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Precise determination of the critical percolation threshold for the three-
dimensional ‘‘Swiss cheese’’ model using a growth algorithm

Christian D. Lorenz and Robert M. Ziff
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136

~Received 28 July 2000; accepted 14 November 2000!

Precise values for the critical threshold for the three-dimensional ‘‘Swiss cheese’’ continuum
percolation model have been calculated using extensive Monte Carlo simulations. These simulations
used a growth algorithm and memory blocking scheme similar to what we used previously in
three-dimensional lattice percolation. The simulations yield a value for the critical number density
nc50.652 96060.000 005, which confirms recent work but extends the precision by two significant
figures. © 2001 American Institute of Physics.@DOI: 10.1063/1.1338506#
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I. INTRODUCTION

Continuum percolation is an interesting model becaus
shares many of the mathematical properties with lattice p
colation, yet is a more accurate model of many disorde
materials~i.e., porous media, composite materials, polyme
and colloids!. Different types of continuum percolation hav
been the topic of recent literature including the distributi
of rods,1–4 the distribution of squares,5 and the distribution of
disks or spheres.6–23

In this paper, we study the continuum model that co
sists of a system of spatially uncorrelated, equal-si
spheres, whose centers are distributed by a Poisson pro
within the three-dimensionalL3L3L system. If the sphere
are thought to be removed from the system, it can be s
why this has been given the nickname, the ‘‘Swiss chee
model.

The spheres form clusters when they contact, or over
neighboring spheres. These clusters then form the po
path or conducting trail through the system. The density
spheres which causes a cluster to span the system is of
ticular interest and is called the critical density. In the lite
ture, there are three common ways of expressing the cri
density: the volume fractionfc @sometimes referred to as th
percolation thresholdpc ~Ref. 21!#, the reduced number den
sity hc @which has also been referred to as the percola
thresholdpc ~Ref. 24!#, and the number densitync . These
three quantities are related to one another in the follow
fashion~for two- and three-dimensional systems!:

fc512e2hc,

hc5~p/4!nc @2D#,

hc5~p/6!nc @3D#, ~1!

nc5N~2R!2/L2 @2D#,

nc5N~2R!3/L2 @3D#,

whereR is the radius of the sphere andN is the number of
spheres placed in the system. Some other definitions of
critical density have also been used.

For example, the following is a summary of some of t
different ways the transition point has been reported in
3650021-9606/2001/114(8)/3659/3/$18.00
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literature for two-dimensional systems. The critical thresh
has been reported asfc50.67660.003,22 fc50.6764
60.0009,16 fc50.67660.0005,23 fc50.676460.0010 and
hc51.128360.0011,19 and fc50.6763760.00005.13 Asi-
kainen and Ala-Nissila15 reported the two-dimensiona
threshold ashc50.3660.01, wherehc5NR2/L2, which is
different by a factor ofp from the definition given above
Balberg17 reported the threshold as the actual number
disksN with a certain radiusR that are required in order to
form a percolating cluster in a system with sizeL3L. With
a density of spheresn5N/L2 set equal to 1, the minimum
distance between the centers of these spheresr c52R5Anc

is yet another way of reporting the critical threshold; Nguy
and Canessa18 found thatr c51.99160.001. A very precise
value of the threshold@fc50.676 33960.000 006~Ref. 20!#
was found using the gradient percolation method. T
method, however, is not applicable to 3D percolation.25 A
summary of some other determinations of the 2D transit
point is given in Quintanillaet al.20

For 3D, a summary of the previous values of the critic
number density is given in Table I. In all cases except Sa
et al.,34 the value for the critical threshold was reported
another form, which we converted to the number densitync .
The earliest values of the critical thresholds26–28 were re-
ported as the concentration parametertc , which in three di-
mensions is related to the number density bytc5nc/8. Other
authors30,31 reported the critical threshold in terms of th
mean number of pointsWc in a sphere, which corresponds
Wc54pnc/3. The critical threshold was reported in terms
the scaled densityrc by Haan and Zwanzig,32 where in three
dimensionsrc54hc . The other values were reported as e
ther the volume fractionfc ~Refs. 16, 21, 29! or the reduced
number densityhc .24,33

In the remainder of this paper, we present our grow
algorithm for the 3D Swiss cheese model, and compare
value of the critical threshold that we found using our alg
rithm to the previous works.

