
REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 7 JULY 1999
Use of Langmuir probes in non-Maxwellian space plasmas
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Disturbance of the Maxwellian plasma may occur in the vicinity of a spacecraft due to
photoemission, interactions between the spacecraft and thermospheric gases, or electron emissions
from other devices on the spacecraft. Significant non-Maxwellian plasma distributions may also
occur in nature as a mixture of ionospheric and magnetospheric plasmas or secondaries produced by
photoionization in the thermosphere or auroral precipitation. The general formulas for current
collection~volt–ampere curves! by planar, cylindrical, and spherical Langmuir probes in isotropic
and anisotropic non-Maxwellian plasmas are examined. Examples are given of how one may
identify and remove the non-Maxwellian components in the Langmuir probe current to permit the
ionospheric parameters to be determined. Theoretical volt–ampere curves presented for typical
examples of non-Maxwellian distributions include: two-temperature plasmas and a thermal plasma
with an energetic electron beam. If the nonionospheric electrons are Maxwellian at a temperature
distinct from that of the ionosphere electrons, the volt–ampere curves can be fitted directly to obtain
the temperatures and densities of both electron components without resorting to techniques that
attempt to derive the plasma distribution from the current by taking derivatives. For an arbitrary
isotropic distribution, the current for retarded particles is shown to be identical for the three
geometries. For anisotropic distributions, the three probe geometries are not equally suited for
measuring the ionospheric electron temperature and density or for determining the distribution
function in the presence of non-Maxwellian background electrons. ©1999 American Institute of
Physics.@S0034-6748~99!02807-5#
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I. INTRODUCTION

Langmuir probes have been used for many years
rockets and satellites to measure ionospheric electron
perature,Te , and ion and electron number densities,Ni and
Ne , see references in Boyd and Twiddy1 and Brace.2 The
Langmuir probe technique involves exposing a metallic c
lector to the plasma surrounding the vehicle, usually
mounting it on a boom that is longer than a Debye length
the lowest density expected to be encountered. The b
places the probe in contact with ionospheric plasma at a
tance where the measurements are undisturbed by the
ence of the vehicle. The probe current,I ~the sum of the ion
and electron currents,I i and I e is measured as the collecto
voltage, V), is repeatedly swept through a suitable ran
with respect to the plasma potential. Analysis of the result
I –V curves usually yields the ionospheric parametersTe and
Ne . Various sources of measurement error which affect
analysis were discussed by Brace,2 but that work did not
cover the effects of nonionospheric or non-Maxwellian el
tron populations.

The measurements are very simple and direct when
electron energy distribution is essentially Maxwellian as
true nearly everywhere in the ionosphere. In this case,
electron energy can be characterized by a single scalar v
Te . However, if additional electron populations are pres
in significant magnitude, the determination ofTe is more
complicated and may not be possible if the density of
3010034-6748/99/70(7)/3015/10/$15.00
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additional component is sufficiently high. Sources of su
additional populations may include:~1! photoelectrons pro-
duced in the daytime ionosphere in the process of form
the ionosphere,~2! degraded secondary electrons produc
by precipitating auroral electrons and ions,~3! photoelec-
trons ejected from sunlit spacecraft surfaces,~4! secondaries
produced by the impact at spacecraft velocities of therm
spheric molecules,~5! secondaries emitted when the spac
craft potential is high enough to accelerate ionospheric i
or electrons to energies that exceed the ionization poten
of spacecraft metallic surfaces, and~6! electron beams or
plumes emitted from devices onboard the satellite. The g
physical sources~1 and 2!, although present much of th
time, usually have a negligible influence on theI –V curves,
except perhaps in regions of very low ionospheric dens
The nongeophysical components~3–6! can have high
enough densities to significantly distort theI –V curves and
affect the determination ofTe by distorting the electron re
tarding regions of theI –V curves. They may also affect th
measurements of total ionospheric density,Ne and Ni . In
these cases, the ionospheric parameters~of the low energy
electrons! can only be obtained by identifying the nonion
spheric contributions to theI –V curves and subtracting them
out, or by fitting theI –V curve with theoretical expression
which include the nonionospheric components. Examples
the effects of non-Maxwellian situations are: impact ioniz
tion on the Pioneer Venus Orbiter discussed by Whip
5 © 1999 American Institute of Physics
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et al.;3 an example of two-temperature distributions observ
in the Venus ionotail described by Braceet al.;4 and multi-
component superthermal electrons by Knudsen and Mille5

This work presents the formulas for and examples
Langmuir probe current collection in such non-Maxwelli
plasmas, and shows when the electron energy distribu
can be derived from measurements of the first and sec
derivatives in the retarding region of theI –V curves. Spe-
cific examples are also presented to illustrate the metho
deriving ionospheric parameters from fitting theI –V curves.
The results show that different probe geometries are affe
differently by the presence of non-Maxwellian componen

The equations are derived for probe-plasma conditi
such that the sheath surrounding the probe may be con
ered large compared with the probe radius; this is the
called orbital motion limited condition. This condition sim
plifies the equations and is valid for many past and fut
ionosphere measurements with Langmuir probes. Under
ditions of sufficiently high plasma density at a given pro
radius, the ratio of Debye length to probe radius will be t
small to meet the orbital motion limited condition and t
more general form of the probe equations should be u
The equations derived in the following sections can be mo
fied to this more general case; however, this will not
pursued in this article.

