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Precise determination of the critical percolation threshold for the three-
dimensional “Swiss cheese” model using a growth algorithm
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Precise values for the critical threshold for the three-dimensional “Swiss cheese” continuum
percolation model have been calculated using extensive Monte Carlo simulations. These simulations
used a growth algorithm and memory blocking scheme similar to what we used previously in
three-dimensional lattice percolation. The simulations yield a value for the critical number density
n.=0.652 960 0.000 005, which confirms recent work but extends the precision by two significant
figures. © 2001 American Institute of Physic§DOI: 10.1063/1.1338506

I. INTRODUCTION literature for two-dimensional systems. The critical threshold
as been reported ag.=0.676+0.003% ¢.=0.6764
+0.0009° ¢.=0.676+0.00057> ¢.=0.6764+0.0010 and
.=1.1283+0.0011%° and ¢.=0.67637 0.00005> Asi-
ainen and Ala-Nissif? reported the two-dimensional
threshold asy,=0.36+0.01, wheren,=NR?/L?, which is
different by a factor ofm from the definition given above.
Balberd’ reported the threshold as the actual number of

Continuum percolation is an interesting model because i
shares many of the mathematical properties with lattice per
colation, yet is a more accurate model of many disordere
materials(i.e., porous media, composite materials, polymers
and colloid$. Different types of continuum percolation have
been tfie4topic of recent literature including the distribution
of rods, *the distribution of squaresand the distribution of disks N with a certain radiuR that are required in order to

disks or sphere%:?® . ) ) .
In this paper, we study the continuum model that Con_form a percolating cluster in a system with siz& L. With

. _ 2 . .
sists of a system of spatially uncorrelated, equal-sizeé1 density of spheres=N/L* set equal to 1, the minimum

spheres, whose centers are distributed by a Poisson proce%gance between the centers of these sphere2R=n.

within the three-dimensionalx L x L system. If the spheres IS yet another way of reporting the critical threshold; Nguyen

are thought to be removed from the system, it can be see?'lnld Cafntehséi:‘our;]d Ithatr_co= 57%931;:928 %%0%8/ eg ?rgm]se
why this has been given the nickname, the “Swiss cheeseV&U€ 0! the thresho fpe=0. ' &(Ref. 20

model was found using the gradient percolation method. This
' method, however, is not applicable to 3D percolafibm

The spheres form clusters when they contact, or overlap mmary of some other determinations of the 2D transition
neighboring spheres. These clusters then form the poro gimmary ot some other dete ations ot the ansitio

path or conducting trail through the system. The density oPO'nli IS ggen in Qumtanllflatit al: . | f the critical
spheres which causes a cluster to span the system is of par- bor d ;@ summary o Teb||3reIV|Ious”va ues otine fg ca
ticular interest and is called the critical density. In the litera- " MBET ensity is given in Table |. In all cases except Saven

34 e .
ture, there are three common ways of expressing the criticzfl't ai;] t?e valurr;}_ fﬁr the C”tlc?l (;htre?:old W%S rzport_?;d n
density: the volume fractiom. [sometimes referred to as the anofther form, which we converted to the numboer density

. e 8
percolation thresholg, (Ref. 217, the reduced number den- 'he €arliest values of the critical threshdftr€® were re-

sity 7. [which has also been referred to as the percolatior‘f)ortec.j as Fhe concentration paramet[;erv_\/hlch in three di-
thresholdp,, (Ref. 24], and the number density,. These mensions is related to the number densitytbyn./8. Other

0,31 .. .
three quantities are related to one another in the foIIowinqi]uéggrfumt::fgfrtsgi;tg? i(:rrlgcsil)htgrrss\?vzli?:hlr(]:otrer(rar:p?og:jsfrlg
fashion (f - hree-di ional : ¢ ’ .
ashion(for two- and three-dimensional systems W,.=41n /3. The critical threshold was reported in terms of
¢c=1—e€ ", the scaled density, by Haan and Zwanzit;, where in three
—(ml4)n, [2D] dimensionsp.=47.. The other values were reported as ei-
e LI e ' ther the volume fractiorp.. (Refs. 16, 21, 2Por the reduced

ne=(ml6)n, [3D], (1)  number densityy, .2+

B b o In the remainder of this paper, we present our growth
n.=N(2R)?/L* [2D], algorithm for the 3D Swiss cheese model, and compare the
n.=N(2R)3/L? [3D], value of the critical threshold that we found using our algo-

) ) ) rithm to the previous works.
whereR is the radius of the sphere amdis the number of

spheres placed in the system. Some other definitions of th
critical density have also been used.

For example, the following is a summary of some of the  We utilized a Monte Carlo simulation which is similar to
different ways the transition point has been reported in thehe one that we had used in studies of three-dimensional

¥ METHOD
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TABLE I. Values ofn; for the three-dimensional “Swiss cheese” model. gphere in the cluster were stored in three one-dimensional list
arrays, which were indexed by the order that the spheres

Author(s) Year n Error .
¢ were determined to be part of the cluster. After each of the

