.
Then, h,; and hqy; are found to be

(28)

1125
hn = —i [Bl exp (i"”') — Bf exp (_iw'r)]’ (29)

hay _51‘; (B, + C, + 0,C,) exp (twr)

— (Bf + C¥ + 0.C3) exp (—iwr)] + 0, (30)

in which the constant of integration for Ay, is taken
to be zero, since we want to keep the constant part
of h, = 1. The constant of integration for Ay, is oy,
which can be determined from the third-order ap-
proximation to the kinematic boundary conditions
at the surfaces of discontinuity. This point will be
illustrated later.

The differential system of the first order ap-
proximation is

3 .
ol — R — o) = iR[Uelf — (U)o,

ar B1)

ad , ,
X" = LR-=xi" = iR L Ui’ — (Uawxol, (32)
with
xi(—n, r) =0, xi(—n, 7) =0,

Ui'@, Dhy(r) + ¢1’(A, 1) =0,
1 d . .
E‘P{” - 5;‘?; — Uy — zFx2 =0aty=1,
‘Pl(O: 7') = Xx(Oy T);

10, 1) + has(n) % U0, 7)

= %0, ) + ha() = T,0, ) (39)
Y
r? iz._
(21 (0, T) + hzn(‘r) 8y2 UI(O? 7')
= m(x{'((), 1) + hoy(7) 5‘7-/5 U,(0, 7')) )

1244

d a
el — R;% — mxi"" + ’YRB_TX(
+ 'LR{ —Ups + (Ul)v<P0

+ Y[Uxh — (Us)xo]l + 01F5°} =0 at y = 0.

The particular solutions of (31) and (32) are found
to be

o1 = z‘RB— [ (o [viay - v
[ to0 = 3B, exp o)

+ Bf exp (—iwr)]} dy) dy dy — Kx] (34)
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and

. 1 _
ar = Z%R[i i (xéf Usdy — Uj
[ txo = 31B: exp (iwr)

+ Bf exp (—iw7)]} dy) dy dy — Kz] , (35)

respectively, in which K, and K, have to satisfy,
respectively, the equations

L\(K7") = 3UY'[B, exp (iwr) 4+ B¥ exp (—iwr)]
and
L,(K3') = 3U'[B; exp (iwr) + B¥ exp (—iw7)],
where the operators L, and L, are defined as
9’ 9
Ly = oy’ Ba

Solving K, and K, from the above two equations, and
evaluating ¢;, and x,, from (34) and (35), respec-
tively, we obtain

eip = R(, + I, + I; + I + IF + I¥),

and

xir = BQ + Q. + @ + QF + QF + @),

in which I,, I,, I, @,, Q:, and @ are given in the
Appendix. The complementary solutions of (31)
and (32) are in the forms

o =E, + Fiy + G1y2 + nya + M,V, 4+ N,W,
+ M¥VE + N3WE + A(n) + E(n)y, (37)

X1 = E; + Fuy + Gzyz + J2y3 + M.V, + N,W,
+ MEVE + NIW¥ + A7) + Eu(r)y, (38)

in which the 12 coefficients are constants of integra-
tion, and the expressions for V,, W,, A(s), E:i(7),
Vi, Wi, Ae(7), and Eq(r) are given in the Appendix.
Combining the particular and complementary solu-
tions, one obtains the general solutions of ¢, and
X1 as

(36)

2
L2=23-—-1Ri-
m  or

o1 =oipt+ e and xi = xip + Xio (39, 40)

respectively.
The second-order approximation of kinematic
boundary conditions is

dhis

7o = — 6 — iU, Dhu(n) + o1, 7)] (41)

and
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dhay

dr = —0'102 _ 'L[Uz(o, T)hm('r) + XI(O: T)]7

(42)
for the free surface and the interface, respectively.
Since h;, and h,, are purely periodic time functions,
the time-independent part in the right-hand side
of both Eqgs. (41) and (42) should vanish. This re-
veals that as far as the search for the eigenvalue up
to the second-order approximation is concerned,
only the time-independent forms in