II. THE CONVENTIONAL LANGMUIR PROBE
TECHNIQUE FOR MAXWELLIAN ELECTRONS

A Langmuir probe may have any geometry, but cylind
cal, spherical, and planar probes are usually employed
cause of their symmetry. The basis forTe measurements is
the conventional Langmuir probe theory of Mott-Smith a
Langmuir,6 assuming a Maxwellian energy distributio
F(E), given by

F~E!}AE expS 2E

kTe
D , ~1!

wherek is the Boltzmann constant. Thus, in a Maxwellia
plasma, when the probe to plasma potential,V, is driven
negative,I e decreases exponentially

I e5I 0 expS eV

kTe
D , ~2!

where I 0 is the random electron current given b
ANee(kTe/2pme)

1/2, wheree is the electron charge,me is
electron mass, andA is the probe area. This equation fo
what is known as the electron retarding region in a Maxw
ian plasma is the same for all probe geometries. It is sho
below that this result has a generalization that the expres
for the retarded current is identical for the three probe geo
etries for isotropic non-Maxwellian distributions. The de
vation of Te is usually done by fitting the electron retardin
region with an exponential function, and sometimesTe is
obtained electronically by measuring the ratio of the first a
second derivatives ofI e rather than through analysis of th
I –V curves themselves.7,8
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Next consider the ion and electron saturation regions
the I –V curves. The form of the acceleration region curre
depends on the geometry of the collector and is appro
mated by

I accelerated}S 11
eV

kTD p

, ~3!

where p50, 1/2, or 1 for planar, cylindrical, or spherica
geometries, respectively. For satellite applications, Eq.~3! is
modified to include the effects of the large spacecraft d
velocity relative to the essentially stationary ionosphe
plasma.9 The general ion and electron acceleration curr
expressions are used to generate theI –V curves that are
shown in the examples rather than the Eq.~3! approximation.

Examples of theI –V curves for the three geometries
purely Maxwellian plasmas are given in Figs. 1~a!–1~c!
which showI –V curves for four different temperatures. Th
calculation assumedNe5105 cm23, a collector area of 6.73
cm2 and a spacecraft velocity of 8 km/s. Note that the curv
are downranged by a factor of 10 where necessary to a
the large electron acceleration currents to be shown on
same plot as the rest of curve. These figures illustrate
effect of Te on the width of the electron retardation region

For a Maxwellian plasma, all three probe geometries
suitable for the measurement ofTe . However, the electron
saturation regions differ greatly with collector geometr
Note that the electron saturation region of the cylindric
probe is nearly independent ofTe , whereas this region is
highly temperature dependent for the planar and spher
probes. This illustrates a practical advantage of the cylin
cal probe; i.e., that a fixed probe potential can be applied
make continuous measurements ofNe without pausing to
measureTe , assuming a known and stable value for the p
tential of the spacecraft. The cylindrical and spherical pro
have the advantage of producing large saturation currents
the same density, an advantage for measurements in reg
of very low density.

III. MULTICOMPONENT PLASMAS AND OTHER NON-
MAXWELLIAN DISTRIBUTIONS

When nonionospheric~non-Maxwellian! electrons are
present in detectable quantities, the standard Langmuir e
tions may lead to significant errors in the measurements
Ne andTe . To handle these situations, we examine the c
rent equations for arbitrary electron energy distributions
the three probe geometries. These equations are inte
over the velocity distribution functions~VDF! for multicom-
ponent populations of ions and electrons. The discussion
gins with formulas for general anisotropic VDFs, then co
siders the general isotropic case, and finally, the anisotro
case for a Maxwell–Boltzmann distribution. The effects
these nonionospheric populations are illustrated by calcu
ing I –V curves for a two temperature distribution as an e
ample of the isotropic case, and an energetic electron b
with a superposed Maxwell–Boltzmann distribution as
example of the anisotropic case. The information that can
obtained about the electron distribution functions by us
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the first and second derivatives of theI –V curves is dis-
cussed, and later fits are made to the curves to illust
obtaining the ionosphere parameters.

IV. CURRENT EQUATIONS FOR ARBITRARY
VELOCITY DISTRIBUTIONS

The general form of the VDF for thesth specie~s is an
electron or an ion specie! divided into distinct populationsj
is a sum over thej populations:

FIG. 1. ~a! Planar probe curves computed for a Maxwellian plasma illustr
the effect ofTe on the width of the retarding region. Note that the electr
saturation region is flat because the calculation assumes an infinite p
i.e., a perfectly guarded planar probe. The amplitude of the electron sa
tion current varies greatly withTe . ~b! Same as~a! but for a cylindrical
probe. Note that the electron saturation currents are nearly independe
Te . ~c! Same as~a! but for a spherical probe.
te

Fs~u,v,w!5(
j

ns
j Fs

j ~u,v,w!, ~4!

wherens
j is the number density of populationj for species,

Fs
j is the individual VDF, andu,v,ware velocities in thex,y,z

directions. The sum of the number densities over thej popu-
lations is the total number density of species, (

j
ns

j 5ns , and

the VDFs are normalized to unity,

E
2`

` E
2`

` E
2`

`

du dv dw Fs
j ~u,v,w!51. ~5!