II. METHOD

We utilized a Monte Carlo simulation which is similar t
the one that we had used in studies of three-dimensio
9 © 2001 American Institute of Physics
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lattice percolation.35–37 The simulation employed a growt
algorithm to generate clusters of the spheres, whose radiR
is equal to 0.5. The system, which was of size 102431024
31024, was divided into cubes of unit volume. A Poiss
function was used to determine how many sphere cen
were in each of the cubes, where the probabilityPn that there
aren particles in a given volumeV is given by

Pn5
1

n!
~rV!ne2rV. ~2!

Here r is the density of sphere centers in the cube andV
51 for the unit cubes in our system. The algorithms in R
38 were used to generate numbers with this distribution.

We started our growth algorithm in the center unit cu
of our system. In order to determine the number of sphe
inside of this cube, a random numbern was generated ac
cording to Eq.~2!. If n.0, thenn spheres were randoml
placed within the cube. We stored thex-, y-, and
z-coordinates of each sphere into three one-dimensiona
ordinate arrays, which were indexed by the order that
spheres were distributed~i.e., the first sphere placed is num
bered 0, the second is numbered 1,...!. We also stored the
index of the first and last sphere distributed in the cube
two one-dimensional pointer arrays. Then each of the ne
boring 26 cubes were checked for spheres. Whenever a
viously unvisited cube was accessed, a new random num
n was generated by Eq.~2! and then spheres were randoml
placed within the cube. We used the index of the first a
last spheres placed in the cube to find from the coordinate
the spatial coordinates of the spheres whose centers ar
side the current cube. Then, we calculated the distance
tween the first sphere placed in the cube and each of
spheres in its cube and also each sphere in the neighbo
26 cubes. We performed the same distance calculations
the 2nd, 3rd,... sphere placed in a cube, until we reached
last sphere in the cube. If the distance between any
spheres was less than or equal to 2R, then the two were
considered to be in the same cluster. The coordinates of

TABLE I. Values ofnc for the three-dimensional ‘‘Swiss cheese’’ mode

Author~s! Year nc Error

Roberts and Storeya 1968 0.711 0.019
Dombb 1972 0.65 0.05h

Holcombet al.c 1972 0.56
Pike and Seagerd 1974 0.64 0.02b

Goyda and Ottavie 1974 0.62 0.02
Kurkijärvic 1974 0.66 0.02
Fremling 1976 0.64 0.02
Haan and Zwanzigh 1977 0.67 0.05
Chiew and Stelli 1989 0.644
Savenet al.j 1991 0.646 0.007
B. Lorenzet al.k 1993 0.673 0.016
Rintoul and Torquatol 1997 0.6528 0.0011
Present work 2000 0.652 960 0.000 005

aReference 26.
bReference 27.
cReference 28.
dReference 29.
eReference 30.
fReference 24.

gReference 31.
hReference 32.
iReference 33.
jReference 34.
kReference 16.
lReference 21.
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sphere in the cluster were stored in three one-dimensiona
arrays, which were indexed by the order that the sphe
were determined to be part of the cluster. After each of
spheres in the center cube were checked for overlapp
neighbors, then spheres on the list arrays were checke
the order that they were placed on the list, for overlapp
neighbors. This process was continued until a cluster stop
growing, or reached the upper cutoff size~defined as the
number of overlapping spheres! of 215 ~32 768!, at which
point the growth was stopped. The coordinate arrays w
thus of length 32 768.