@1, x1, Ur(l, 1)hu(r), and Us(0, 7)ha(7)

need to be considered in predicting the stability
for long waves. If we want to go a step farther, to
determine the sign and magnitude of 8,, we should
consider both the time-dependent and time-inde-
pendent terms in ¢y, x;, + - - , ete., in order to deter-
mine the 12 constants of integration in (37) and
(38). This will not be carried out in this investiga-
tion. If ®(y) and X(y) denote, respectively, the
time-independent parts of ¢,(y, 7) and x,(y, 7), we
have

®y) =R, + I, + I¥ + I})

+E + Fy+ Gy’ + 1.,
X(y) =R@Q, + Q. + QFf + Q¥

+ B, + Foy + G + Joy°,

in which E,, F,, Gy, J1, E,, F,, G, and J, are given
in the Appendix.

The aforementioned argument that the time-
independent parts on the right-hand side of Egs.
(41) and (42) should vanish individually leads to

(43)

1/2
9, + z(ﬁ”l)— (B¥\ — B,%¥)
4w

+ R[I,(1) + I,(1) + I*(1) + I#(1)]

+E1+F’1+G,+J1)=O 44)
and
wi0s + i( L [CuBE + ) — CEB, + )

+ RI0,0) + Q:0) + Q1O + QO] + ) = o.
9)

The last two equations can be solved simultaneously
for o, and 6,. Since (45) is a quadratic equation,
two roots, corresponding to two modes of disturbance
can be found for both o, and 6,. The flow is stable
if 8 < 0, unstable if 8 > 0. We know that each term
in the bracket of Eqgs. (44) and (45) contains two
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parts: one with a factor o, and the other without.
We shall not write them out explicitly, since the
calculation, while straightforward, is lengthy. In

1 n
b = R[(‘g ~ 3m

+ Il(l) + LQA) + I¥Q) + 1) — 4 —
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order to make the computer programming possible
while numerical calculations are done, Eqs. (44)
and (45) will be rewritten as follows:

2
®® 4+ 3n + 3) — g——m B+ 2n)ly — l)ol)FI’

QA4+nB—-C—-2D, —E-F

[n(2 + )G — 2@ + 3n + 3D, — nin + 2)0] + “’"") (B,X* — B;*X)]

= R + o.dy), (46)
0.6, = R(Z)L—m [—3 — 2n + 2n(l — Y)e,]F7° + % MG — n*(3 + 2n)D, — n’C — m(4 + nB)]
1632 [#(C:CE — CFCo) + 2iC¥(B, + Cy — By) — 2iCy(BY + CF — Ba*)])
= R(n. + o1m), (47)

in which ¢, and 5, denote the terms in brackets on the
right-hand side of (46) and (47), respectively, which
do not contain a factor o, while ¢, and %, denote the
terms which contain a factor ;. We shall not write
them out explicitly. As soon as &, £, 7., and 7, are
evaluated, we can quickly solve for o,

m — & £ [(n, — &)° + 459"
28,

This gives us two roots for o,. As soon as we have
o1, we obtain from (46)

8, = R®2(‘Y7 n, m, R; FI))

(48)

g, =

(49)
in which
®2 = Ea + C’lfb- (50)

Obviously, corresponding to two roots of o, we also
have two roots for ©, from (50).

To ascertain the possibility of going to a higher
approximation in order to determine ¢, in (30) and
6, for a larger «, consider the third-order approxima-
tion in the kinematie conditions (8), namely,
dh
—2 + Ozhiy + 65 + 2U, (1 T)h12(7') + tpx(l,7) =0

(51)
and

dhza + 03k + 030, + 7«U2(0 T)h22(7) + 7'X2(0 7') =0

(52)

o, appears only in the term 6:h,,. When we integrate
Egs. (41) and (42), we take zero as a constant of
integration for A, and a constant, say ¢;, for hs..