Two classes of distributions: isotropic and anisotropic
considered. For the isotropic VDF, the general form is

Fs
j ~u,v,w! isotropic5Gs

j ~u21v21w2!, ~6!

whereG is a function of the sum of velocities squared or
the energy. The most applicable form for a collision dom
nated plasma is the Maxwell distribution function:

GMaxwell~u21v21w2!

5S m

2pkTD 3/2

expS 2
m~u21v21w2!

kT D , ~7!

wherem andT are the mass and temperature of thej th com-
ponent of thesth specie~for simplicity, the subscripts and
superscripts are not explicitly written in all cases!.

The anisotropic distribution has a preferred direction
space and could result, for example, from a beam of e
trons induced by an acceleration process, or from rapid m
tion of the probe through the plasma, or from an anisotro
in the temperature of the electrons or ions~electrons parallel
and perpendicular to the magnetic field can have dist
temperatures!. Anisotropic Te was first measured by Clar
et al.10 and theoretically predicted by Schunk and Watkins11

We will employ a specific form of the anisotropic VD
which applies to many space plasma situations:

Fs
j ~u,v,w!anisotropic

5Fs
j @a~u2u0!,b~v2v0!, c~w2w0!# isotropic, ~8!

wherea, b, andc are constants that could represent tempe
ture anisotropy, andu0 ,v0 ,w0 represent a drift velocity of
the plasma relative to the probe. An applicable form of t
anisotropic VDF is the Maxwell–Boltzmann distributio
which is given by Eq.~7! with the sum of squares of th
velocities replaced by the sum of squares with respect to
drift velocity,

a2~u2u0!21b2~v2v0!21c2~w2w0!2.

Another useful form for the anisotropic VDF is as a spheri
harmonic expansion.

A. General current equations

The Langmuir probe current equations are given bel
for the three standard geometries; planar, cylindrical, a
spherical. To simplify the formulas we assume large sy
metrical sheaths and orbital-motion-limited collection for t
cylindrical and spherical probes, which is valid over mo
ionosphere conditions as long as the relevant probe dim

e

ne;
ra-

of



ha
h

th

g

to
-
he

to

,
u

at
a

re
th
t
h
r

.
s
um
in

d
o

a
ex
le
bu
.
o

for
ft
be
t is
ed

ve
ain
s.
c-
nar
ent
-
iso-

e
for
we
ur-
en-

. If
on

ed

r a

3018 Rev. Sci. Instrum., Vol. 70, No. 7, July 1999 W. R. Hoegy and L. H. Brace
sion is smaller than a few cm. It will become apparent t
each geometry has advantages and disadvantages whic
pend upon the type of non-Maxwellian distribution.

1. Planar probe general formulas

For a planar probe of areaA, the general formula for the
current is obtained from the current perpendicular to
probe, Ans

j qs
j uduF(u,v,w)dv dw, integrated over all ve-

locities parallel to the plane (v and w! and over velocities
directed into the plane~u! that are greater than the retardin
potential,

i plane5A(
s, j

ns
j qs

j E
0,A22qV/m

`

uduFs
j ~u!1D , ~9!

whereq is the charge,m the mass of thesth specie andj th
population. The lower limits on the integral correspond
accelerated (qV.0), retarded (qV,0) particles, respec
tively, u is the component of velocity perpendicular to t
planar probe. AndF1D is the one-dimensional or ‘‘1D’’ dis-
tribution, defined by the integral over velocities parallel
the probe surface,

F~u!1D[E
2`

` E
2`

`

dv dw F~u,v,w!, ~10!

and where the subscripts and superscripts are dropped
simplicity of notation. This result is general for any VDF
isotropic or anisotropic. In the ionosphere, the electron c
rent at zero probe potential is about a factor of 170 gre
than the ion current because of the large ion/electron m
ratio, hence theI –V characteristic is dominated much mo
by the electron current than the ion current. Therefore,
total current in the retarding region can be used to attemp
determine the electron velocity distribution. We adopt t
convention that the electron current is positive. Thus the fi
derivative of the planar electron current is given by

diplane

deV
5

Ae

me
(

j
njF j SA22eV

me
D

1D

, ~11!

whereeV,0. The derivative is proportional to the 1D VDF
This result does not imply that the individual populationj
can be obtained from the first derivative which gives the s
of the populations. However, if the populations dominate
distinct energy regions, then the derivative can be use
determine the dominant populations. Also the 1D VDF is n
the same as the original 3D VDF of Eq.~4!, however, it is a
useful concept. Later in the discussion on isotropic plasm
the relationship between the 1D and 3D distributions is
amined. In general, the second derivative of the planar e
tron current appears to be not related directly to the distri
tion function, since it is the first derivative of the 1D VDF
However, if the distribution takes the specific form of anis
tropic VDF that we assumed in Eq.~8!, then it can be shown
using integration by parts, that
t
de-

e

for

r-
er
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e
to
e
st

to
t
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-
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-