Robeﬂrats and Storéy 1968 0.711 0-0é9 spheres in the center cube were checked for overlapping
zgl';‘ombet al® gg 8'22 0.0 neighbors, then spheres on the list arrays were checked, in
Pike and Seagér 1974 064 0.02 the; order thatl they were placed on the I|s.t, for overlapping
Goyda and Ottai 1974 0.62 0.02 neighbors. This process was continued until a cluster stopped
Kurkijérvic 1974 0.66 0.02 growing, or reached the upper cutoff siz@efined as the
Fremlir? 1976 0.64 0.02 number of overlapping sphepesf 2° (32769, at which
Haan and Z‘Nainzb 1977 0.67 0.05 point the growth was stopped. The coordinate arrays were
Chiew and Stell 1989 0.644 h £l h 32768
Savenet al! 1991 0.646 0.007 thus of lengt : _ _
B. Lorenzet alk 1993 0.673 0.016 If we made complete arrays for the two pointers in a
Rintoul and Torquato 1997 0.6528 0.0011 1024 system, we would have needed many gigabytes of
Present work 2000 0.652 960 0.000005  memory. Therefore, for these arrays, we used a data-
aReference 26. 9Reference 3L, blocking schem® to grow such large clusters in our system.
PReference 27. "Reference 32. In our simulation, this scheme was used to divide the large
‘Reference 28. Reference 33. system (102%1024x1024) into 2! (2097 152 smaller
*Reference 29. [Reference 34. blocks whose dimensions werex®x 8. Memor

" . y was not
°Reference 30. Reference 16. . d ific block of . il th |
'Reference 24. IReference 21. assigned to a specific block of pointers until the cluster grew

into it. We also used bit mapping to reduce the memory load
required for the large lattices. The upper seven bits of each
lattice percolatioi®3” The simulation employed a growth coordinate were used to determine where in the memory
algorithm to generate clusters of the spheres, whose ridius&ach block was mapped. The lower three bits of each coor-
is equal to 0.5. The system, which was of size 102024  dinate told us the word, or “address” in the block, which
X 1024, was divided into cubes of unit volume. A PoissonMaps to that location. We then used this “address” as an

function was used to determine how many sphere centergdex for the_z pointer arrays where the inde?< of the first and
were in each of the cubes, where the probabMifythat there last sphere in each cube was stored. By using a large system

aren particles in a given volum¥ is given by and the previously stated cutoff, the cluster never saw the
L system boundary, so there were no boundary effects in our
- Its.
P.=—(pV) e pV. 2 resu . .
" n! (pV) @ The simulation accumulated the number of clusters that

4 9grew to a size within a range of {2""1-1) forn=0,1,...

— 1 for the unit cubes in our system. The algorithms in Ref and recorded this number in tiith bin. If a cluster reached
' ‘the upper cutoff, then it was counted in the last bim (

38 were used to generate numbers with this distribution.

We started our growth algorithm in the center unit cube 15). . . .
of our system. In order to determine the number of spheres The random numbers used_ N these simulations were
inside of this cube, a random numbemwas generated ac- generated by the four-tap shift-register rug=xn_s7;
cording to Eq.(2). If n>0, thenn spheres were randomly & Xn-1586%Xn— 6086 Xn - 9680, where & is the exclusive-or
placed within the cube. We stored the, y-, and oper.atloerEY\z\éhmh we have used in numerous previous
z-coordinates of each sphere into three one-dimensional Cé_tud|esa. '
ordinate arrays, which were indexed by the order that the
spheres were distributgde., the first sphere placed is num- Il RESULTS
bered 0, the second is numbered L, We also stored the The probabilityP(s,n) that a cluster will grow to a size
index of the first and last sphere distributed in the cube irgreater than or equa| ®at a certain number densi[w& N is
two one-dimensional pointer arrays. Then each of the neighexpected to behave as
boring 26 cubes were checked for spheres. Whenever a pre- -, ”
viously unvisited cube was accessed, a new random number P(s,m)~As""f((n—nc)s”) ©
nwas generated by EQ) and then spheres were randomly in the scaling limit ass—« and n—n; such that
placed within the cube. We used the index of the first and-n.)s”=constant’! In Eq. (3), rand ¢ are universal expo-
last spheres placed in the cube to find from the coordinate lisients which have the values 2.18Refs. 35,42,4B and
the spatial coordinates of the spheres whose centers are i0:453 (Ref. 42 in 3D. The scaling functiorf(x) in Eq. (3)
side the current cube. Then, we calculated the distance bean be expanded in a Taylor series wimeis close ton,,
tween the first sphere placed in the cube and each of the F((N=N0)S7)~1+C(N—ng)s’+--- @
spheres in its cube and also each sphere in the neighboring ¢ ¢ :
26 cubes. We performed the same distance calculations for Combining Eqs(3) and (4), it follows thats™ 2P(s,n)
the 2nd, 3rd,... sphere placed in a cube, until we reached ttaeviates from a constant for largeandn close ton, . Figure
last sphere in the cube. If the distance between any twd shows the plot ofs™ ?P(s,n) vs s” for the 3D Swiss
spheres was less than or equal tR, 2hen the two were cheese model. This plot shows a steep increase for snall
considered to be in the same cluster. The coordinates of eaethich is the finite-size effect, followed by a linear portion,

Here p is the density of sphere centers in the cube &



J. Chem. Phys., Vol. 114, No. 8, 22 February 2001 Percolation threshold for the “Swiss cheese” model 3661

advance how the finite size effects for the continuum model
would compare to those that we have seen for the lattice
) model. From Fig. 1, one can see that a cluster must be larger
than about 1®spheres in size in order to overcome the finite
size effects for the continuum model, which is about the
same as for lattice models in 3:%" Consequently, we ex-

i I pect that the growth method should be applicable for other
1144 1 ﬁﬂ ! H % Fpog models of continuum percolation. Likewise, we expect it to

%% ! Por o be good for higher dimensions also.
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