But we know o; makes no contribution to the time-
independent part in (52). Again, the time-independ-
ent parts in (51) and in (52) should vanish individu-
ally. These lead to two simultaneous equations in
which ¢; and 6; are the only two unknowns which
can be found. Since o, and 6; do not appear in
products in the simultaneous equations just men-
tioned, we only have one root for both ¢, and 6,
corresponding to each set of values of 8, and ¢;. This
not only indicates that we can determine ¢, and
8 to a higher order approximation, but also confirms
that there are only two modes in disturbances that
can be found.

V. GENERAL CONSIDERATION OF THE
RESULTS

Equations (48)-(50) give us the first nonvanishing
value of the #’s which will be used to determine the
stability or the instability of the flow. Although
these three equations appear short, in reality they
are very involved. We are unable to see the feature
of the stability of the flow merely through the alge-
braic results. The numerical calculations have been
carried out by means of an IBM 360 computer.
The results are illustrated graphically and discussed
in this section and in the section immediately fol-
lowing.

The plus and minus signs in front of the radieal
in (48) indicate that there are two possible modes
of disturbance. We call it the “first’”” mode of dis-
turbance if the “plus’ sign is taken in the calculation
and the “second’”’ mode if the ‘“minus” sign is taken.
The stability of the flow is dominated by the in-
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terfacial waves if the absolute value of o, is larger
than 1 and by the free surface waves if o, is less
than 1.

When the Froude number F, is less than about 3,
the first mode is always the interfacial mode while
the second mode is the free-surface mode. The
latter is stable. However, the former can be stable
or unstable. Therefore, we conclude that it is the
interfacial mode which governs the instability of
the flow when F, < 3. This is to be expected since
the energy required to distort the interface is less
than that required to distort the free surface. The
interfacial mode reduces to a neutral mode when vy
and m become unity. But the long-wave mode
considered here is different from that usually con-
sidered in hydrodynamic stability problems cited
in Lin’s’ book. In the latter, whether in the stability
of parallel flow or nearly parallel flow, the long-wave
modes are damped, at least for small Reynolds
numbers. Following Yih’s'® arguments, we will clas-
sify the waves we are now considering as the “‘soft”
waves to distinguish them from the Tollmien—
Schlichting waves which were considered to be
“hard.” Therefore, the unstable modes discussed
in this investigation are not near the damped modes
considered in the usual theory, but near the soft
modes ignored by the usual theory. Whenm = 1 = ¥,
the interfacial mode is physically insignificant since
the flow reduces to the single fluid case. The stability
or instability of the flow is governed by the free-
surface mode alone.

The first and second modes correspond to the
free-surface and interfacial modes, respectively, or
vice versa, when the Froude number is larger than
3. Either the interfacial or the free-surface mode can
be unstable depending on the values of the param-
eters m, n, 8, and F,. This would then indicate that
for F, > 3, there will be a competition between the
interfacial and free-surface modes in governing the
instability of the flow. This is physically plausible
because we know from Yih’s® results that the free-
surface mode for the case of a single fluid becomes
unstable when the Froude number is large.

The results also show that the two surfaces of
discontinuity oscillate in phase with each other for
the free-surface mode, but may be in phase or 180
deg out of phase for the interfacial mode. Further-
more, both 0, and o, can be complex for some values
of v, m, n, and 8 when F; > 3. For instance, when
vy=1,n=18 = 0.2 and F;* = 0.1. For such a
case, we know from Eq. (18), that the two surface
oscillations are out of phase by an angle different
from 180 deg.

CHIN-HSIU LI

We are interested in investigating the instability
due to the oscillatory motion of the lower boundary.
The calculations on the variations of growth rate
of disturbance with 8 for various values of ¥ have
been carried out for the special value of m where the
flow with homogeneous density approximately has
a maximum growth rate of disturbance. The results
also show that the free-surface mode is stable while
the interface mode is unstable. The growth rate of
disturbance increases with increasing values of v
when B is less than 2.5. The flow with the upper
fluid heavier than the lower one, which is hydrosta-
tically unstable, can become stable when 8 is small.
The results just mentioned agree with Kao''''* in
his study of the two-layer density stratified flow
down an inclined plane. In Kao’s problem, however,
the source of energy for the unstable disturbance is
the longitudinal component of gravity while in the
present problem the energy is supplied by the oscil-
latory motion of the lower boundary.