-

d2i plane

deV2 5
2pAe

me
2 (

j

SA22eV

me
2u0

j D
A22eV

me

3
a2

bc
njGjFa2SA22eV

me
2u0

j D 2G
3D

, ~12!

wherea,b,care anisotropy parameters which are distinct
each population, andu0 is the population dependent dri
velocity in the direction perpendicular to the planar pro
surface. Thus, the second derivative of the planar curren
equal to a weighted sum of the 3D VDFs for our assum
form of the anisotropic distribution. If the populations ha
distinct energy domains, then it may be possible to obt
some information on the VDF of each of the population
The result is independent of the drift velocities in the dire
tions along the probe surface, consistent with the pla
probe sensing the 1D distribution. The planar probe curr
was treated by Federov12 for the anisotropic distribution ex
panded in spherical harmonics. In the special case of an
tropic VDF (a5b5c51, u050), then Eq.~12! reduces to
the sum over the individual 3D VDFs.

2. Cylindrical probe general formulas

For a cylindrical probe with an anisotropic VDF, th
general formula for the current is more complicated than
a planar probe. The geometry is no longer rectilinear and
must integrate over the circumference of the cylindrical s
face which changes the direction of the normal and tang
tial velocities relative to the anisotropy direction in space
we let thez axis be along the probe axis, the dependence
a drift velocity, w0 in the z direction is eliminated. We use
our general form for the anisotropic VDF, given by Eqs.~6!
and ~8! and define a 2D VDF,

F@a~u2u0!,b~v2v0!#2D[E
2`

`

dw F~u,v,w!anisotropic,

~13!

whereFanisotropicis given by Eq.~8!. At an arbitrary position
u along the probe circumference, the radial,u8, and tangen-
tial, v8, velocities are related to thex,y componentsu, v by
the transformation,

u5u8 cosu2v8 sinu, v5u8 sinu1v8 cosu. ~14!

The orbital-motion-limited cylinder probe current is adapt
from the derivations of Mott–Smith and Langmuir,6

i cylinder52A(
s, j

ns
j qs

j 1

2p E
0

2p

duE
0,A22qV/m

`

udu

3Au21
2qV

m
Fs

j @a~u cosu2u0!,

b~u sinu2v0!#2D , ~15!

where A is the cylinder area and transformation~14! was
used in Eq.~13!, u8 is relabeledu and we may setv850.
The integral is complicated and involves integration ove
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modified Bessel function in the case of a Maxwel
Boltzmann VDF. The first and second derivatives of the
lindrical probe current in general do not directly give t
distribution function. However, Federev12 has shown that the
cylindrical I –V curve can yield information on the aniso
tropic distribution function.

3. Spherical probe general formulas

For the spherical Langmuir probe, there is no prefer
direction and the current is an integral over 4p directions on
the sphere. The general rotation transformation of veloci
from the fixedx,y,zvelocities,u8,v8,w8 to velocities on the
sphere at the position given by the spherical polar ang
u,f with u the radial velocity andv and w the tangential
velocities, is given by

u5u8 cosu1sinu~v8 cosf1w8 sinf!,

v52u8 sinu1cosu~v8 cosf1w8 sinf!, ~16!

w52v8 sinf1w8 cosf,

whereu,f are the polar and azimuthal angles, respective
The inverse transformation is the transpose of Eq.~16!. Then
the spherical probe current in the limit of a large she
~orbital-motion-limited case! is given by5

i sphere5
A

4 (
s, j

ns
j qs

j E
0

p

sinuduE
0

2p

df

3E
0,A22qV/m

`

uduS u21
2qV

m D –Fs
j @a~u cosu2u0!,

b~u sinu cosf2v0!,c~u sinu sinf2w0!#, ~17!

whereA is the sphere area, andF j is our general anisotropic
3D VDF given by Eq.~8!. For retarded electrons, the fir
derivative is

disphere

deV
5

A

4 (
j

ne
j e

2

me
E

0

p

sinuduE
0

2p

df

3E
0,A22eV/me

`

uduFj , ~18!

and the second derivative is given by

d2i sphere

deV2 5
A

4 (
j

ne
j e

2

me
2 E

0

p

sinudu

3E
0

2p

dfF jU
u5A22eV/me

. ~19!

Thus, the second derivative of the spherical probe curren
the average over all orientations of the anisotropic distri
tion function, or it yields the isotropic part of the distributio
as was shown by Federov.12

B. Current equations for isotropic distribution of
electrons

The isotropic velocity distribution function has the ge
eral form given by Eq.~6!. We now demonstrate that, fo
isotropic electron populations, the three geometries h
-

d

s

s,

.

h

is
-

e

I –V curves with identical functional form for the retarde
current. Thus, for all three geometries, the first derivat
yields the 1D VDF and the second derivative yields the
VDF. This result means that theoretically all three are su
able for measuring isotropic, non-Maxwellian electron velo
ity distributions.