If we made complete arrays for the two pointers in
10243 system, we would have needed many gigabytes
memory. Therefore, for these arrays, we used a d
blocking scheme39 to grow such large clusters in our system
In our simulation, this scheme was used to divide the la
system (10243102431024) into 221 ~2 097 152! smaller
blocks whose dimensions were 83838. Memory was not
assigned to a specific block of pointers until the cluster gr
into it. We also used bit mapping to reduce the memory lo
required for the large lattices. The upper seven bits of e
coordinate were used to determine where in the mem
each block was mapped. The lower three bits of each co
dinate told us the word, or ‘‘address’’ in the block, whic
maps to that location. We then used this ‘‘address’’ as
index for the pointer arrays where the index of the first a
last sphere in each cube was stored. By using a large sy
and the previously stated cutoff, the cluster never saw
system boundary, so there were no boundary effects in
results.

The simulation accumulated the number of clusters t
grew to a size within a range of (2n,2n1121) for n50,1,...
and recorded this number in thenth bin. If a cluster reached
the upper cutoff, then it was counted in the last binn
515).

The random numbers used in these simulations w
generated by the four-tap shift-register rulexn5xn2471

% xn21586% xn26988% xn29689, where % is the exclusive-or
operation, which we have used in numerous previo
studies.35–37,40

III. RESULTS

The probabilityP(s,n) that a cluster will grow to a size
greater than or equal tos at a certain number densitynÞnc is
expected to behave as

P~s,n!;As22t f ~~n2nc!s
s! ~3!

in the scaling limit ass→` and n→nc such that (n
2nc)s

s5constant.41 In Eq. ~3!, t ands are universal expo-
nents which have the values 2.189~Refs. 35,42,43! and
0.453 ~Ref. 42! in 3D. The scaling functionf (x) in Eq. ~3!
can be expanded in a Taylor series whenn is close tonc ,

f ~~n2nc!s
s!;11C~n2nc!s

s1¯ . ~4!

Combining Eqs.~3! and ~4!, it follows that st22P(s,n)
deviates from a constant for larges andn close tonc . Figure
1 shows the plot ofst22P(s,n) vs ss for the 3D Swiss
cheese model. This plot shows a steep increase for smas,
which is the finite-size effect, followed by a linear portio
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which as predicted by Eq.~4! becomes more horizontal asn
gets closer tonc . By interpolating from this plot, we deter
mine the critical threshold to be

nc50.652 96060.000 005, ~5!

which corresponds to

hc50.341 88960.000 003,
~6!

fc50.289 57360.000 002.

Approximately 93106 clusters were generated for ea
value ofn in order to achieve the statistical error represen
in Fig. 1. This required a total of a few months of workst
tion computer time.

IV. DISCUSSION OF RESULTS

Using a growth model to find the clusters in this 3
Swiss cheese model, we were able to find the critical thre
old within an error of less than one part in 105, thus extend-
ing the known precision of this number by more than tw
significant figures. Our result confirms the recent valuefc

50.289560.0005 found by Rintoul and Torquato,11 and in
fact shows that their central value is correct to less than
the last digit, well within the error bars that they give. T
high precision that we were able to obtain shows that
method used here, which is based upon the technique we
developed for lattice percolation, is also efficient for co
tinuum percolation. The precise value of the critical thre
old that we find will allow other problems on the 3D Swi
cheese model to be studied to equal precision.

One limitation of the growth method is finite-size e
fects, which must be overcome in order to accurately in
polate the value of the critical threshold. It was not clear

FIG. 1. Plot ofst22P(s,n) vs ss. Each curve represents a different value
n: 0.652 970, 0.652 960, and 0.652 950~from top to bottom!. The value ofn
that yields the best horizontal fit is the critical threshold.
d
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advance how the finite size effects for the continuum mo
would compare to those that we have seen for the lat
model. From Fig. 1, one can see that a cluster must be la
than about 103 spheres in size in order to overcome the fin
size effects for the continuum model, which is about t
same as for lattice models in 3D.35–37 Consequently, we ex-
pect that the growth method should be applicable for ot
models of continuum percolation. Likewise, we expect it
be good for higher dimensions also.
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