VI. DISCUSSION OF GRAPHS

The general considerations discussed above are
borne out by detailed calculations of the stability
problem. Since there are too many parameters in-
cluded in this investigation, it is very inconvenient
to present all the numerical results in graphs. Only
those of the typical cases are selected and described
in this section.

First of all, we will describe the results of the
0, for the flows with v and n fixed to be unity.
Results for the cases of F;? = 10 and 1 are chosen
to demonstrate the feature of the stability or in-
stability for the flow with #; < 3. The variation of
©, as a function of m for the first and second modes
for these two values of F;® are plotted in Figs.
2(a) and (b) and 3(a) and (b). The curves in Figs.
2(a) and 3(a) show the values of 8, for the first mode,
which is known to be the interfacial mode. Owing to
the similarity in these two sets of curves and other
results obtained which for brevity are not presented
here, we conclude that as long as the Froude number
is less than 3, its variation has a negligible influence
on the damping or growth rate of the interfacial
mode of disturbance. Figures 2(a) and 3(a) also
show that the flow is predominantly stable for
m < 1. If it is unstable, the growth rate of dis-
turbance is shown to be small. But for m > 1, the
flow is unstable and the growth rate of disturbance
increases with increasing 8. The maximum growth
rate occurs when 8 is equal to about 0.8. Curves in
Figs. 2(b) and 3(b) give the values of @, for the
second mode which is known to be the free-surface
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mode. These two sets of curves and other results
obtained which are not presented here all show that
the free-surface is stable for any value of m and 3 as
long as F; < 3. The damping rate of disturbance is
decreased by increasing the value of m. However, it
varies only slightly with 8 and is almost constant
with respect to 8 when F, is of the order of (10)™'/%
After carefully studying the dependence of ®, on
F, from the results shown in Figs. 2(b) and 3(b) as
well as those which are not plotted, we find that for
the free-surface mode of disturbance the damping
rate of disturbance increases almost linearly with in-
creasing values of F;? as long as F, < 3. This is not
only true for the case of n = 1, but also for n other
than 1, as we will show later. For m = 1, the flow
reduces to a single fluid system and Yih’s® result is
reproduced.

The result for the case of F;, = 10 is chosen to
demonstrate the nature of the stability or instability
for the flow with ¥, > 3. The variations of 0, as
a function of m and g for the first and second modes
for this particular value of F;? are given in Figs.
4(a) and 4(b), respectively. Figure 4(a) shows that
when the Froude number becomes as large as 10,
the first mode of disturbance is unstable no matter
what the values of 8 and m are. The dashed lines in
Fig. 4(a) indicate the maximum growth rate of
disturbance for various values of 8 when m varies
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from 0.1 to 10. The value of maximum growth rate
is decreased by increasing 8. The larger the 8 the
greater the m at which the growth rate has a maxi-
mum. Figure 4(b) shows that for the second mode
of disturbance the flow can be either stable or un-
stable, depending on the values of m and 8. When
8 increases gradually, the flow changes from stable
to unstable if m is in the range of 1-5 and from un-
stable if m < 1. A flow with a high Froude number,
such as 10, has the maximum growth rate for the
disturbance when the viscosity of the lower fluid is
around twice that of the upper fluid. As we have
mentioned, the first and the second modes correspond
to the interfacial and the free-surface modes, re-
spectively, or vice versa, when F, > 3. Since the
first mode is always unstable, we see from this part
alone that when F, > 3 the interfacial and the
free-surface modes compete in governing the insta-
bility of the flow.