1. Standard form of the isotropic, retarded current

Given the form of the isotropic VDF, Eq.~6!, the 1D
distribution can be rewritten as

G1D~u2!52pE
0

`

tdtG~u21t2!, ~20!

where G is the 3D VDF and the polar transformation o
variables was used,v5t cosa, w5t sina. Thus the planar
current can be rewritten as

i p
isotropic5A( nqE

0,A2X

`

udu2pE
0

`

tdtG~u21t2!, ~21!

whereX52qV/m; the lower limit 0 is for accelerated par
ticles whenX.0, and the limitA2X is for retarded particles
when X,0. The accelerated current is independent of vo
age, and thus we consider only the retarded particles wh
yield information on the VDF. With a change of variable
the retarded planar current expression is

i p
isotropic

retarded5A( nqpE
0

`

s3dsG~s22X!. ~22!

The cylindrical current is obtained by substituting an is
tropic VDF in Eq.~15!, giving the form,

i c
isotropic5A( 2nqE

0,A2X

`

uduAu21X

3E
2`

`

dwG~u21w2!. ~23!

Successive transformation of variables,u21X5t2, and t
5sinus, w5cosus, and the integral overu yields p/2, and
thus the retarded cylindrical current is given by the integ
in Eq. ~22!, i c

isotropic
retarded5 i p

isotropic
retarded.

The spherical current, Eq.~17!, for an isotropic distribu-
tion has the form,

i s
isotropic5A( nqpE

0,A2X

`

udu~u21X!G~u2!, ~24!

and using the transformation,u21X5s2, the spherical probe
retarded current is found to have the form of Eq.~22!, or,
i s
isotropic

retarded5 i p
isotropic

retarded. Thus the three probe geom
etries have the identical retarded current expression for
isotropic VDF.

2. First derivative of the isotropic retarded current

The first derivative of the retarded current was shown
Eq. ~11! to be given by the 1D distribution for a plana
probe, thus for isotropic plasma, the three probe geome
all have the identical form given by
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di isotropic

deV
5A(

nee

me
G1DS 2

2eV

me
D , ~25!

where the 1D VDF is given by Eq.~20!.
Examine the relation of the 1D distribution to the full 3

VDF. The 3D VDF can be expanded in Laguer
polynomials,13

G~x!5e2x(
n50

`

gnLn
~0!~x!, ~26!

then the 1D VDF is the integral,

G1D~x!5pE
0

`

dsG~s1x!, ~27!

which can be rewritten, using the relations among Lague
polynomials given by Rainville,13 as follows:

G1D~x!5e2xp (
n50

`

gnLn
~21!~x!. ~28!

For a Maxwell distribution,gn50 for n.0, which is the
only case when the 1D and 3D distributions have the sa
functional form. The first few terms of the two distribution
are given by

G~x!5e2xFg01g1~12x!1g2S 122x1
x2

2 D1¯ G , ~29!

G1D~x!5pe2xFg02g1x1g2S 2x1
x2

2 D1¯ G . ~30!

The distributions are distinct, but the dominant terms inx are
identical.

3. Second derivative of isotropic retarded current

The second derivative of the isotropic current is read
obtained from Eq.~12! by substituting the isotropic distribu
tion, we obtain

d2i isotropic

deV2 5
2p

me
2 A( neeGS 22eV

me
D . ~31!

A result first found earlier by Mott-Smith and Langmuir.6 In
the next section, we give the current formulas for the spe
anisotropic case of the Maxwell–Boltzmann distributi
with isotropic temperatures.

C. The Maxwell–Boltzmann anisotropic case

The VDF for a Maxwell–Boltzmann~MB! distribution
is given by the formula,

Fs
j ~u,v,w!MB5S ms

j

2pkTs
j D 3/2

expH 2
ms

j

2kTs
j @~u2u0!2

1~v2v0!21~w2w0!2#J , ~32!

where the drift velocity componentsu0 ,v0 ,w0 may be dif-
ferent for each specie and population of a specie. For s
plicity, we will assume below that all species have the sa
drift velocity.
re

e

al

-
e

1. Planar probe equations for anisotropic MB
distribution

The 1D VDF is obtained by substituting Eq.~34! in Eq.
~12!,

Fs
j ~u!MBu1D5S ms

j

2pkTs
j D 1/2

expF2
ms

j

2kTs
j ~u2u0!2G , ~33!

which leads to the current expressions,

i planarMBaccelerated
5(

j ,s
i random@exp~2r 2!1Apr erfc~2r !#

~34a!

for accelerated particles, and

i planarMBretarded
5(

j ,s
i random$exp@2~A2h2r !2#

1Apr erfc~A2h2r !%, ~34b!

for retarded particles, wherer is the ratio of drift velocity to
thermal velocity,

r s
j 5

u0
s
j

A2kTs
j /ms

j
, ~35!

andh is the ratio of voltage to thermal energy,

hs
j 5

qs
j V

kTs
j , ~36!

and the random current, the current due only to thermal m
tion of the particles, is

i random
s
j 5Ans

jA kTs
j

2pms
j . ~37!

2. Cylindrical probe equations for anisotropic MB
distribution

Using the Maxwell–Boltzmann distribution~32! in the
expression for the cylindrical probe current, Eq.~15!, and
transforming the drift velocities, we find

i cylinder5(
s, j

i random

4

Ap
E

0,A2h

`

tdtAt21h

3exp@2~ t21r 2!#I 0~2tr !, ~38!

which formula cannot be evaluated in simple analytical for
I 0 is the modified Bessel function andr and h are given
above. Useful asymptotic approximations have been
tained for this integral by Hoegy and Wharton.9 However,
since we are evaluating the cylinder current for a wide ran
of values ofr and h, we evaluate it numerically using th
fast, efficient routines fromNumerical Recipes.14 The limit
of Eq. ~38! for zero drift velocity or the isotropic Maxwel
distribution gives for accelerated particles,

i randomF 2

Ap
Ah1exp~h!erfc~Ah!G , ~39a!
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for large h, this expression is approximated b
(2/Ap)A11h. For retarded particles, the current is given

i randomexp~h!. ~39b!

3. Spherical probe equations for anisotropic MB
distribution

The Maxwell–Boltzmann distribution~32! in the expres-
sion for the spherical probe current, Eq.~17!, gives the ex-
pression,

i sphere5(
s, j

i random

1

2r E0,A2h

`

dt~ t21h!

3$exp@2~ t2r !2#2exp@2~ t1r !2#%.

The spherical geometry, results in spherical Bessel funct
which can be integrated to give,

i sphereaccelerated
5(

s, j
i randomF1

2
exp~2r 2!

1
~h1r 21 1

2!

r

Ap

2
erf~r !G , ~40a!

for accelerated particles, and

i sphereretarded
5(

s, j
i random

1

2r K ~h1r 21 1
2!~Ap/2!

3@erf~A2h1r !2erf~A2h2r !#

1
~A2h1r !

2
exp@2~A2h2r !2#

2
~A2h2r !

2
exp@2~A2h1r !2#L , ~40b!

for retarded particles. In the limit of zero drift velocity, or a
isotropic Maxwell distribution, Eq.~40a! reduces to

i random~h11!, ~41a!

and Eq.~40b! reduces to

i randomexp~h!. ~41b!

To aid the reader in visualizing the effects of no
Maxwellian electron distributions on theI –V curves, Sec-
tions V and VI show theoreticalI –V curves for mixtures of
electron populations having different temperatures and d
sity ratios.I –V curves are also shown for mixtures of the
mal electrons and energetic beam electrons.

V. I – V CHARACTERISTICS FOR TWO-TEMPERATURE
DISTRIBUTIONS

Figures 2~a!, 2~b!, and 2~c! show planar, cylindrical and
spherical probeI –V curves for various density ratios o
10 000 and 1000 K electron populations, with a combin
total density of 105 cm23. Curves are shown for energet
component densities relative to the total density of 0,
33.3, and 50%. 0% corresponds to the complete absenc
the higher temperature component.
ns

n-

d

,
of

The higher temperature component enhances the cu
at greater retarding voltages as seen by comparing these
ures with Figs. 1~a!–1~c!. The temperatures and densities
the two components can be obtained by fitting a tw
temperature exponential to the curves or by fitting the n
and far retarding regions with single-temperature expon
tial. The latter procedure was used successfully in the fitt
of I –V curves from the PVO Langmuir probe which exhi
ited two-temperature characteristics in certain regions of
Venus ionotail.4

FIG. 2. ~a! Planar probe curves for mixtures of electron populations hav
temperatures of 1000 and 10 000 K. The curves are labeled with the
centage of the total density represented by the higher temperature co
nent. The low temperature component dominates the shape of the curv
low retarding potentials, while the high temperature component domin
the more negative end of the retarding region.~b! Same as~a!, except for a
cylindrical probe.~c! Same as~a!, except for a spherical probe.
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VI. I – V CHARACTERISTICS FOR THERMAL
ELECTRONS PLUS AN ENERGETIC BEAM

Figures 3~a!–3~c! show theoreticalI –V curves for com-
binations of 1000 K thermal electrons and a 1 eVenergetic
beam having a 2000 K thermal spread. The assumed

FIG. 3. ~a! Planar probe curves for a 1 eVenergetic beam with a 2000 K
energy spread and a 1000 K thermal component. The curves are labeled
the percentage of the total density represented by the beam. Note tha
beam component dominates the retarding region for relatively small perc
ages of beam density, thus potentially interfering with the measureme
the cold ionospheric component.~b! Same as~a!, except for a cylindrical
probe. The retarding region is not as sensitive to the beam compone
was the case for the planar probe~a!. Also note that the electron saturatio
currents to a cylinder are relatively less sensitive to the presence of a b
than are planar probes and spherical probes~c!. ~c! Same as~a!, except for
a spherical probe. The retarding region is less sensitive to the beam co
nent than either the planar or cylindrical probe@~a! and~b!# because therma
electrons are collected from 4p radians, while the beam approaches t
collector from only one direction.
tal

density is 105 cm23. The beam is directed normal to the pl
nar probe surface and perpendicular to the cylindrical pr
axis. The beam direction is irrelevant for the spherical pro
This case is our example of an anisotropic distribution. T
nonexponential nature of the curves shows immediately
the energy distribution is non-Maxwellian.