So far we have only discussed the results for the
cases of n and y being unity. In order to understand
the role played by » in the instability consideration
of the flow, results with n as a variable parameter
(v remaining unity) will be shown. Since we stress
the instability of the flow, 8 is fixed at 0.8 because
for F;, < 3 the flow with » = 1 has a maximum
amplification rate at approximately that point. The
results for the cases of F;* = 10 and 1 will be illus-
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Frg. 2. (a) Variation of the growth rate of disturbance ®, as a function of the viscosity ratio m for various values of
B [= (wR/2)!%] for the first mode with Froude number ;-2 = 10, depth ratio n = 1, and density ratio y = 1. (b) Variation
of the damping rate of disturbance — ©. as a function of the viscosity ratio m for various values of 8 for the second mode.

Fi"? = 10, n = 4y = 1. (Curves for all 8 eoincide.)
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Fic. 3. (a) Variation of the growth rate ®, with the viscosity ratio m for various values of 8 for the interfacial mode.
Fy, = n = v = 1. (b) Variation of the damping rate —®, with the viscosity ratio m for various values of 8 for the free-surface

mode. Fi =n =9 = 1.

trated. In Figs. 5(a) and 6(a) the values of ®, for
the interfacial mode are plotted against m with n as
a parameter for the cases F;* = 10 and 1. Again
the curves in these two figures are similar; this
confirms the aforesaid statement that the Froude

(a)

number makes a negligible influence on the stability
or instability of the interfacial mode (for F, < 3)
for any values of m, 8, and n. These two figures also
show that for any value of n the flow is unstable
for m > 1 up to at least m = 10, and the growth rate

Q2 04 06 08 | 2

(b)

Fia. 4. (a) Variation of the growth rate ©; with the viscosity ratio m for various values of 8 for the first mode for the case
of Froude number F; = 10, depth ratio n = 1, and density ratio v = 1. (b) Variation of the growth rate @, with the viscosity
ratio m for various values of g for the second mode. F, = 10,n = v =1,



INSTABILITY OF STRATIFIED FLOWS 1131
20 T T 1T T LI B I 140 AL L LA T VT TTTTT
15 — 120 +— —
10— \9«9 — 100 —
5 - 204 — 80 _l
0y \ 2
o L —2.0 " b
é“' o] 001 . ®| 60 |- ) —
°
-5 | — a0 F —
o
$
-10 | 0‘.’ - 20 | —
[——0.
-5 1 ]llllll | 1 ll[uln 0_°9|I1|.|.I 1 — Lo L1
0.2 04 0608 I 2 4 6 810 02 04 Os O.B.I 2 4 6 B I0
m m
(2) (b)

Fia. 5. (a) Variation of the growth rate ©; as a function of the viscosity ratio m for various values of the depth ratio n for

the interfacial mode. #,-2 = 10, 8

= 0.8, vy = 1. (b) Variation of the damping rate — ©; as a function of the viscosity ratio

m for various values of the depth ratio n for the freesurface mode. ;=2 = 10,8 = 0.8, y = 1.

increases with increasing n. For m < 1 the flow is
predominantly stable. It is, however, unstable when
n > 2. These results indicate that increasing the
depth ratio might cause the interfacial mode to
become more unstable. Figures 5(b) (F7> = 10) and
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6(b) (F, = 1) show variations of ®, for the free-
surface mode. The free-surface mode is always stable
for any value of n and m as long as F; < 3. This
result, together with the result mentioned in the
discussion of the case of ¥ = n = 1, shows that the
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Fia. 6. (a) Variation of the growth rate ©; as a function of the viscosity ratio m for various values of the depth ratio n for

the interfacial mode. F; = 1,

B = 0.8, v = 1. (b) Variation of the damping rate — ©, as a function of the viscosity ratio m for

various values of the depth ratio n for the free-surface mode. F; = 1,8 = 0.8, v = 1.
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F16. 7. (a) Dependence of the growth rate of disturbance ©; upon g [= (wR/2)1/?] for various values of the density ratio v for
the interfacial mode. F; = 2, m = 4, n = 1. (b) Dependence of the damping rate of disturbance — @, upon 8 [= (wR/2)!"7] for
various values of the density ratio v for the free-surface mode. F; = 2, m = 4,n = 1.

free-surface mode for flow with F;, < 3 is always
stable no matter what the values of m, 8, and =«.
Figures 5(b) and 6(b) also show that the larger the
values of n and the smaller the values of m, the larger
the damping rate. The similarity of the curves in
these two figures also confirms the previous state-
ment that the damping rate of disturbance, for any
value of m, 8, and n, is increased almost linearly by
increasing the value of F[?, as long as F, < 3, for
the free-surface mode. ,

So far we have considered only the results for
equal densities. In order to see the role played by v
in the instability consideration of the flow, the
dependence of @, upon 8 and various values of y
for the interfacial and the free-surface modes, for
the case F; = 2, m = 4, and n = 1, is shown in
Figs. 7(a) and (b). We have chosen m = 4 because
the flow with uniform density has a high growth rate
of disturbance in the interfacial mode. Figure 7(a)
shows that if the interfacial mode is an unstable
mode for v = 1, it is also an unstable mode for ¥
other than 1. The larger the value of v, the greater
the growth rate of disturbance when § is equal to
about 0.8. The feature that the flow with the heavier
fluid on top can be stable can be seen from Fig. 7(a).
On the other hand, Fig. 7(b) shows that if the free-
surface mode is stable for the case of v = 1, it will
be stable for y other than 1. At first sight it is surpris-

ing that the flow with the heavier fluid on top is
shown to be stable for any value of 8 for the free-
surface mode. However, it is reasonable, since it is
only the interfacial mode which may be unstable.
The damping rate of disturbance is apparently
increased by increasing v and the flow has a maxi-
mum damping rate when § is almost 0.8. The feature
just mentioned is not only true for F, = 2, but also
for F, other than 2 (as long as F, < 3).

VII. CONCLUSIONS

As a result of this investigation, the following
conclusions can be drawn for the unsteady flow of
two liquid layers due to an oscillating plate:

(1) The interfacial mode and the free-surface
mode are found to govern the stability or instability
of the flow.

(2) When the Froude number F, is less than about
3, the interfacial mode governs the instability of the
flow. The free-surface mode is always stable in this
case. The two modes are, however, found to compete
with each other in governing the instability of the
flow when the Froude number is larger than about 3.

(3) For the Froude number less than about 3,
the interfacial mode is unstable if the upper fluid is
more viscous than the lower one and is either stable
or unstable if the upper fluid is less viseous than the
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lower one. The growth or damping rate is almost
constant with respect to the Froude number. The
free-surface mode is always stable as mentioned be-
fore. The damping rate increases with increasing the
depth ratio n or the density ratio y or with decreasing
the viscosity ratio m. The damping rate increases
almost linearly with inverse square of the Froude
number, F;?, but the effect of 8[=(wR/2)"*] on it is
negligible.

(4) For the Froude number F, less than about 3,
the two surfaces of discontinuity are always in
phase for the free-surface mode of disturbance, but
may be in phase or 180 deg out of phase for the
interfacial mode. For F, > 3 (about), the two sur-
faces can be out of phase by an angle different
from 180 deg.

(5) Without considering the diffusion between the
two fluids, the flow with the heavier fluid on top can
become stable when g is small.
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APPENDIX. EXPRESSION OF THE DETERMINED

FUNCTIONS
Bl = Bl,, + (TIBI;,, Bz = BZa + Uleb;
Cl = Cla + 0'1011), Cz = Cza + 0'1021;;
D)= D, + e,Dy,, D,= D+ 0Dy,
where
1/2
C,. = —mX® cosh [BG?{) a1+ i)n:l )

1/2
C5, = XV, cosh [ﬁ(l> (1 + i)n] ,

D2a -

D,, = AV, sinh
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1/2
Dy = (75) [(1 = m) Do + Du],
B,. = mxz, sz = _ley
Cio = vCs, Civ = 7Ca + Aoly — 1),

Bi. = By + (1 — 7)Cu,
By = By + (1 — 1)C + 401 — 1),
where
Vi = Do(m — 1) sinh [B(1 + )]
+ Aol — v) cosh [B(1 + 9)].