These examples are illustrative of the effects of no
Maxwellian plasmas on Langmuir probe measureme
Other combinations of secondaries, energetic beams
ionospheric electrons would change the shapes and am
tudes of the Langmuir probe characteristics in different a
unique ways. The question remains as to how the amb
ionospheric temperature and density can be derived w
such additional electron populations are present as an a
native to the derivative technique. The next section illustra
what can be learned about such complex distributions
fitting the I –V curves using either one or two temperatu
distributions.

VII. FITTING I – V CURVES FOR ONE- OR TWO-
TEMPERATURE MAXWELLIAN DISTRIBUTIONS

If one knew the form of the energy distributions of th
secondary electron populations, one could in principle fit
I –V curves for the energy and density of each of the con
butions. In practice this is difficult, since one usually on
has theI –V curves themselves to work with. After findin
that a single-temperature fit fails to achieve a sufficien
small standard deviation, one could proceed by trial and
ror to add various other components to the fit to improve
quality of the fit. The first step is usually to add anoth
Maxwellian component at a suitable temperature and d
sity. If such a two-temperature distribution fails to achie
an acceptable fit, one can proceed to add or substitute
rected energetic beams with appropriate energies and
peratures of the type illustrated above in Sec. VI.

In this section, we go part way down this path by sho
ing how well single- and two-temperature probe theories
the I –V curves shown in Figs. 1–3. We fitted the theoretic
curves shown in Figs. 1–3 using techniques similar to th
used in the analysis of Langmuir probe measurements f
Pioneer Venus Orbiter4 and Dynamics Explorer-2.15 The re-
tarding regions were fit first to a single Maxwellian. In som
cases, the curves were then fit using a two-temperature M
wellian to explore the feasibility of obtaining information o
the nature of the distributions and to recover the ambi
parameters.

The single-temperature fits were made using the sim
form:

I 5a1bV1c expS 11604.45V

T1
D , ~42!

whereV is the probe voltage in volts,T1 is the single tem-
perature in K, anda, b, andc are constants to be determine
by the fit. The first two terms represent the ion current a
plitude and slope, respectively. The third term represents
retarded electron current. The fitting procedure steps thro
a range of temperaturesT1 while performing a least-square
fit of Eq. ~42! to the theoretical curves to determine the c
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efficients. A Newtonian scheme is used to refine the fit
obtain a temperature that minimizes the standard deviat
STD.

A similar method was used to fit the curves for tw
temperatures using the formula:

I 5a1bV1c expS 11604.45V

T1
D1d expS 11604.45V

T2
D . ~43!

The ratio of coefficientsd and c determine the ratio of the
densities of the high and low temperature components.
domains of the two temperatures are kept distinct to ens
the uniqueness of the fit parameters. In a flight applicat
where perhaps millions of curves may have to be fitted
faster scheme would be devised. The present fit proced
however, is adequate to demonstrate the nature of the
temperature fitting procedure.

These fit procedures were applied to the three case
different probe geometry, planar, cylindrical, and spheric
and to three distribution functions, purely Maxwellian, tw
temperature Maxwellian and a Maxwellian with a superi
posed electron beam. When the two-temperature fits w
applied to the one-temperature curves, the density der
for the second component was essentially zero, thus confi
ing that only a single temperature was present. The fits to
single Maxwellian are not shown in the table because t
reproduce the input values ofTe andNe with greater than 1%
accuracy corresponding to STDs of less than 531025.

TABLE I. Te and STD for single- and two-temperature fits to curves p
duced by a two-temperature distribution at 1000 and 10 000 K.

ratio n2 /n1 0.25 0.5 1.0

Planar probe
Te ~singleT fit! 2130 3694 5652
STD ~singleT fit! 5~22! 7.0~22! 5.0~22!
STD ~two T fit! 8.0~26! 7.7~26! 9.3~25!

Cylindrical probe
Te ~singleT fit! 2133 3698 5655
STD ~singleT fit! 5.4~22! 7.2~22! 5.4~22!
STD ~two T fit! 8.0~26! 7.7~26! 7.2~26!

Spherical probe
Te ~singleT fit! 2117 3678 5633
STD ~singleT fit! 5.4~22! 7.3~22! 5.5~22!
STD ~two T fit! 3.6~25! 3.6~25! 3.8~25!
o
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Table I lists the derived temperatures and fit STDs fo
two-temperature distribution and for different density rati
of the two components. The numbers in parenthesis
power of 10, e.g., 3.2(25)53.231025. The curve to be
fitted were obtained using the appropriate equations
were presented earlier. We assumed no digitization er
and used 226 voltage values between23 and 0 V. The the-
oretical temperatures were 1000 and 10 000 K, respectiv
Although not shown in Table I, the two-temperature fits r
trieved the two temperatures and three density ratios w
negligible error. The ratio of fit parameters,d/(c1d) for the
two-temperature least-squares fit were, 0.44, 0.61, and
which agree with the theoretical values corresponding
density ratiosn2 /n1 of 0.25, 0.5, and 1.0, respectively. The
ratios are related by the formula,

d

d1c
5

f

11 f
,

where

f 5
n2

n1
AT2

T1
.