Note that the constant factors B,, B,, C,, Cs, D,, and
D, are divided into two parts, one contains a factor
o, and the other does not. This is done for conven-
ience in performing the numerical calculations.

I, = 335 [(C, 4% + DiB3) cosh 28y

+ (C,A¥ — D,B¥) cos 28y
+ (D, A% + C\B¥) sinh 28y
+ (D, A — C.Bf) sin 28y],
I, = ~8~f§§ B¥{ 4, cosh {8(1 + 2)y]
+ B, sinh [8(1 + 9)yl},
I, = —-8%2 B.{ A, cosh [ + 2)y]
4+ By sinh [8(1 + 9)yl} exp (2iwr),
7

Q1=§273§

1/2
[(Czozf + D,D¥) cosh 26(%) y
1/2
— (D.D¥ — C,C) cos 26(%) y
1/2
+ it + G0 sinh 26()
1/2
— (C,D¥ — D,C¥) sin 25(“’%) y] ,
Q = l—B*{C h[ ("—)m 144
2—862 21 Lo COS 6m (+1)y
1/2 T
+ D, sinh [ﬁ(i’—) 1+ 3y }
m .
Qs = —-i—B{C h[ (l>”21 ' ]
3 = 8[32 210 COS Bm ( +1)y
1/2 '
+ D,sinh [5(%) (1 + 4)y }exp (iwr),

V. = sinh [B(1 + 9)y] exp, (2iwr),
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W, = cosh [B(1 + 2)y] exp (2iw7), —n’C + 2n°H — m(& + nB))],
A (1) = a; exp Qiwr) + of exp (—2iwT), F, = iR 2nG — 3n@ + n)D
E(r) = B, exp (2iwr) + B* exp (—26wr), mn
172 — 2nC + 3n’H — mB),
V, = sinh [3(%) a+ i)y] exp (2iwr), P
G, =3”7(G—3D—C*),
1/2
W, = cosh [5("—) (a+ i)y:\ exp (2iwr), .
m J2 = ZI_B (D - ﬁ)y
Ay(7) = a; exp (2iwr) 4+ aF exp (—2iwT), m N
Ez(T) = B, exp (2iwr) + B¥ exp (—2iwr), E, = &, — 1RE, Fi = F, —iRF,
G, = —iRBD + ), J, =4iRD,
E, =— [n G — n*(3 + 2n)D in which
A = Q,(—n) + Qu(—n) + Q¥ (—n) + @} (—n),
B = Qi(—n) + Qi(—n) + @H)'(—n) + @QF)Y (—n),
C = L{IQ) + Iy + IH”Q) + D] + 3(my)*(BFX + B, M),
D = D, + iFy,
E = Re (gﬁ—z (C,A¥ + 2B¥A, — C,C¥ — 23;00)) ,

1/2 1/2
F = Re ( {(1 + z)[ D,A* + 2B#B, — D20>5<7—> - 2B;<DO("’—) ]
m m,

+ @1 -9 [CIB:)“ - @D:C}—)W] +2(1 — B, + C, + UICO)[B: - (%)UzD‘s]}) ,

D
Il

_%<7 — I)Fl_za'ly

where

7 = Re (i (tDB} — B%A,) — i (¢D,D§ — B%C,) — i('y — DABF + C* + 010"6)) ,

D, = 81 — 1)[A,C¥(sinh 28 — i sin 28) + A,D¥(cosh 28 + cos 28)
+ B,C#(cosh 28 — cos 28) + B,D¥(sinh 28 4 4 sin 28)]
58(1 + 9)[A¥C,(sinh 28 + 7 sin 28) 4+ A¥D,(cosh 28 + cos 28) + BFC,(cosh 28 — cos 28)

+ B#D;(sinh 28 — i sin 28)] —

in which X* is the complex conjugate of X. The
primes on the I’s and @’s and their complex con-
jugates denote the differentiation with respect to y.
The argument in the parentheses following I’s, @’s,
(I*)’s, and (@*)’s and their derivatives indicates the
position where they are evaluated.
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