Note that the STDs of the single-temperature fits
much higher than those obtained when the more approp
two-temperature fits are performed. All three geometries p
vide very low STDs for the two-temperature fits, indicatin
that all are appropriate for measuring two-temperature e
tron populations. Table I also demonstrates the vast impro
ment in the STD when a two-temperature fit is used inst
of the simple single-temperature fit. We find that a tw
temperature fit still works when the original distribution co
tains only one-temperature component. The STD does
improve significantly relative to a single-temperature
This result suggests that the presence of a two-tempera
plasma can be confirmed by comparing the STDs for a tw
temperature fit and a single-temperature fit. A sing
temperature plasma is present if the STDs are low for b
types of fit. A two-temperature plasma is present if t
single-temperature fit yields a high STD and a tw
temperature fit yields two temperatures, both with sm
STDs. If neither of these outcomes occur, then a more c
plicated energy distribution must be present.

-

nt at
TABLE II. Te and STD from single- and two-temperature fits curve produced by a Maxwellian compone
1000 K and a 1 eVbeam with a superposed 2000 K temperature.

n2 /n1 0.25 0.5 1.0

Cylindrical probe
T/STD ~singleT fit! 4935/0.14 11,426/9.8~22! 22,260/5.0~22!

Two-temperature fit yieldsT151000 K, T2536 800 K
STD ~two T fit! 4.8~23! 1.3~22! 3.0~22!
d/(c1d) ~two T fit! 0.865 0.94 0.98

Spherical probe
T/STD ~singleT fit! 3100/8.8~22! 5726/8.0~22! 8483/4.0~22!

Two-temperature fit yieldsT151000 K, T2512 000 K
STD ~two T fit! 1.1~23! 3.0~23! 6.7~23!
d/(c1d) ~two T fit! 0.57 0.75 0.87
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Next, it is shown what happens when one of these m
complicated energy distributions is present. Table II sho
the Te and STD results obtained when single- and tw
temperature fits are performed on the curves shown in F
3~a!–3~c!. These curves were derived for the case wh
both a directed electron beam and a single-tempera
plasma are present. The thermal plasma has a temperatu
1000 K, while the beam was given a directed energy of 1
and a superposed temperature of 2000 K. The family of d
sity ratios are as shown in the figures.

Since the curves do not appear as simple exponentia
is not surprising that the STDs are high for both single- a
two-temperature fits. The fit data for the planar probe are
shown because the STDs are so large as to make the re
meaningless.

VIII. DISCUSSION

While this work has presented and illustrated the La
muir probe theory for non-Maxwellian electron population
we have also tried to convey some sense of how one m
proceed to use these results in the analysis of experime
I –V curves obtained in space. In our experience, the v
majority of suchI –V curves can be fitted very well using th
original Langmuir probe theory for a single-temperature a
density plasma. Under certain conditions, however, the
fects of photoelectrons or impact secondaries can be see
theI –V curves as a high energy tail in the retarding region4

Although we have not experienced it in the ionosphere,
can be sure that a Langmuir probe would be sensitive to
presence of an energetic electron beam, and/or any sec
aries that it might produce.

The presence of secondaries is not usually a surpris
the experimenter who understands how spacecraft inte
with the atmosphere and knows what other devices onbo
may produce interfering plasma populations. Therefore,
starts off with a good idea of which kinds of distributions
employ in fitting such curves. In our experience, most su
curves can be fitted by introducing into the fit a second M
wellian component. If the spacecraft is highly positive, or
an electron beam source is known to be onboard, it may
necessary to add or substitute an electron beam term into
fitting routine. In principle, some such combination of Ma
wellian and beam sources can reproduce almost anyI –V
curve that is likely to be encountered. However, the para
eters derived from theI –V curves may not always give e
ther the original ionosphere component or the second
components. Interactions among the various populati
could conceivably produce a final distribution at the pro
re
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location that is not a simple superposition of the compone
that produced it. A detailed evaluation of this possibili
would be required to validate that assumption in each ca

We showed that all three probe geometries are
equally suitable for the measurement ofTe . An earlier work
by Hoegy16 showed how different measurement techniqu
for example, radar backscatter, ac mode Langmuir plate,
using distinct methods of deriving temperature tend to g
different temperature values when the distribution is no
Maxwellian. Thus distinct techniques or instrument type a
lead to different plasma probe results. The figures dem
strated that electron saturation regions differ greatly with c
lector geometry. The saturation region of the cylindric
probe is nearly independent ofTe , whereas this region is
highly temperature dependent for the planar and spher
probes. We showed that the retarding region of theI –V
curves is identical for all three probe geometries when
distribution is isotropic. The first derivative of the retardin
regions gives the 1D VDF, while the second derivati
yields the full 3D VDF. When the energy distribution is a
isotropic, it is not always possible to derive the distributi
uniquely, but some information can be obtained from t
derivatives. For example, the first derivative of the plan
probe current and the second derivative of the spher
probe current give averages of the anisotropic distribut
functions.
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